Simultaneous Confidence Intervals Using Entire

Solution Paths

Xiaorui Zhu

Operations, Business Analytics & Information Systems Department
Lindner College of Business
University of Cincinnati

Co-Authors:
Yichen Qin, University of Cincinnati
Peng Wang, University of Cincinnati

July 28, 2019

/37



Outline

/37



= Motivation for the study

= Existing Methods and Preliminaries

= General approach of constructing simultaneous confidence
intervals

= Simulation studies

= Real Examples



@ The high-dimensional problems are prevalent

= Document classification: bag-of-words(similarity) can result in
p = 20K
= Genomics: say p = 20K genes for each subject

® Two objectives in the high-dimensional sparse linear models:

= Sparse estimation
= Statistical inference (our focus)



High-dimensional linear model

We focus on linear model as follow:

y=XB8*+¢, e~ N(0,02|,,), (1)

= y is the response vector

* X,xp € RP is the fixed design matrix containing p dimensional
covariates.

= The parameter vector 8* = (57, - ,,6’;)/ € RP is assumed to
be sparse.

= S={j:B;#0,j=1,---,p} C{j:j=1,---,p} we assume
that |S| = s < p. The set of the truly zero coefficients is
S¢={j:p; =0}.



Motivation: ldeal simultaneous confidence intervals

An ideal simultaneous confidence intervals should:

@ Provide simultaneous confidence intervals with the nominal
confidence level (can be shown by the coverage probability);

® Have tight intervals for all coefficients at a given level of
confidence (can be shown by the width of nonzero and zero
coefficients);

© Be able to reveal the variable selection results in a way that the
truly irrelevant coefficients have zero width intervals.



Motivation: Drawbacks of Existing Methods

The ideal simultaneous confidence intervals require the variable
selection method to have:

= Unbiasedness of estimation (But, Lasso estimator is biased)

= High selection accuracy (But, the selection accuracy of Lasso
and Adaptive Lasso is highly unstable due to a single tuning
parameter)



Motivation: Drawbacks of Existing Methods

Missing of selection information

= Main stream: "Debiased” estimator hide the variable selection
information (S. van de Geer et al. (2014), Javanmard and
Montanari (2014), Dezeure, Biihmann, and Zhang (2017), X.
Zhang and Cheng (2017))



[llustrative Examples

= Example 1 (Moderate Correlation, p > n, Tibshirani (1996)).
Bf =(3,2,1.5),i =1,2,3, gf =0,i =4,...,300,
x ~ N(, X). The correlation between x; and x;, is 0.5/ 72!,

= Example 2: (p > n, positive and negative coefficients). Assume
B* =(0.9,—-0.85,0.93, —1,0.8,—0.85,0.88), and the
remaining coefficients equal zero. The correlation between x;,
and x;, is 0.5,

= For both examples, n = 200, p = 300, and 0 = 1.



[llustrative Examples of Drawbacks

@ Biased estimators
® Poor selection accuracy

Example 1: LASSO Example 2: LASSO
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[llustrative Examples of Drawbacks

© Missing of selection information

The simultaneous confidence intervals method by X. Zhang and
Cheng (2017) (named as “Sim.CI"):

Example 1: Sim.Cl Example 2: Sim.Cl
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How about this type of SCI?
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Example 1: SPSP+Adalasso
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How about this type of SCI?

SCT of Boston Housing Data and Riboflavin Data
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Preliminaries
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Selection by Partitioning the Solution Paths (SPSP)

Idea: Using the whole solution paths of all coefficients and applying
the clustering approach (can be applied to Lasso or Adaptive Lasso)

beta
o
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FIG 1. Left: The lasso solution paths for the simulated exzample. The dashed lines are the paths
of the 10 non-zero coefficients, while the black lines are the paths of the 30 zero coefficients
The vertical lines represent the tuning parameters selected by different criteria. Right: The
lasso solution paths for the non-zero coefficients, 1 and 3, and the zero coefficient, 2. Here
CV is cross-validation, GCV is generalized cross-valid and EBIC is extended BIC.
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FIG 2. Left: Partitions of the lasso solution paths of the same simulated ezample. Right:
Partitions of the lasso solution paths for the non-zero coefficients, 1 and 3, and the zero
coefhcient 9
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Selection by Partitioning the Solution Paths (SPSP)

Assumption 2.1: Compatibility Condition (Biihimann and Geer
(2011); S. van de Geer (2007)). For some constant ¢ > 0 and for
any vector ( satisfying [|C||1 < 3||(s]|1, the following compatibility
condition holds:

16513 < (¢T5¢)s/ 42,

where s = |S] is the dimension of Js.
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Selection by Partitioning the Solution Paths (SPSP)

Assumption 2.2: Weak ldentifiability Condition Let 1 > 0 be
some constant. For any 5 = (fs, Bsc), then for k =

2
) 25+Rs(s+1) and
some k that satisfies

Dmax > >\0

2
45(1¢—2|—R){Rs +(2+R)5+2_1+K},
U

then the WIC,

IXB*—XsBs—XscBsc|? > _min _ 1XB* X8>~ k7| Bscll1,
BeO(|1Bsll1:l1Bgcllr)

holds. The ©(||Bs]1, | Bscll1) = {8 = (Bs, Bsc) : 1Bl1 <
1Bsll + (L =m)IBsclly, I1Bscllr < klBsll1}-
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Residual Bootstrapping of the SPSP Method

Apply the residual bootstrap method to obtain SPSP+Adalasso
(SPSP+Lasso) bootstrap estimators (Efron (1979), Freedman
(1981), Knight and Fu (2000), Chatterjee and Lahiri (2011))

Residual Bootstrap for SPSP
apply SPSP+Lasso or SPSP+AdaLasso to get: 8 and S ;
compute residuals: & =y — X3 ;

center residuals: Zcent; =& —E(i=1,...,n),E=n"13¢&;
i.i.d resample B copies of &) = (5gb), . ,5£,b) fi
construct bootstrapped response as: y( ) =XB +
then, the B bootstrap samples are: {(y(?), X, &(P)

(6) apply SPSP methods for B times to get: {ﬂ(b) (ﬁgb), ey A,(,b))}“

N

NN SN S~
S W
— N N
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Simultaneous Confidence Intervals
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Geometrical Differences:

Debiased(Above)ys Proposed(Below)

Suppose 51 = 4, B> = 0.2, B3 = 0. Bootstrap times is 1000.
Red dots are the 5% outlying bootstrap estimators.
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Geometrical Differences:

= SCI based on debiased lasso estimator is a ellipsoid
= Qurs is a rectangle in this example in two dimension, since (33
is always estimated as 0

20/37



Outlyingness Score

We propose a general approach for the constructing of simultaneous
confidence intervals. It relies on outlyingness score as following form:

00 =g(B)=(",.... 0" erRt be1,.. . B

It measures the relative location of a bootstrap estimator among all
B bootstrap estimators.

Then, we can rule out « percent of outlying bootstrap estimators
among all to construct the simultaneous confidence intervals with
confidence level 1 — a.
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Simultaneous Confidence Intervals

Procedure: Simultaneous Confidence Rigion

Step 1: Apply residual bootstrap for SPSP to obtain:
{ﬁ(b)}lei
Step 2: Construct outlyingness score:
0®) = (01, 00,...,04) = g(B) € R,
Step 3: Calculate the g;(1 — §) is (1 — §) quintile of o;;
Step 4 : Construct a set A, C {1,...,B}:
As={be(1,....B); o < q(1—2),i=1,...,d};
Step 5 : Construct the SCI as:
SCl1—a) =

p. i a(b) . (b) ;_
{Be®r; ming” < p; < maxp?.j=1.....p}.
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Outlyingness Score: F-stat

~ S RSS RSS dfy, —df-
1 OF®) = (o7(0)) = g (B) = F(p,y) = (e dhudh)

= |t is based on the residual sum of squares of the bootstrap
model.
= This outlyingness score can rule out too simple models.

AF={be(1,...,B); "B <gr(1-a)} Cc(1,...,B).

SClF(l—a):{ﬂeRP mmﬁ()<ﬁ < maxp® j=1,.. }
beAF J
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Outlyingness Score: Standardized Maximum-Minimum

2. OMaxMin,(b) _ ((b) )_ Malen(

OmaX7 m|n A)

_ ﬁj _Bj . A B
=| max | -t_— ],/ min - .

Je{Ll, P\ TS je{1,....p} ©8

= |t is designed for SCI only rely on the empirical bootstrapping
distribution of coefficients

= Ruling out tails: those bootstrap estimators with either very
large maximum or very small minimum among all bootstrap
samples
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Outlyingness Score: Standardized Maximum-Minimum

. [0
A(l;/lame = {b S (1, ceey B); Or(nba)x < qmax(l_g)7 r(nb|21 < qm'n(l_g)}

MaxMin __ p. . (b) ) (b) .
SCET" = {[3 € RP; beLangxMinﬁj < Bj < be%%wnﬁf J=1,.. .,p}
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Theoretical Results

Theorem: Under the assumptions (1, 2.1, and 2.2), for a € (0,1)
and all B8 € RP, we have

P(B €SCl,(1-q)) > 1—aasn— oo
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Simultaneous Confidence Tube

We design a graphical tool to display the resulting simultaneous

confidence intervals:

Example 1: SPSP+AdalLasso Example 2: SPSP+AdaLASSO
Lines Lines

~— In the Tube 109 — Inthe Tube
Out the Tubt 054 Out the Tub
2-
«a <@ ogo-
1- -05-
-1.0-
297 L L L) L L L
05 e o 9 o
. . . . i r SRR R
P4 K 2 B3 P4 3 XXX XRZIERRKRXXX
Variable Variable
Example 1: SPSP+Lasso Example 2: SPSP+Lasso
Lines Lines
3-
— Inthe Tube 1.0- — Inthe Tube
Out the Tube Out the Tub
05-
2-
@ <@ 00-
1 -0.5-
-1.0-
297
0- R S RN
. . . . s Vige oousuie8louounoRBRENy
>4 2 B R 2 FIORRRHGRRKKEKRRIZLL R
Variable Variable

27/37



Simulation Studies

= Example 1: (Tibshirani, 1996) 8 = (3,2,1.5),i = 1,2, 3, the
remaining coefficients equal zero. The correlation between x;,
and Xx;, is 0.5l 2l

SCI W.Nzero W.Zero Cover Pr Avg Card Med Card Std Card

SPSP+AdalLasso(MaxMin) 0.66 0.00 97.50 1.30 1.00 0.67
SPSP+AdaLasso(F) 0.80 0.00 100.00

SPSP+Lasso(MaxMin) 0.40 0.00 94.50 1.00 1.00 0.00
SPSP+Lasso(F) 0.40 0.00 100.00

Adalasso(MaxMin) 0.42 0.00 60.50 1.00 1.00 0.00
AdalLasso(F) 0.43 0.00 82.00

Lasso(MaxMin) 0.54 0.17 56.00 898.23 896.00 17.58
Lasso(F) 0.54 0.17 58.50

True model(MaxMin) 0.39 0.00 96.00 1.00 1.00 0.00
True model(F) 0.40 0.00 100.00

28 /37



Simulation Studies

= Example 2: Let 8* = (0.9, —-0.85,0.93,—1,0.8, —0.85,0.88),
and let the remaining coefficients equal zero. The correlation
between x;, and x;, is 0.5U1 72, We set n = 200, p = 300, and
o =1 of error.

SCI W.Nzero W.Zero Cover Pr Avg Card Med Card Std Card
SPSP+Adalasso(MaxMin) 0.60 0.04 96.50 68.31 59.00 51.66
SPSP+AdaLasso(F) 0.61 0.06 98.50
SPSP+Lasso(MaxMin) 0.92 0.19 96.50 734.19 770.50 150.75
SPSP+Lasso(F) 0.92 0.19 96.50
AdaLasso(MaxMin) 0.64 0.21 66.00 949.24 950.00 1.56
AdalLasso(F) 0.64 0.21 65.50
Lasso(MaxMin) 0.54 0.25 0.00 950.00 950.00 0.00
Lasso(F) 0.54 0.25 0.00
True model(MaxMin) 0.45 0.00 92.50 1.00 1.00 0.00
True model(F) 0.46 0.00 99.50
SCl(Debiased) 0.97 0.97 98.00
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Simulation Studies

= Example 3: Let 8% = (1,-1.25,0.75,—0.95,1.5), and let the
remaining coefficients equal zero. The correlation between x;,
and Xx;, is 0.5l 2l

SCI W.Nzero W.Zero Cover Pr Avg Card Med Card Std Card
SPSP+AdalLasso(MaxMin) 0.74 0.01 88.00 15.92 3.00 74.82
SPSP+AdaLasso(F) 0.82 0.01 89.50
SPSP+Lasso(MaxMin) 1.07 0.08 79.50 239.66 219.50 160.10
SPSP+Lasso(F) 1.07 0.09 79.50
Adalasso(MaxMin) 0.65 0.13 68.00 895.24 914.00 55.85
AdalLasso(F) 0.65 0.13 68.50
Lasso(MaxMin) 0.54 0.23 0.00 950.00 950.00 0.00
Lasso(F) 0.54 0.23 0.00
True model(MaxMin) 0.43 0.00 92.50 1.00 1.00 0.00
True model(F) 0.44 0.00 98.50
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Simulation Studies

= Example 4: (Independent, p > n) Let 8* = (4,3.5,3,2.5,2),
and let the remaining coefficients equal zero. Covariates are

independent.
SCI W.Nzero W.Zero Cover Pr Avg Card Med Card Std Card
SPSP-+AdalLasso(MaxMin) 0.35 0.00 94.50 1.00 1.00 0.00
SPSP+Adalasso(F) 0.35 0.00 97.50
SPSP+Lasso(MaxMin) 1.07 0.08 95.00 1.00 1.00 0.00
SPSP+Lasso(F) 1.07 0.09 98.00
Adalasso(MaxMin) 0.36 0.00 22.50 1.00 1.00 0.00
AdalLasso(F) 0.36 0.00 56.00
Lasso(MaxMin) 0.45 0.20 2.50 949.98 950.00 0.17
Lasso(F) 0.45 0.20 2.50
True model(MaxMin) 0.35 0.00 93.50 1.00 1.00 0.00
True model(F) 0.35 0.00 98.50
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Real Data Examples

32/37



Real Data Example: Boston house pricing

SCT of Boston Housing Data and Riboflavin Data
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= LSTAT, RM, PTRATIO are the only three plausibly relevant
factors

= PTRATIO is not significantly relevant at 95% level 33/37



Real Data Example: riboflavin (vitamin B;) production

This dataset contains only 71 (n) observations, but it has 4088
covariates representing the logarithm of the expression level of genes.
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= Only gene ribT (Reductase) has nonzero confidence interval
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Summary
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Our proposed approach can construct the ideal simultaneous
confidence intervals with triplefold advantages:

@ They can achieve the nominal confidence level,

® They have tight intervals for all coefficients at a given level of
confidence;

© They have the variable selection results embedded (the truly
irrelevant coefficients have zero width intervals).
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Thank you!
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