Division of Statistics and Data Science
Hang J. Kim
            

Associate Professor

Division of Statistics and Data Science

A&S Mathematical Sciences

French Hall, Room 5410


hang.kim@uc.edu

hang.kim@uc.edu

Associate Professor

Division of Statistics and Data Science

A&S Mathematical Sciences

Bio

Peer Reviewed Journals

* corresponding author
  1. Park, M-J., Kim, H. J., and Kwon, S. (2024), Disseminating massive frequency tables by masking aggregated cell frequencies, Journal of the Korean Statistical Society, 53, 328-348
  2. Lee, S., Chae, S. J., Jang, I-H., Oh, S-C., Kim, S.-M., Lee, S. Y., Kim, J. H., Ko, J., Kim, H. J., Song, I-C., Kim, J. K., and Kim, T-D. (2024), B7H6 is the predominant activating ligand driving natural killer cell-mediated killing in patients with liquid tumours: evidence from clinical, in silico, in vitro, and in vivo studies, eBioMedicine, 110, 105459
  3. Hong, H., Cortez, M. J., Cheng, Y-Y, Kim, H. J., Choi, B., Josic, K., and Kim, J. K. (2023), Inferring delays in partially observed gene regulation processes, Bioinformatics, 39
  4. Wang, Z., Kim, H. J., and Kim, J. K. (2023), Survey data integration for regression analysis using model calibration, Survey Methodology, 49, 89-115
  5. Zang, H., Kim, H. J.*, Huang, B., and Szczesniak, R. (2023), Bayesian causal inference for observational studies with missingness in covariates and outcomes, Biometrics, 79, 3624-3636
  6. Chen, C., Bin, H., Kouril, M., Liu, J., Kim, H. J., and Sivaganesan, S. (2023), An application programming interface implementing Bayesian approaches for evaluating effect of time-varying treatment with R and Python, Frontiers in Computer Science, 5:1183380
  7. Deng, Q., Nam, J. H., Yilmaz, A. S., Chang, W., Pietrzak, M., Li, L., Kim, H. J.*, and Chung, D.* (2023), graph-GPA 2.0: Improving multi-disease genetic analysis with integration of functional annotation data, Frontiers in Genetics, 14:1079198
  8. Allen, C., Chang, Y., Neelon, B., Chang, W., Kim, H. J., Li, Z., Ma, Q. and Chung, D. (2022), A Bayesian multivariate mixture model for high throughput spatial transcriptomics, Biometrics, 79, 1775-1787
  9. Thompson, K. J. and Kim, H. J. (2022), Incorporating economic conditions in synthetic microdata for business programs, Journal of Survey Statistics and Methodology, 10, 830–859
  10. Hu, J., Drechsler, J. and Kim, H. J. (2022), Accuracy gains from privacy amplification through sampling for differential privacy, Journal of Survey Statistics and Methodology, 10, 688-719
  11. Khatiwada, A.,Wolf, B. J., Yilmaz, A. S., Ramos, P. S., Pietrzak, M., Lawson, A., Hunt, K. J., Kim, H. J., and Chung, D. (2022), GPA-Tree: Statistical approach for functional-annotation-tree-guided prioritization of GWAS results, Bioinformatics, 38, 1067-1074
  12. Kim, H. J.*, Drechsler, J., and Thompson, K. J. (2021), Synthetic microdata for establishment surveys under informative sampling, Journal of the Royal Statistical Society, Series A, 184, 255-281
  13. Jung, Y., MacEachern, S. N., and Kim, H. J. (2021), Modified check loss for efficient estimation via model selection in quantile regression, Journal of Applied Statistics, 48, 866-886
  14. Hwang, Y., Kim, H. J.*, Chang, W., Yeo, K., and Kim, Y. (2019), Bayesian pollution source identification via an inverse physics model, Computational Statistics and Data Analysis, 134, 76-92
  15. Kim, H. J.*, Lu, B., Nehus, E. J., and Kim, M-O.* (2019), Estimating heterogeneous treatment effects for latent subgroups in observational studies, Statistics in Medicine, 38, 339–353
  16. Liu, X., Chen, A., Caicedo-Casso, A., Cui, G., Du, M., He, Q., Lim, S., Kim, H. J., Hong, C., and Liu, Y. (2019), FRQ-CK1 interaction determines the period of circadian rhythms in Neurospora, Nature Communications, 10, 4352
  17. Kim, H. J., Yu, Z., Lawson, A., Zhao H., and Chung, D. (2018), Improving SNP prioritization and pleiotropic architecture estimation by incorporating prior knowledge using graph-GPA, Bioinformatics, 34, 2139-2141
  18. Kim, H. J.*, Reiter, J. P., and Karr, A. F. (2018), Simultaneous edit-imputation and disclosure limitation for business establishment data, Journal of Applied Statistics, 45, 63-82
  19. Kortemeier, E., Ramos, P. S., Hunt, K. J., Kim, H. J., Hardiman G., Chung D. (2018), ShinyGPA: An interactive visualization toolkit for investigating pleiotropic architecture using GWAS datasets, PLoS ONE, 13, (1): e0190949
  20. Chung, D., Kim, H. J., and Zhao, H. (2017), graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture, PLoS Computational Biology, 13, (2): e1005388
  21. Kim, H. J.*, Cox, L. H., Karr, A. F., Reiter, J. P., and Wang, Q. (2015), Simultaneous edit-imputation for continuous microdata, Journal of the American Statistical Association, 110, 987-999
  22. Kim, H. J.* and MacEachern, S. N. (2015), The generalized multiset sampler, Journal of Computational and Graphical Statistics, 24, 1134-1154
  23. Kim, H. J.*, Karr, A. F. and Reiter, J. P. (2015), Statistical disclosure limitation in the presence of edit rules, Journal of Official Statistics, 31, 121-138
  24. Kim, H. J.*, Reiter, J. P., Wang, Q., Cox, L. H. and Karr, A. F. (2014), Multiple imputation of missing or faulty values under linear constraints, Journal of Business and Economics Statistics, 32, 375-386

Book Chapters, Technical Reports, or Journal Articles Written in Korean

Softwares

Hang Joon Kim 김항준, 신시내티 통계학

Division of Statistics and Data Science | Department of Mathematical Sciences | University of Cincinnati | PO Box 210025 | Cincinnati, OH 45221
Email: kim3h4@ucmail.uc.edu