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Abstract—Federated learning enables decentralized data own-
ers to collaborate and train models in a distributed manner.
A special type is Vertical Federated Learning (VFL), where
each of the participated data owners only has a portion of
the data features. To maintain a high accuracy and reasonable
computational cost, selecting a set of features among the entire
dataset is essential. Although some existing work selects features
by calculating their individual contributions to the learning
outcomes, knowing the joint contribution from multiple features
becomes necessary but challenging. Meanwhile, security concerns
are raised when calculating the joint contribution of a set of
features where the feature data are stored by different owners.
Using homomorphic encryption or secure computing over en-
crypted data is possible, but it may cost too much when complex
calculations are involved and repeated. To this end, this paper
proposes a privacy-preserving feature selection protocol that
considers the interactions between features stored across different
data owners. Specifically, we first propose an interaction-based
feature selection algorithm for vertically distributed datasets.
This algorithm estimates the features’ joint contributions to
the model training outcomes. Then, we propose a privacy-
preservation protocol to prevent the semi-honest cloud server
from obtaining or inferring the raw data when aggregating the
knowledge and calculating the complex interaction measure for
feature selection. We create a new approximation method for
interaction measures to address the high computational cost when
securely calculating the interaction measure while maintaining
the training accuracy. The security discussions show that the
proposed protocol preserves data owner’s privacy. The extensive
simulations validate the achieved training accuracy and efficiency.

Index Terms—Vertical federated learning, feature selection,
feature interactions, privacy-preserving,

I. INTRODUCTION

Federated learning (FL) enables decentralized users to col-
laboratively train a machine learning (ML) model without
sending their local data samples to a centralized cloud server.
FL can be categorized into Horizontal FL (HFL) and Vertical
FL (VFL) depending on the patterns of data partitioning
[1] . VFL [2] operates when data sources possess a portion
of different features from the same data samples, i.e., in
a complementary manner. In contrast, HFL operates when
all data sources have the same features but different data
samples. For example, in the e-health system, a hospital wants
to develop ML models that provide personalized treatment
plans for patients with specific medical conditions. But the
data sources may include daily activity data measured outside
of the hospital and electronic health records stored in the

hospital. VFL can help the hospital train the ML model
together with various patients without centrally streaming all
patient information. This can dramatically reduce transmission
costs and involve diverse data sources to provide a robust and
generalized model for healthcare services.

However, there are several technical challenges in VFL. For
example, the training data may contain many features, but
some of them are irrelevant [1]. Combining these irrelevant
features has trivial contributions to the learning outcomes.
It increases the complexity of ML models with additional
training overhead but degrades the accuracy with overfitting
problems. Meanwhile, the interactions among features are
simply ignored by many existing feature selections [3] [4]. As
multiple features jointly determine the model outcomes, their
joint contributions to the model training process can hardly
be measured independently. Increasing the values of certain
features may alter the significance of others. This poses the
demand of selecting relevant features for VFL by considering
feature interactions, i.e., "chemical reaction" among features.

In addition to the above efficiency and accuracy prob-
lems, security concerns are raised, especially when conducting
interaction-based feature selection in VFL [5]. To measure
the joint contribution of features, data sources are required
to share their training data to combine all features related to
the samples and evaluate the feature interactions. This may
disclose the private data in some sources [6], [7]. Although
data may be encrypted before feature selection, calculating
the interaction measure involves some complicated operations
instead of a combination of addition and multiplication, which
are possibly performed over encrypted data. Therefore, a
new secure feature selection protocol for VFL is in urgent
demand to preserve user privacy and enable to calculate the
complicated interaction measures during feature selection.

In this paper, we propose a privacy-preserving interaction-
based feature selection method for VFL. The main contribu-
tions are summarized as follows.

• We investigate VFL with feature selection where each
data owner holds a portion of features but does not want
to share his training data. The security threats of a semi-
honest cloud server in the system are analyzed and the
design goals of the protocol are identified for privacy-
preserving feature selection.

• To improve the VFL accuracy, we design an interaction-
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based feature selection algorithm. This allows the feature
selection by considering the joint significance among
features, so that the model’s accuracy can be improved.

• To preserve privacy when calculating the interaction mea-
sure among feature data, we propose a privacy-preserving
interaction-based feature selection protocol. We create an
approximation method to measure the interactions with
simplified operation but maintain its accuracy.

• Our newly created approximation method fits the homo-
morphic encryption so that it transmits the pre-processed
ciphertexts that carry all related information of feature
interactions from data owners to the cloud server. The
cloud server operates over encrypted data, and returns
feature selection results without any inferred knowledge.

• We discuss the security features of our proposed protocol
that preserves data owner privacy during the interaction-
based feature selection in VFL. We also conduct sim-
ulations to validate that the proposed protocol achieves
identical model accuracy with fewer selected features for
VFL compared with existing works.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Section III introduces the
system and attack models. Section IV presents the proposed
scheme. Section V discusses security features. Section VI
shows simulation results, and Section VII draws conclusions.

II. RELATED WORK

In this section, we present the related work on feature selec-
tion and secure computing. We identify the unique challenges
of integrating secure computing into feature selection.

Feature selection is critical to VFL, as irrelevant features
may increase the complexity of ML models but reduce the
accuracy due to overfitting problems [8]. The features can be
evaluated based on either the single feature’s significance [8]
or the joint significance derived from the features’ interaction
measure. To estimate the single feature’s significance, Gini
score or Gini impurity [1], [9] may be used to estimate the
possibility of the sample matching an incorrect label according
to this feature. Then, the features are selected by ranking each
feature’s Gini score. However, the single feature’s metrics
cannot indicate the joint significance or interaction between
features, which is critical to select a set of features. Shen et al.
[10] studied feature interaction to determine a set of features
to detect malicious websites. Zeng et al. [6] proposed an In-
teraction Weight-based Feature Selection algorithm (IWFS) to
select the redundant features. The interaction weight factor is
defined to reflect whether a feature is redundant or interactive.

However, selecting or evaluating features needs a cloud
server to compute over the raw data. When the cloud server is
not fully trusted, security and privacy concerns are raised [5],
[11]. Encrypting the raw data before sending it to the cloud
server is a possible solution that homomorphic encryption can
support. Zhang et al. [1] proposed a secure feature selection
for VFL based on Gini scores. In this method, the feature
data owner and the label data owner collaborate compute, and
rank the Gini score of each feature without sharing any raw

Fig. 1. Selected feature number comparison

training data. Other works [3], [9], [12] also designed secure
computing methods for a single feature’s significance.

Although existing interaction measures or functions can
select features by considering feature interactions, they need
to calculate the complex interaction functions, such as loga-
rithm, prior probability, or mutual information. It dramatically
increases the secure computing cost and even prevents from
using homomorphic encryption and other secure computing
solutions. The above technical challenges motivate us to design
an efficient secure interaction measure protocol to select
features for VFL.

III. SYSTEM MODEL OVERVIEW

A. System Model
In vertical feature selection, the system mainly consists of

a cloud server and multiple data owners. The labels of the
training dataset are privately owned by only one label data
owner, and the other owners have their own features. The
capability of each entity is described as follows.

• Dataset owners: Data owners have distinct sets of fea-
tures and usually store a large amount of data samples that
can be utilized for model training. Prior to participating
in VFL, data owners want to identify several most sig-
nificant features to improve training efficiency and model
accuracy. The raw data including features and label values
are transmitted to the cloud server. As the feedback, each
data owner receives the decision from the cloud on which
features from its local dataset, which is evaluated to be
the most relevant for inferring label values, are selected
to perform VFL.

• Cloud Server: The computing power of the cloud server
is leveraged by the data owners to accurately measure
feature interactions with transmitted raw data by applying
specific interaction-based feature selection methods [6],
[10]. Then, the results of selected features for VFL are
returned to corresponding data owners.

B. Attack model
The attack is launched via the semi-honest cloud server,

which honestly follows the feature selection process by receiv-
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ing the raw data from various data owners and computing the
interactions among features. However, the cloud server is also
curious about private information, such as the feature values
and labels of the training data. With full access to the raw
data, the attackers from the semi-honest server can leak data
owners’ privacy without their awareness.

C. Design goals

Considering the aforementioned attack model, our work
aims to achieve the following design goals.

• Interaction-based feature selection: With the features
and labels vertically distributed in different data owners,
the interactions among features should be evaluated to
characterize their joint impacts on the learning outcomes
of the federated learning model. By selecting a limited
number of the most significant features, the VFL process
should consume less training overhead while maintaining
desired model accuracy.

• Privacy preservation: Private information and raw data
of the data owners should be protected against the honest-
but-curious cloud server during the feature selection. The
cloud server should be prohibited from obtaining the raw
data but still capable of leveraging feature significance
knowledge for evaluating the feature interactions.

IV. PROPOSED PROTOCOL

A. Preliminaries

1) Interaction Weight-based Feature Selection (IWFS): An
Interaction Weight-based Feature Selection Algorithm (IWFS)
was proposed to solve the feature selection by considering
feature interactions. In the algorithm, the adjusted relevant
measure is defined to reflect whether a feature is redundant
or interactive. The feature with the largest adjusted relevant
measure is first selected, and then the interaction weight factor
to update the weight of the rest features before the next round
of selection. The selection process is iterated several times to
determine the most relevant features.

We assume the training dataset includes a feature set F
and the label set Y. Firstly, we initialize the weight for each
feature w0 = 1, and the adjusted relevance measure R(Fi;Y)
for feature Fi is defined as follows:

R(Fi;Y) = w0(Fi)× (1 + SU(Fi;Y)), (1)

where the Symmetrical Uncertainty of feature Fi is

SU(Fi;Y) =
2× I(Fi;Y)

S(Fi)× S(Y)
. (2)

Here I(Fi,Y) denotes the mutual information of the feature
Fi, and S denotes the entropy which is a measure of uncer-
tainty. The mutual information and entropy are defined as:

I(F;Y) =

n∑
i=1

m∑
j=1

Prob(fi, yj)× log
Prob(fi|yj)

Prob(fi)
, (3)

S(X) =

1∑
i=0

Prob(x = i)× logProb(x = i), (4)

S(Y) =

m∑
j=1

Prob(yj)× logProb(yj), (5)

where Prob(fi) denotes the probability of a sample with the
feature value f = i, Prob(fi, yj) donates the probability of a
sample with the feature value f = i as well as having the label
y = j, and Prob(fi|yj) donates the probability of a sample
with the feature value f = i when the label y = j.

Then the feature Fi with the largest R(Fi;Y) is selected
in the first round. After the selection, the weight of the rest
features Fj will be updated as follows:

w1(Fj) = w0(Fj)× IW (Fi;Fj), (6)

where IW (Fi;Fj) denotes the interaction weight factor
between two features.

Finally, the adjusted relevant measure in the next round
could be computed as Eq.(1) by using w1 instead of w0. The
selection will be iterated in several rounds to select the most
relevant features.

2) The BGV Scheme: Our protocol in this work is con-
structed based on the homomorphic encryption technique.
Without loss of generality, we employ the BGV scheme in [13]
as the homomorphic encryption scheme, which can support
homomorphic addition and multiplication over ciphertexts,
i.e., [m1] + [m2] mod N → [m1 + m2], [m1] + m2 mod N
→ [m1+m2], [m1]∗ [m2] mod N → [m1 ∗m2], and [m1]∗m2

mod N → [m1 ∗m2].

B. Proposed Protocol
To achieve our design goals, we propose a privacy-

preserving interaction-based feature selection protocol for
VFL. Our protocol consists of initialization, feature selection,
weight updating, and round iteration processes. We first intro-
duce the system setup and then present our protocol in detail.

1) Initialization: In our protocol, every feature data owner
(FO) has the feature vector D⃗, and the label data owner LO
has the label vector L⃗.

Firstly, FO and LO compute Init(D⃗) and Init(L⃗) locally
to obtain the matrix X, A, B, Y, and entropy S(X), S(Y). As
shown in Algorithm 1, FO firstly computes the mean value of
their feature data as the threshold θ and transforms the feature
vector into a binary matrix X by comparing each feature data
with θ. In X, xi = 1 when di ≥ θ, and xi = 0 when di < θ.
Then, FO computes a diagonal matrix A by the binary matrix
X and expands the X by adding its inversion as a new column
and generates a double-column binary matrix B. Finally, FO
assumes the weight w0(X) = 1 and calculates the entropy of
the feature data S(X) by Eq.(4).

Secondly, in Algorithm 2, LO computes S(Y) and creates
matrix Y, where the row name is the sample numbers, and
the column name is all possible classes. In matrix Y, values
yij=1 when the sample di belongs to the class j.

Finally, a Trusted Authority (T A) allocates the ho-
momorphic encryption key. After T A sending homomor-
phic encryption key to both FO and LO, they en-
crypt X,A,B,Y, S(X), S(Y), and w0(X) by the Fully
Homomorphic Encryption Key and send the ciphertexts
[X], [A], [B], [Y], [S(X)], [S(Y)], [w0(X)] to CS .
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Algorithm 1 Feature Data Pre-processing: Init(D⃗)

Input: Feature vector D⃗ = (di)n, n is sample number.
Output: X = (xi)n,A = (aij)n×n,B = (bij)n×2, feature

data entropy: S(X)
1: Compute threshold θ = 1

n

∑n
i=1 di

2: Compute binary matrix X = (xi)n as follows:
3: for i = 1, 2, . . . , n do

4: xi =

{
0 if di ≥ θ

1 if di < θ
5: end for
6: Compute the diagonal binary matrix A = (aij)n×n as

follows:
7: if i ̸= j then
8: aij = 0
9: else

10: aij = xi

11: end if
12: (i = 1, 2, . . . , n; j = 1, 2, . . . , n
13: Compute the matrix B = (bij)n×2 as follows:
14: for i = 1, 2, . . . , n do
15: bi1 = xi

16: bi2 = 1− xi

17: end for
18: Compute entropy of X⃗ as follows:
19: S(X)=

∑1
i=0 Prob(xi)× logProb(xi)

Algorithm 2 Label Data Pre-processing: Init(L⃗)

Input: Label vector L⃗ = (li)n, n is sample number.
Output: label data entropy: S(Y), Y = (yij)n×m m is the

class number.
1: Compute binary matrix Y = (yij)n×m as follows:

2: yij =

{
1 if li = j

0 else
3: (i = 1, 2, . . . , n, j = 1, 2, . . . ,m)
4: Compute S(Y)=

∑m
j=1 Prob(yj)× logProb(yj)

2) Feature Selection: After obtaining [X], [A], [B], [Y],
and [S(X)], [S(Y)], CS computes the distributed matrix [Z] =
[B]T ×[Y]. The distributed matrix reflects the feature and label
distribution. All the elements z1j in Z represent the number
of samples with x = 0 and y = j, while the element z2j
means the number of samples with x = 1 and y = j. Then, as
shown in Algorithm 3, CS computes [I(X;Y)], [SU(X;Y)],
and [R(X;Y)] for each feature. In the algorithm, TL(Prob)
is approximately calculated log(Prob) by the Taylor Series.
TL(x) is defined as:

TL(x) = 0.4× ((x− 1)− (x− 1)2

2
).

Finally, CS returns [R(X)] of each feature to the LO, LO
can decrypt the ciphertext and select the feature with the
largest R(X) in this round.

3) Weight Updating: After selecting the feature with the
largest R(X), CS needs to update the weight of each feature

Algorithm 3 Feature Selection
Input: Distributed matrix [Z] = ([zij ])2×m, [S(X)], [S(Y)],

[w0(X)]
Output: [I(X;Y)], [SU(X;Y)], [R(X;Y)]

1: Compute:
2: [Prob(xi−1, yj)] =

[zij ]∑2
i=1

∑m
j=1[zij ]

3: [Prob(xi−1)] =
∑m

j=1[zij ]∑2
i=1

∑m
j=1[zij ]

4: [Prob(xi−1|yj)] = [z1j ]
[zij ]+[z2j ]

5: (i = 1, 2)
6: Compute [I(X;Y]) =

∑1
i=0

∑m
j=1 Prob(xi, yj) ×

(TL([Prob(xi|yj)])− TL([Prob(xi)]))

7: Compute [SU(X;Y]) = 2×[I(X,Y)]
[S(X])×[S(Y)]

8: Compute [R(X;Y)] = [w0(X)]+ [w0(X)]× [SU(X;Y)]

by the interaction weight factors between the selected feature
and the rest features. As shown in Algorithm 4, to compute
the interaction weight factor between X1 and X2, CS first cal-
culates the feature distributed matrix [F11],[F10],[F01],[F00]
by the Hadamard production of the feature matrix or its
inverted matrix. The Hadamard product is a binary operation
that takes in two matrices of the same dimensions and re-
turns a matrix of the multiplied corresponding elements. For
example, for two matrices A and B of the same dimension,
(A⊙B)ij = Aij ×Bij .

Therefore, for example, in matrix F01, the value fi1 = 1
means the i th sample has X1 = 0, and X2 = 1. Then CS
computes four feature-label matrixs by G = FT × Y. For
example, elements g1j in G01 means the counts of samples
that x1 = 0 and x2 = 1, and the class of the is j. Finally, the
interaction weight factor IW (X1;X2) can be computed and
the weight of the rest features would be updated as follows:

[w1(Xrest)] = [w0(Xrest)]× [IW (Xrest;Xselected)].

4) Round Iteration: After updating the weight of the rest
features, the relevance measure R in the second round is

[R(X;Y)] = w1(X) + w1(X)× (SU(X;Y)).

Then, the remaining feature with the largest R(X;Y) will
be selected in the second round. Then the w1(X) of the
rest features will be updated again based on the interaction
weight factor between the selected feature in round two and
the rest features. The algorithm will be iterated until selecting
several relevant features. The details of the proposed privacy-
preserving feature selection protocol are shown in Protocol 1.

V. SECURITY DISCUSSIONS

In this section, we analyze the security of our protocol. Our
security analysis follows the real world/ideal world paradigm:
in the real world, data owners and the cloud server interact
according to the protocol specification; while in the ideal
world, they follow our proposed protocol. The executions in
both worlds are coordinated by the environment Env. We
will show that the real-world distribution is computationally
indistinguishable from the ideal-world distribution.
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Algorithm 4 Secure Weight Updating
Input: [X1], [X2], [Y], [S(X1)], [S(X2)]
Output: [IW (X1,X2)]

1: Compute feature distributed matrix:
2: [F11]=[X1]⊙ [X2]
3: [F10]=[X1]⊙ [1−X2]
4: [F01]=[1−X1]⊙ [X2]
5: [F00]=[1−X1]⊙ [1−X2]
6: Compute feature-label matrix [Gik]=[Fik]T×[Y]
7: (i = 0, 1; k = 0, 1)
8: for j = 0, 1, . . . ,m do
9: Compute:

10: [Prob(x1i, x2k|yj)]=
[gik]1j∑1

i=0

∑1
k=0 [gik]1j

11: [Prob(x1i, x2k, yj)]=
[gik]1j∑1

i=0

∑1
k=0

∑m
j=1 [gik]1j

12: [Prob(x1i, x2k)]=
∑m

j=1 [gik]1j∑1
i=0

∑1
k=0

∑m
j=1 [gik]1j

13: (i = 0, 1; j = 0, 1)
14: end for
15: Compute:
16: [I(X1,X2;Y)]=

∑1
i=0

∑1
k=0

∑m
j=1[Prob(x1i, x2k, yj)]

×(TL([Prob(x1i, x2k|yj)])− TL([Prob(x1i, x2k)]))
17: [I(X1;X2;Y)]=[I(X1,X2;Y)]-[(X1;Y)]-[I(X2;Y)]
18: [IW (X1,X2)]=1+ [I(X1;X2;Y)]

[S(X1)]+[S(X2)]

Protocol 1 Privacy-preserving Feature Selection Protocol

Input: Feature vector D⃗ = (di)n, Label vector Y⃗ = (yj)n
Output: Selected feature: Xselected,

Feature interactions:[IW (X,Xselected)]
1: FO, LO receive Homomorphic encryption key from T A
2: FO obtains X,A,B, S(X) = Init(D)
3: LO obtains Y, S(Y) = Init(Y)
4: FO initializes w0(X) = 1;

encrypts X,A,B, S(X), w0(X) with Homomorphic en-
cryption key locally;
sends [X], [A], [B], [S(X)], [w0(X)] to CS

5: LO encrypts Y, S(Y) with Homomorphic key;
sends ciphertext [Y], [S(Y)] to CS

6: CS computes [Z] = [B]T × [Y];
obtains [R(X;Y)] by Algorithm 3.

7: CS sends [R(X;Y)] to LO
8: LO decrypts [R(X;Y)]

selects the feature with the largest R(X;Y)
sends Xselected to CS

9: CS computes [IW (X,Xselected)] by Algorithm 4
updates [w1(X)] = [w0(X)]× [IW (X;Xselected)]

A. Privacy preservation in feature interactions

In our protocol, we assume CS is semi-honest and we use
homomorphic Encryption(HE) to protect data transmission.
In the real world, CS receives [X], [A], [B], [S(X)], [w0(X)]
from FO, and received [Y], [S(Y)] from LO in the section
IV-B1. In the ideal world, FO encrypts the zero-element ma-
trix X′, A′,B′, as well as the zero-value S′(X), w0(X)′. LO

encrypts the zero-element matrix Y′ and the zero-value S′(Y).
Then FO and LO sends the ciphertext to CS . According to the
security of HE, the output distribution of Env in the real world
and the ideal world are not computationally indistinguishable,
and the transmitted message will not be leaked to CS .

However, there are two Technical issues when CS trying to
compute the symmetrical uncertainty SU for every feature in
Section IV-B2 and compute the interaction weight factor for
two features in SectionIV-B3.

• The first one is that homomorphic Encryption does not
allow any operations on the encrypted data to recover
the logarithm calculation on raw data. This is because
CS needs to calculate the logarithm when computing the
symmetrical uncertainty and the interaction weight factor
in IWFS. However, in our protocol, CS can only compute
some basic operations on the data when obtaining the
encrypted dataset. It is essential to find out how to
calculate the logarithm when given encrypted datasets.

• The second one is that CS can not compute the proba-
bilities under the ciphertext. This is because CS needs to
calculate the probabilities when computing the symmetri-
cal uncertainty and the interaction weight factor in IWFS.
In IWFS, CS can compute the probabilities easily by
counting the number of every situation. However, when
CS obtains the encrypted dataset, it can not compute
the probabilities by counting directly because it does not
know the raw dataset. Therefore, we need to find how to
compute the probabilities when given encrypted datasets.

In our protocol:

• To solve the first issue, we explore the Taylor Series to
solve the calculation of the logarithm in our protocol.
From the Taylor Series, we know that when (0 < x < 2):

ln(x) = (x− 1)− (x− 1)2

2
+ . . .+ (−1)n+1 (x− 1)n

n
.

We can approximate the value of log(x) by the first two
terms of the Taylor Series as follows:

log(x) =
ln(x)

ln(10)
≈ 0.4× (x− 1)− 0.4× (x− 1)2

2
.

When CS obtains an encrypted dataset, it can still com-
pute the result, and the dataset owners can decrypt the
result to obtain the logarithm.

• We solve the second issue by the distributed matrix. Dis-
tributed matrix reflects how the feature data and label data
are distributed in the raw dataset. Data in the distributed
matrix means the number of samples in the corresponding
situations. It means CS can use the distributed matrix to
compute the probabilities of every situation directly. In
this way, after obtaining the encrypted distributed matrix
by multiplying two encrypted matrices, CS can compute
the result that is decrypted to obtain the probabilities.

Our proposed protocol securely selects features based on
feature interactions for VFL in the semi-honest attack model.
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VI. PERFORMANCE EVALUATION

A. Simulation Setup

We perform experiments on a real-world dataset with the
K-Nearest Neighbor (KNN) classification algorithm to analyze
the accuracy and efficiency of our protocol. The dataset white
wine-quality has 4898 instances and 11 raw features. We test
all the cases where we select different numbers of features
and compare our protocol to another two feature selection
methods: IWFS (interaction-based feature selection) and GINI
(non-interaction-based feature selection).

B. Simulation Results

Figure 2 shows the accuracy gains after feature selection.
Our protocol achieves the same accuracy as the IWFS and
better accuracy than the GINI. The results validate that the
proposed protocol leverages feature interaction for proper
selection and gains higher accuracy than non-interaction-based
feature selection methods. In Figure 3, we compare the number
of selected features to maintain the same accuracy. When
achieving the same accuracy such as 70%, 75%, and 80%,
our proposed protocol selects 33% to 62% fewer features than
the non-interaction-based feature selection. Fewer features
indicate the computational and storage cost reduction.

C. Cost Analysis

We analyze the computational costs of our proposed pro-
tocol during initialization, feature selection, and weight up-
dating. Similar to [1], we primarily consider the cost of
three major operations: (1) encryption Enc, (2) decryption
Dec, and (3) ciphertext multiplication Mul. These operations
cost more computations, compared with other operations,
such as adding two ciphertexts. Table I and II summarize
the computational costs of the proposed protocol and GINI
method [1] respectively, from the perspectives of feature owner
FO, the label owner LO, and the cloud server CS . Here,
n, t,m denote the sample number, feature numbers, and all
possible label numbers, respectively. Although our proposed
protocol consumes more computational cost than the GINI
when selecting features, this sacrificed cost finally increases
the model training efficiency substantially due to the fewer
features selected by the proposed protocol.

VII. CONCLUSION

In this paper, we have proposed a privacy-preserving
interaction-based feature selection for VFL. In addition to

TABLE I
COMPUTATIONAL COST OF PROPOSED PROTOCOL

Processes FO LO CS
Initialization (n2 + 3n+ 1) Enc (nm+ 1) Enc -
Feature Selection - t Dec (2mn+ 6m+ 3) Mul
Weight Updating - - (4mn+ 4n+ 12m+ 1) Mul
Total (n2 + 3n+ 1) Enc (nm+ t+ 1) Enc (6mn+ 18m+ 4n+ 4) Mul

TABLE II
COMPUTATIONAL COST OF GINI METHOD

Processes FO LO
Initialization - mn Enc
Secure Computation (2mnt+ 2m) Mul 2mt Dec+ 2m Mul

considering feature interactions for feature selection, the pro-
posed protocol can preserve the data owner’s privacy during
the feature selection. We have also provided detailed secu-
rity discussions to validate our proposed privacy-preserving
protocol. The simulation results demonstrate that our protocol
achieves higher accuracy than the non-interaction-based fea-
ture selection when selecting the same number of features. In
future work, we will further improve the efficiency of secure
feature interaction calculation.
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