Hang J. Kim
Associate Professor
Division of Statistics and Data Science
A&S Mathematical Sciences
French Hall, Room 5410
hang.kim@uc.edu
Associate Professor
Division of Statistics and Data Science
A&S Mathematical Sciences
Peer Reviewed Journals
* corresponding author
- Hwang, Y., Kim, H. J., Chan, W., Hong, C., and MacEachern, S. N. (in press), Bayesian model calibration and sensitivity analysis for oscillating biological experiments, Technometrics
- Park, M-J., Kim, H. J., and Kwon, S. (2024), Disseminating massive frequency tables by masking aggregated cell frequencies, Journal of the Korean Statistical Society, 53, 328-348
- Lee, S., Chae, S. J., Jang, I-H., Oh, S-C., Kim, S.-M., Lee, S. Y., Kim, J. H., Ko, J., Kim, H. J., Song, I-C., Kim, J. K., and Kim, T-D. (2024), B7H6 is the predominant activating ligand driving natural killer cell-mediated killing in patients with liquid tumours: evidence from clinical, in silico, in vitro, and in vivo studies, eBioMedicine, 110, 105459
-
Hong, H., Cortez, M. J., Cheng, Y-Y, Kim, H. J., Choi, B., Josic, K., and Kim, J. K. (2023), Inferring delays in partially observed gene regulation processes, Bioinformatics, 39
- Wang, Z., Kim, H. J., and Kim, J. K. (2023), Survey data integration for regression analysis using model calibration, Survey Methodology, 49, 89-115
- Zang, H., Kim, H. J.*, Huang, B., and Szczesniak, R. (2023), Bayesian causal inference for observational studies with missingness in covariates and outcomes, Biometrics, 79, 3624-3636
- Chen, C., Bin, H., Kouril, M., Liu, J., Kim, H. J., and Sivaganesan, S. (2023), An application programming interface implementing Bayesian approaches for evaluating effect of time-varying treatment with R and Python, Frontiers in Computer Science, 5:1183380
- Deng, Q., Nam, J. H., Yilmaz, A. S., Chang, W., Pietrzak, M., Li, L., Kim, H. J.*, and Chung, D.* (2023), graph-GPA 2.0: Improving multi-disease genetic analysis with integration of functional annotation data, Frontiers in Genetics, 14:1079198
- Allen, C., Chang, Y., Neelon, B., Chang, W., Kim, H. J., Li, Z., Ma, Q. and Chung, D. (2022), A Bayesian multivariate mixture model for high throughput spatial transcriptomics, Biometrics, 79, 1775-1787
- Thompson, K. J. and Kim, H. J. (2022), Incorporating economic conditions in synthetic microdata for business programs, Journal of Survey Statistics and Methodology, 10, 830–859
- Hu, J., Drechsler, J. and Kim, H. J. (2022), Accuracy gains from privacy amplification through sampling for differential privacy, Journal of Survey Statistics and Methodology, 10, 688-719
- Khatiwada, A.,Wolf, B. J., Yilmaz, A. S., Ramos, P. S., Pietrzak, M., Lawson, A., Hunt, K. J., Kim, H. J., and Chung, D. (2022), GPA-Tree: Statistical approach for functional-annotation-tree-guided prioritization of GWAS results, Bioinformatics, 38, 1067-1074
- Kim, H. J.*, Drechsler, J., and Thompson, K. J. (2021),
Synthetic microdata for establishment surveys under informative sampling, Journal of the Royal Statistical Society, Series A, 184, 255-281
- Jung, Y., MacEachern, S. N., and Kim, H. J. (2021), Modified check loss for efficient estimation via model selection in quantile regression, Journal of Applied Statistics, 48, 866-886
- Hwang, Y., Kim, H. J.*, Chang, W., Yeo, K., and Kim, Y. (2019), Bayesian pollution source identification via an inverse physics model, Computational Statistics and Data Analysis, 134, 76-92
- Kim, H. J.*, Lu, B., Nehus, E. J., and Kim, M-O.* (2019), Estimating heterogeneous treatment effects for latent subgroups in observational studies, Statistics in Medicine, 38, 339–353
- Liu, X., Chen, A., Caicedo-Casso, A., Cui, G., Du, M., He, Q., Lim, S., Kim, H. J., Hong, C., and Liu, Y. (2019), FRQ-CK1 interaction determines the period of circadian rhythms in Neurospora, Nature Communications, 10, 4352
- Kim, H. J., Yu, Z., Lawson, A., Zhao H., and Chung, D. (2018), Improving SNP prioritization and pleiotropic architecture estimation by incorporating prior knowledge using graph-GPA, Bioinformatics, 34, 2139-2141
- Kim, H. J.*, Reiter, J. P., and Karr, A. F. (2018), Simultaneous edit-imputation and disclosure limitation for business establishment data, Journal of Applied Statistics, 45, 63-82
- Kortemeier, E., Ramos, P. S., Hunt, K. J., Kim, H. J., Hardiman G., Chung D. (2018), ShinyGPA: An interactive visualization toolkit for investigating pleiotropic architecture using GWAS datasets, PLoS ONE, 13, (1): e0190949
- Chung, D., Kim, H. J., and Zhao, H. (2017), graph-GPA: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture, PLoS Computational Biology, 13, (2): e1005388
- Kim, H. J.*, Cox, L. H., Karr, A. F., Reiter, J. P., and Wang, Q. (2015), Simultaneous edit-imputation for continuous microdata, Journal of the American Statistical Association, 110, 987-999
- Kim, H. J.* and MacEachern, S. N. (2015), The generalized multiset sampler, Journal of Computational and Graphical Statistics, 24, 1134-1154
- Kim, H. J.*, Karr, A. F. and Reiter, J. P. (2015), Statistical disclosure limitation in the presence of edit rules, Journal of Official Statistics, 31, 121-138
- Kim, H. J.*, Reiter, J. P., Wang, Q., Cox, L. H. and Karr, A. F. (2014), Multiple imputation of missing or faulty values under linear constraints, Journal of Business and Economics Statistics, 32, 375-386
Book Chapters, Technical Reports, or Journal Articles Written in Korean
- An, S., Doan, T., Lee, J., Kim, J., Kim, Y. J., Kim, Y., Yoon, C., Jung, S., Kim, D., Kwon, S., Kim, H. J., Ahn, J., and Park, C. (2023, written in Korean), A comparison of synthetic data approaches using utility and disclosure risk measures (유용성과 노출 위험성 지표를 이용한 재현자료 기법 비교 연구),
Korean Journal of Applied Statistics, 36, 141–166
- Abowd, J. A., Benedetto, G. L., Garfinkel, S. L., Dahl, S. A., Dajani, A. N., Graham, M., Hawes, M. B., Karwa, V., Kifer, D., Kim, H. J., Leclerc, P., Machanavajjhala, A., Reiter, J. P., Rodriguez, R., Schmutte, I. M., Sexton, W. N., Singer, P. E., and Vilhuber, L. (2020), The Modernization of Statistical Disclosure Limitation at the U.S. Census Bureau, Census Working Papers, U.S. Census Bureau, Washington, DC
- Thompson, K. J., Kim, H. J., Bassel, N., Bembridge, K., Coleman, C., Freiman, M., Garcia, M., Kaputa, S., Riesz, S., Singer, P., Valentine, E, White, K. T., and Whitehead, D. (2020), Final Report: Economic Census Synthetic Data Project Research Team, ADEP Working Paper Series ADEP-WP-2020-05, U.S. Census Bureau, Washington, DC
- Park, M-J. and Kim, H. J.* (2016, written in Korean), Statistical disclosure control for public microdata: present and future (마이크로데이터 공표를 위한 통계적 노출제어 방법론 고찰) ,
Korean Journal of Applied Statistics, 29, 1041–1059
- Kim, H. J. and Karr, A. F. (2013), The effect of statistical disclosure limitation on parameter estimation for a finite population, Technical Report 183, National Institute of Statistical Sciences, Durham, NC
- Bakshi, B. R., Kim, H. J., and Goel, P. K. (2011), Using thermodynamics and statistics to improve the quality of life-cycle inventory data Thermodynamics and the Destruction of Resources, in Thermodynamics and the Destruction of Resources, pp. 235-248, Cambridge University Press
Softwares
- clusterMI (ver 1.2.1) by Vincent Audigier and Hang J. Kim
: Allows clustering of incomplete observations by addressing missing values using multiple imputation. Four multiple imputation methods are proposed, two are based on joint modelling and two are fully sequential methods.
- synMicrodata (ver 2.0.0) by Hang J. Kim, Juhee Lee, Young-Min Kim, and Jared Murray
: Synthetic microdata generator based on a non-parametric Bayesian model for mixed data type (continuous and categorical variables) where missing values exist.
- GGPA (ver 1.16.0) by Dongjun Chung, Hang J. Kim, and Carter Allen
: A graphical model for prioritizing GWAS results and investigating pleiotropic architecture, introduced in Chung et al. (2017, PLoS Comput. Biol.) and Kim et al. (2018, Bioinformatics)
- DPImputeCont (ver 1.2.2) by Hang Kim
: Imputation engine for continuous data using a Dirichlet process Gaussian mixture model, introduced in Kim et al. (2014, JBES)