
4510 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

Privacy-Preserving Anomaly Detection of Encrypted
Smart Contract for Blockchain-Based Data Trading

Dajiang Chen , Member, IEEE, Zeyu Liao , Ruidong Chen , Hao Wang ,
Chong Yu , Graduate Student Member, IEEE, Kuan Zhang , Member, IEEE,

Ning Zhang , Senior Member, IEEE, and Xuemin Shen , Fellow, IEEE

Abstract—In a blockchain-based data trading platform, data
users can purchase data sets and computing power through en-
crypted smart contracts. The security of smart contracts is im-
portant as it relates to that of the data platform. However, due to
the inability to apply to detection rules with complex structures
and the inefficiency of detection, existing malicious code detection
methods are not suitable for the encrypted smart contracts in
blockchain-based data trading platforms with high transaction rate
requirements. In this article, a practical and privacy-preserving
malicious code detection method is proposed for encrypted smart
contract in blockchain-based data trading platform. Specifically,
we design two kinds of miners to act as the malicious rule processor
and the detector respectively for inspecting the encrypted smart
contract. The rule processor generates an obfuscated map with the
original open-source malicious rule set. The detector performs a
malicious inspection algorithm by inputting the obfuscated map
and the randomized tokens, where the latter is generated from
smart contract. Then, we theoretically analyze the security syntax
of the proposed method. The analysis results demonstrate the
proposed scheme can achieve L-secure against adaptive attacks.
Extensive experiments are carried out through the open-source
real rule sets, which show that the proposed scheme can reduce
communication time and communication overhead.

Index Terms—Data trading platform, encrypted smart contract,
malicious code detection, privacy-preserving.

Manuscript received 14 April 2023; revised 4 January 2024; accepted 10
January 2024. Date of publication 15 January 2024; date of current version 4
September 2024. This work was supported in part by the National Key Research
and Development Program of China under Grant 2023YFB3106402, in part by
NSFC under Grants 61872059 and 62002047, and in part by the Demonstration
of Scientific and Technology Achievements Transform in Sichuan Province
under Grant 2022ZHCG0036. (Corresponding author: Ruidong Chen.)

Dajiang Chen, Zeyu Liao, and Hao Wang are with the Network and
Data Security Key Laboratory of Sichuan Province, School of Information
and Software Engineering, University of Electronic Science and Technology
of China, Chengdu 611731, China (e-mail: djchen@uestc.edu.cn; zeyuliao.
uestc@gmail.com; 201922090416@std.uestc.edu.cn).

Ruidong Chen is with the School of Computer Science Engineering, Univer-
sity of Electronic Science and Technology of China, Chengdu 611731, China
(e-mail: crdchen@163.com).

Chong Yu and Kuan Zhang are with the Department of Electrical and Com-
puter Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
(e-mail: cyu6@huskers.unl.edu; kzhang22@unl.edu).

Ning Zhang is with the Department of Electrical and Computer Engi-
neering, University of Windsor, Windsor, ON N9B 3P4, Canada (e-mail:
ning.zhang@uwindsor.ca).

Xuemin Shen is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
sshen@uwaterloo.ca).

Digital Object Identifier 10.1109/TDSC.2024.3353827

I. INTRODUCTION

MASSIVE amounts of data is constantly being produced
with the development of emerging technologies, e.g.,

Blockchain (BC) [1], [2], [3], Cloud/Fog/Edge Computing [4],
Artificial Intelligence (AI), and 5 G Communication [5], [6],
and their applications in Industrial Internet of Things (IIoT) [7],
Internet of Medical Things (IoMT) [8], Smart City [9], etc.
These data can be used for decision-making by leveraging Big
Data analysis tools (e.g., AI algorithms and could computing)
to benefit our economy and society [10], [11], [12]. As an
emerging business model in the sharing economy, data trading
can collect enough target data for users and bring value to the
data collector/owner [13], [14], [15].

Existing Big Data trading systems face two major problems
as follows. (1) How to efficiently protect the copyright of
data; and (2) how to transfer copyright (or right to use) of
data between two parties without trusted third party. As an
alternative solution, blockchain technology is widely used in
data copyright protection, and data trading between untrusted
parties [16], [17], [18]. Actually, as a key enabling technology
of data sharing and trading, blockchain has been used for data
ownership confirmation, smart transaction contracts, and digital
currency payments [16], [19], [20]. A blockchain-based coding
platform allows developers to build distributed applications
based on smart contracts [21], so that the programs can be
executed automatically in full accordance with the contracts on
the blockchain.

In this paper, a practical application scenario of blockchain-
based data trading platform is considered. The platform consists
of multiple data centers, a large number of data users, and smart
contracts. Data centers maintain massive valuable data that can
be traded and have a large amount of computing resources to
perform AI algorithms for data mining [22], [23]. Data users
purchase data sets and computing power via smart contracts, and
analyze the purchased data sets through the corresponding data
analysis algorithms (which are one part of the smart contract
and executed by the data center), e.g., AI algorithms [24].
The corresponding computing results are return to data users
based on the code logic of the smart contract, and data cen-
ters receive corresponding digital currency rewards. According
to the consensus, the blockchain network guarantees that the
status of the contract and the returned results are not tampered
with.

1545-5971 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0745-5836
https://orcid.org/0009-0009-1068-0584
https://orcid.org/0000-0002-1970-5743
https://orcid.org/0009-0003-6909-0235
https://orcid.org/0000-0002-6244-3486
https://orcid.org/0000-0002-4262-153X
https://orcid.org/0000-0002-8781-4925
https://orcid.org/0000-0002-4140-287X
mailto:djchen@uestc.edu.cn
mailto:zeyuliao.uestc@gmail.com
mailto:zeyuliao.uestc@gmail.com
mailto:201922090416@std.uestc.edu.cn
mailto:crdchen@163.com
mailto:cyu6@huskers.unl.edu
mailto:kzhang22@unl.edu
mailto:ning.zhang@uwindsor.ca
mailto:sshen@uwaterloo.ca

CHEN et al.: PRIVACY-PRESERVING ANOMALY DETECTION OF ENCRYPTED SMART CONTRACT FOR BLOCKCHAIN-BASED DATA TRADING 4511

On the one hand, for the security and privacy of the contact
content, smart contract should be encrypted to ensure only
the authorized parties (e.g., the corresponding data center) can
obtain the plaintext of smart contract [25], [26]. On the other
hand, due to the imperfect design of the blockchain-based plat-
form itself, security vulnerabilities are not ruled out. Actually,
regardless of environmental factors, inadvertent negligence or
intentionally malicious behaviors of smart contract developers
may raise serious security risks in the smart contract, which will
cause irreparable losses to data security and user property [27].
As a result, it is necessary to ensure that the content of encrypted
smart contract is legal before being published to the blockchain
to prevent malicious activities. Accordingly, a practical and
privacy-preserving encrypted smart contract inspection is re-
quired to support blockchain-based data trading platform.

In the existing literature, privacy-preserving encrypted traffic
detection methods have emerged recently, and most of them
introduce a third-party middlebox which performs detection
during the transmission [31], [32], [33], [34]. In [31], a scheme
named BlindBox is proposed, which ensures that the rules
and plaintext data are visible only to the rule generator and
endpoints respectively. It completes the detection of encrypted
data without disclosing plaintext information. However, it incurs
high computing/communication costs to implement garbled cir-
cuit [35] and oblivious transfer [36]. To improve the efficiency
of the scheme above, an inspection scheme for encrypted traf-
fic, namely PrivDPI, is presented [32]. In PrivDPI, the set of
obfuscated rules can be generated from the rule set for mali-
cious detection with an obfuscated rule generation algorithm, in
which, the obfuscated rules obtained in preceding section can
be reused to generate obfuscated rules in subsequent session.
However, it requires high computing resource due to the usage
of bilinear mapping. An encryption rule filter is designed for
anomaly detection to store the encrypted action operations [33].
When the processed “content” option matches the randomized
token successfully, the encrypted “action” of the rule can be
restored and the corresponding operation should be executed.
Later, a privacy-preserving inspection method of encrypted traf-
fic is presented by using symmetric cryptographic techniques for
IoT [34].

This paper aims to design a practical malicious code detection
scheme of encrypted smart contract for blockchain-based trading
platform. However, when privacy-preserving encrypted traffic
detection meets blockchain-based trading platform, there are
some technical challenges to be solved as follows. (1) How to
design a malicious code detection scheme that supports all forms
of open-source Snort rules. Note that, the rule used in existing
schemes for malicious detection only consists single “content”
option, while, in practice, a rule for malicious detection usually
consists of multiple “content” options and an “action”, such as,
Snort rules (please refer to Section III-B). (2) How to design a
malicious code detection scheme with high efficiency. Existing
schemes only perform rough sliding window processing on each
rule for obfuscated rules generation, which destroys the semantic
integrity of the rules and is inefficient. Moreover, most of ex-
isting works require high computing/communication costs [31],
[32], [33], [34]. As a result, these schemes are not suitable for

the high transaction rate requirements of blockchain-based data
trading platforms. (3) How to design a malicious code detection
scheme in a distributed way. In blockchain-based data trading
platforms, a centralized encryption smart contract anomaly de-
tection scheme will face the problem of single point failure, so
it is necessary to utilize the node resources of the peer-to-peer
network for a fee to achieve distributed encryption smart contract
anomaly detection. Accordingly, it is necessary to design an
efficient and distributed malicious code detection scheme that
supports malicious rules with multiple “content” options for
encrypted smart contract in a blockchain-based trading platform.

In this paper, a practical malicious code detection scheme of
encrypted smart contract is proposed by leveraging lightweight
cryptography techniques. In the proposed scheme, a new ob-
fuscated rule generation algorithm is designed to support all
forms of open-source Snort rules for malicious detection. To
further improve efficiency and scalability of inspection in a
distributed way, in the proposed scheme, two kinds of miners
are selected to perform encrypted smart contract inspection
as the malicious rule processor and the detector, respectively.
Specifically, one kind of miner is responsible for rule processing
(i.e., rule processor) to get an obfuscated map with the original
open-source malicious rule set. Another kind of miner who acts
as the detector uses the obfuscated map to perform the mali-
cious code inspection of the encrypted smart contract from the
developer. The main objective of the proposed scheme includes
(1) Privacy-preserving of Smart Contract: before the encrypted
smart contract reaches the data center, other participants except
the developer cannot obtain the code content; (2) Confidentiality
of Rules: the original rule set is chosen by data center of the
trading platform, and is visible only to the rule processor and data
center; and (3) Reliable Detection: when the rule processor and
the detector are honest but curious, the false negative and false
positive errors of detection can be negligible. A new security
syntax (e.g., L-secure) for encrypted smart contract inspection
is defined formally. The formal proof of security proves that the
proposed scheme is L-secure against adaptive attacks.

The open-source Emerging Threats Snort Rules are utilized
in proposed scheme. In Snort rules, a Snort rule can specify mul-
tiple “content” options, and the “content” options can be used in
conjunction with “modifier” options to detect specific content in
a traffic to trigger an appropriate action. The proposed scheme
can be applicable to all forms of rules (the rule with single
“content” option and the rule with multiple “content” options)
in the existing open-source rule set. The proposed scheme ana-
lyzes and refines the rule structure, hides the “content” options,
“modifier” options and “action” of each rule, and generates a
small-capacity obfuscated map. When all the “content” options
of a rule match and the corresponding “modifier” options match,
the action operation of the rule can be restored. This greatly
improves the accuracy of detection. We evaluate the perfor-
mance of the proposed scheme with extensive experiments, and
the experimental results demonstrate that the scheme has high
detection rate, low time consumption/communication overhead.
For example, the developer takes 285 ms to obtain randomized
tokens with 5030 KB; the rule processor uses around 1987 ms
to generate the obfuscated map generated by 5000 rules; and the

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

4512 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

detector takes approximately 723 ms to detect smart contract
(with size 25 KB) by using the obfuscated map from 4000 rules.

We summarize the contributions of this paper as follows.
� We propose a privacy-preserving and practical malicious

code detection scheme of encrypted smart contract in
blockchain-based data trading platform by leveraging
lightweight cryptography techniques. As far as we know, it
is a first privacy-preserving anomaly detection of encrypted
data scheme that is suitable for all forms of open-source
Snort rules in a distributed way.

� We define the security syntax of encrypted smart contract
inspection scheme, i.e., the completeness and the L-secure
of a scheme. Given a leakage function L, we prove the
simplified version of the proposed scheme is complete and
L-secure against adaptive attacks.

� We conduct extensive simulation experiments to evaluate
the performance of the proposed scheme on the open-
source Emerging Threats Snort Rules. The results demon-
strate that the proposed scheme can achieve high detection
accuracy, small time cost, and low communication con-
sumption.

II. RELATED WORK

A. Smart Contract

A smart contract is a computer program that is verified by
means of information dissemination and can run autonomously
on the blockchain. In [21], Nick introduced the concept of smart
contract. When a smart contract is deployed in a block, trigger
conditions and corresponding response rules are needed to be
preset, and the relevant status will also be recorded in the smart
contract. If the condition is triggered, the relevant action from
the calling node will be executed in response. Only the behavior
of modifying the contract state or value eventually is recorded
in the blockchain, other behaviors are not.

As a programming platform with open source code, Ethereum
enables the developers to design diverse distributed applications
with smart contracts [28]. Ethereum can be used to guarantee be-
havior, design protocols, and process transactions such as enter-
prise management, voting applications, and e-commerce trans-
actions [29]. Based on the deployed smart contract, Ethereum
nodes can execute the contract in a decentralized manner. Gen-
erally, the smart contract is run by the local Ethereum virtual
machine EVM of the node. EVM first interprets the contract
program to obtain the bytecode file, and then executes it. When
the transaction information related to the smart contract is stored
in the blockchain, all nodes will run the contract according to
the transaction information and change the state definitively.

B. Encrypted Traffic Detection

In recent years, many novel encrypted traffic detection tech-
nologies were proposed. To solve the dilemma between privacy
of encrypted traffic and content security, a privacy-preserving
deep packet filtering protocol was designed to perform filtering
function over encrypted traffic while guaranteeing the data and

rules privacy in software defined networks [30]. In [31], Blind-
Box was proposed to realize deep packet inspection (DPI) over
encrypted traffic. However, the usage of complex cryptography
such as garbled circuit and oblivious transfer leads to the lower
efficiency in obfuscated rule preparation phase and hinders the
practical application.

On the basis of BlindBox, a scheme named Embark was
proposed in [47]. In Embark, a novel encryption scheme, namely
PrefixMatch, was introduced to realize DPI over encrypted
traffic in a cloud-based middlebox, which enabled the cloud-
based middlebox to detect whether an encrypted IP address
is in a valid encrypted range. Later, an novel scheme Blin-
dIDS was presented to further improve the performance of
DPI over encrypted traffic by using pairing-based public key
techniques [48]. However, its versatility is greatly reduced due to
its incompatibility with TLS protocol. Subsequently, a more ef-
ficient scheme PrivDPI was proposed by utilizing bilinear map-
ping and a novelty obfuscated rule generation algorithm [32].
Yuan et al. designed an encryption rule filter to realize DPI over
encrypted traffic, in which, an “action” will be restored and the
corresponding operation will be executed, when the rule content
matches the token successfully [37]. However, an inspection rule
contains multiple fragments with different lengths generally. In
this case, it is infeasible to realize DPI over encrypted traffic
with the scheme in [37] by generating tokens of different sizes,
as it will result in significant communication overhead for token
set transmission. Other related works also include [38], [39],
[40], [41], [42]. In [38], an efficient privacy-preserving deep
packet inspection system was proposed in secure outsourced
middleboxes. In [39], a privacy-preserving anomaly detection
system was proposed for industrial control systems. Zhang et al.
designed a blockchain-based privacy-preserving quality-aware
incentive scheme [40]. In [41], a deep learning-based vulnera-
bility detection framework was developed for smart contracts.
Ivanov et al. proposed a real-time smart contract security testing
approach, namely transaction encapsulation, to increase the
vulnerability coverage [42].

C. Searchable Symmetric Encryption

Searchable symmetric encryption supports the implementa-
tion of secure matching schemes that allow one party to out-
source its data storage to another party in a private manner,
while the data owner retains the ability to selectively search the
data. Song et al. proposed a symmetric searchable encryption
protocol in [43], which divides the plaintext file into “words”
and encrypts the word collection. By scanning the entire ci-
phertext file and comparing the ciphertext words, the existence
of the keyword in the ciphertext can be confirmed. In [44],
Curtmola et al. standardized symmetric searchable encryption,
and designed two schemes, namely SSE-1 and SSE-2, which
can achieve indistinguishable security in non-adaptive/adaptive
attack models. Later, Cash et al. presented a dynamic symmetric
searchable encryption scheme to effectively search the encrypted
database [45]. It is proved that the proposed scheme can achieve
L-secure against adaptive attacks.

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PRIVACY-PRESERVING ANOMALY DETECTION OF ENCRYPTED SMART CONTRACT FOR BLOCKCHAIN-BASED DATA TRADING 4513

TABLE I
SUMMARY OF IMPORTANT NOTATIONS

The main objective of this paper is to design a practi-
cal encryption smart contract anomaly detection scheme on
the blockchain-based data trading platform. However, existing
methods face some challenges when applied to encrypted smart
contract anomaly detection on blockchain-based data trading
platforms. (1) They are not suitable for the detection rules
of complex structures, e.g., Snort rules; (2) their detection
efficiency cannot meet the demand of data trading platform
for efficient transaction speed; and (3) they cannot be directly
applied to a peer-to-peer network environment. Different from
existing methods, we propose a privacy-preserving and practi-
cal malicious code detection scheme of encrypted smart con-
tract in blockchain-based data trading platform by leveraging
lightweight cryptography techniques, which can be applied to
all forms of open-source Snort rules in a peer-to-peer network
environment.

III. NOTIONS AND PRELIMINARIES

Notions: Let x and y be two bitstreams, x⊕ y be the bitwise
XOR of x and y, and x||y be the splicing of x and y. Random
variables (RVs) are denoted by X,Y,K, · · · , and the realization
of them are denoted by x, y, k, · · · . The main notations used in
this paper are listed in Table I.

A. Preliminaries

By taking λ as a security parameter, several basic definitions
are introduced as follows.

Definition 1: Let F : {0, 1}α1 × {0, 1}β1 → {0, 1}γ1 be an
efficient and keyed function. F is a variable-input-length
pseudo-random function, if the function

AdvpdfF,A(λ)=Pr[PRFRealAF (λ)]−Pr[PRFRandA
F (λ)] (1)

is negligible for all probabilistic polynomial time (p.p.t.) ad-
versary A, in which, PRFReal and PRFRand are two games as
follows. In PRFReal, the adversary A first obtains key K from
a dictionary with index j, and then, queries function F with
outputting y and inputting an index K and x. In PRFRand, the
adversary A queries a random oracle R with outputting y and
inputting an index j and x.

Definition 2: H : {0, 1}α2 × {0, 1}β2 → {0, 1}γ2 is called a
collision-resistant hash function if the following experiment is
negligible for any p.p.t. adversary A.

TABLE II
SUMMARY OF COMMON MODIFIERS IN SNORT RULES

� A succeeds if it outputs distinct x and x′ with HK(x) =
HK(x′), in which,HK(·) = H(K, ·) and keyK is selected
from {0, 1}α2 uniformly at random.

B. Snort Rules

Snort is an intrusion detection system, which analyzes
and summarizes the known intrusion behaviors, summa-
rizes the intrusion features, and forms rules. Its rule set
SnortEmerging Threats is used in this paper as the initial
rules to realize inspection. A rule includes two parties: header
and options. Header: the rule header of Snort rules contains the
response action and data flow direction, which is the content
before the first “(”. Options: the rule options of Snort rules is the
content between “(” and “)”, which are separated by “;”. A Snort
rule can have multiple “content” option, and the “content” option
can have multiple modifiers. Only when the packet matches one
or several rule options successfully, can it be regarded as an
insecure packet with intrusion behavior by Snort DPI system.
We present a simple Snort rule as follows.

alert tcp $EXTERNAL_NET any

→ $HOME_NET 443

(msg : “openssl Heartbleed attack“;

content : “ftp.log′′, fast_pattern, nocase)

The modifiers can be roughly divided into two categories. The
first one is the modifiers such as offset, depth, distance and
within, which explicitly limit the position of “content” with
numbers. The second category is about content modifiers, such
as “no case” which ignores case and a series of restrictive mod-
ifiers related to HTTP. When processing the packet payload, the
location relationship can be clearly obtained from tokenization,
but it is difficult to control the case format and HTTP related
operations. Therefore, the proposed scheme focuses on the first
type of modifiers. A list of important notations of Snort rule is
shown in Table II.

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

4514 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 1. System architecture.

IV. SYSTEM OVERVIEW

A. System Model

The system model is shown in Fig. 1, which includes four enti-
ties as follows. The data user, namely task requester (TR), sends
the encrypted smart contract for data analysis. The data center
(DC) sells its data and computing power to data user for data
analysis The miner (MinerRP) acts as a malicious rule proces-
sor, and the other miner (MinerDE) performs anomaly detec-
tion and data forwarding. Moreover, there are two blockchains
in our system: main chain and rule processing chain.
TR: When a task developer TR plans to send a smart contract

on data trading platform to initiate a task request, who needs
to generate a encrypted packet contained two data streams: an
encrypted smart contract generated by symmetric key and a
randomized token collection. Then the encrypted packet is sent
to the trading pool by TR. If the randomized token collection
passes the malicious detection, the encrypted packet will be
packaged on blockchain. The encrypted packet can be obtained
by DC from the blockchain.

MinerRP :MinerRP is a miner who provides the processing
of detection rules. MinerRP generates the obfuscated rules
from detection rules (e.g., Snort rules), with which, MinerDE

can detect malicious behavior if there is at least one “content”
option in each rule to describe malicious code.
MinerDE: MinerDE is a miner to monitor the encrypted

packet from TR using the obfuscated rules issued by MinerRP .
If MinerDE detects malicious data in the encrypted packet,
it will interrupt the flow path and send the encrypted packet
to MinerRP for further analysis; otherwise, it will forensics

the encrypted packet and packages it with other transactions on
blockchain.
DC: After receiving the valid traffic from blockchain, DC

first decrypts the encrypted packet, and then verifies the con-
sistency of the content, i.e., whether the randomized token
collection is generated correctly. If so, DC deploys the smart
contract for the task of data mining; otherwise, TR is dishonest.

B. Threat Model

In this paper, the adversary model is considered as follows.
Trust Assumption on Endpoints TR and DC. It is assumed

that DC is credible without considering the problems caused
by imperfect programming language and virtual environment.
It is assumed that the TR can be malicious. TR wants to design
a smart contract with malicious code and escape malicious
detection. For instance, TR can generate fraudulent tokens to
avoid the malicious detection.

Semi-honest miner MinerDE and MinerPR. It is consid-
ered that the miners MinerDE and MinerPR are semi-honest,
e.g., honest-but-curious. Specifically, MinerDE must follow
the steps of the proposed scheme to detect malicious code;
but it wants to obtain the sensitive information from the smart
contract, and attempts to infer the proprietary inspection rules
from MinerRP .

C. Design Goals

According to the above model, the design goals of the pro-
posed system are as follows:

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PRIVACY-PRESERVING ANOMALY DETECTION OF ENCRYPTED SMART CONTRACT FOR BLOCKCHAIN-BASED DATA TRADING 4515

Privacy-Preserving of Smart Contract: This property requires
that the privacy of smart contract of TR should be protected.
Before the encrypted smart contract reaches the DC, other
participants except the TR cannot obtain the code content.

Confidentiality of Rules: Only DC can choose the malicious
rule set, and MinerRP can learn and process the rules. In other
words, other participants cannot know whether the plaintext
contains the content that matches the rules.

Efficiency and Accuracy: To facilitate practical application,
our system should have negligible false negative and false pos-
itive errors with low computation/communication cost.

V. THE PROPOSED SCHEME

In this section, the proposed scheme is introduced, which
consists of four phases: Setup, Obfuscated Map Generation,
Randomized Token Generation and Malicious Detection.

A. Setup

The setup phase is run by the TR and DC to exchange keys
between them. These keys are used in subsequent phases for the
processing of rules and smart contracts, as well as the selecting
of the MinerRP .

Assumed that TR and DC have a pair of public/private keys
(PKTR, SKTR) and (PKDC , SKDC), respectively, which can
be generated by a Certificate Authority (CA).

Key Distribution: TR and DC negotiate a symmetric key
KAES for encrypting the smart contract with AES algorithm
and a set of key KSET = {Ks,Kh,Kl} for generating obfus-
cated map and randomized tokens by using Diffie-Hellman key
distribution scheme [46].
MinerRP Selection: After obtaining the keys KAES and

KSET , a miner should be selected from a set of miners A =
{min1,min2, . . . ,minδ} as rule processor MinerRP to pro-
cess the original rule set. In order to provide the randomness of
the miner choose, DC calculates the ID of miner from KAES ,
KSET , and a time stamp ts as follows.

ids = H(KAES ||KSET ||ts) mod δ (2)

According to (2), DC selects minids
as the rule processor.

Moreover, for subsequent rule processing, the initial information
of the transaction (i.e., InfDC and SigDC) needs to be put into
the transaction pool of Rule Processing Chain (RP Chain) by
DC in order to be shared with MinerRP .

InfDC = Tranid||addrDC ||addrminids
||EncPKminids

(KSET)||ts||ids (3)

SignDC = SignSKDC
(InfDC)||SignSKDC

(Tranid||KSET||ts)
(4)

whereTranid is the transaction ID, addrDC andaddrminids
are

the addresses of DC and miner respectively, PKminids
is the

public key of miner minids
, Sign(·) is the signature algorithm

designed in [49] and SignDC denotes the signature of DC.

Fig. 2. Content segmentation.

B. Obfuscated Rule Generation

Suppose that the open-source Snort rule set R =
{R1, R2, . . . , Rι} is selected as the detection rules, where
the “content” option in each rule is used to match the smart
contract to be inspected. An efficient obfuscated rule generation
algorithm is proposed in this phase, which is based on the
security framework of searchable symmetric encryption.
Concretely, MinerRP generates obfuscated map through the
following steps.

Key Acquisition: As the rule processor, miner minids

first obtains InfDC and SignDC from the transaction pool
of RP chain. Then minids

decrypts InfDC with its own
private key SKminids

to obtain the set of keys KSET =
(Ks,Kh,Kl). Next, minids

verifies the validity of the signa-
ture SignSKDC

(Tranid||KSET||ts) from Tranid, KSET , and ts.
Meanwhile, the obtained signature of DC can be used as part
of generated obfuscated rule later.

Preliminary Treatment: For each Snort rule Ri, extracting
the content options and its modifier options to get the {conij :
modij} key value pair, where conij is the j-th content of rule
Ri, and the modij is the splicing of all modifiers corresponding
to conij . Note that, a Snort rule may contain multiple content
options, and each content option may be modified by multiple
modifier options. Moreover, each rule only has one header
contained the security action (such as alert, log, pass, activate,
and dynamic). Accordingly, rule Ri is initially processed as

Ri={coni1: modi1 ; coni2: modi2 ; · · · ; coniτ : modiτi; actioni}
(5)

Content Segmentation: Taking the shortest length of all con-
tent options as lenwin, all content options can be divided into
several sub-contents with length lenwin. As shown in Fig. 2, if
the length of the last part is less than lenwin, the last sub-content
can be supplemented with the preceding bytes. Then, rule Ri is
processed as

Ri = {segi11, segi12, . . . , segi1σi1
: modi1 ;

segi21, segi22, . . . , segi2σi2
: modi2 ;

· · ·
segiτi1, segiτi2, . . . , segiτiσiτi

: modiτi ; actioni} (6)

Random ID Generation: An ID of each content of the rules
is defined to uniquely identify the rule for facilitating the subse-
quent operations as follows. The Snort rules {R1, R2, . . . , Rι}
are reordered randomly, and the new sequence number of Ri

is denoted by ridRi
. Then, the random ID of the j-th content

of Ri can be denoted by idij and expressed as ridRi
||j||bij ,

where bij ∈ {0, 1}, and bij = 1 if j = σij ; bij = 0, otherwise.
For example, a rule has 10 content options and its rid is 2. The

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

4516 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

fifth and tenth content option of the rule can be expressed as
id25 = 0002||005||0 and id210 = 0002||010||1, respectively.

Action and Modifiers Hiding: In order to protect the privacy
of rules, MinerRP needs to hide the action and content options.
The proposed system aims to restore the content option through
its segments, and then restore the final action that declared in
rule header after the matching occurs through all the content
options in the rule. To realize the efficient hide the action and
modifiers, an efficient (n, n) secret sharing scheme is utilized as
follows.

For action hide, we target on the security requirement that,
only when all related content options of a rule are matched, the
corresponding action can be recovered; otherwise, nothing can
be revealed. Specifically, τi − 1 random strings qi1 , . . . , qiτi−1
are generated with the same length as action, and let qiτi = qi1 ⊕
· · · ⊕ qiτi−1 ⊕ actioni. The collection secret sharing is defined
as Q = {qi1 , . . . , qiτi }, where each qij is a share of action. Then,
the action can be restored as follows,

actioni = qi1 ⊕ · · · ⊕ qiτi−1 ⊕ qiτi (7)

Next, the ID of each original content idij , qij and modij
(j ∈ {1, 2, . . . , τi}) are first processed by a hash function H .
The corresponding hash value, secret share qi and the modifiers
modij are spliced together as Cij , i.e.,

Cij = H(idij , qij ,modij)||qij ||modij , ∀j ∈ {1, 2, . . . , τi}
(8)

Similarly, given a content option conij with σij segments,
the corresponding Cij is also treated as a secret. Randomly
choosing σij − 1 strings {pij (1), . . . , pij (σij − 1)}, and the
length of each bit string is the same bit length of Cij . Taking
pij (σij) = pij (1)⊕ · · · ⊕ pij (σij − 1)⊕ Cij , we have

Cij = pij (1)⊕ · · · ⊕ pij (σi − 1)⊕ pij (σij) (9)

Finally, rule Ri can be processed as follows.

{segi11, . . . , segi1σi1
:idi1||pi1(1), . . . , idi1||pi1(σi1);

segi21, . . . , segi2σi2
:idi2||pi2(1), . . . , idi2||1||pi2(σi2);

· · ·
segiτi1, . . . , segiτiσiτi

:idiτi||piτi(1), . . . , idiτi||piτi(σiτi
)} (10)

Obfuscated Map Generation: An obfuscated map Obm is
generated by MinerRP as follows. For all θ ∈ {1, 2, . . . , σij},
(idij ||pij (θ))⊕ s is inserted into map Obm[loc], where s =
f(Kh, segijθ), loc = G(Kl, l) and l = F (Ks, segijθ). To solve
the hash collision problem, a variable-length hash bucket is built
for each location. After obtaining the obfuscated map Obm,
MinerRP puts the mapping table of Obm on RP chain as the
body of a block. Specifically, the content of the block body
contains

InfRP = Tranid||ts||lenwin||Obm||SignSKDC

× (Tranid||KSET ||ts) (11)

and the signature

SignRP = SignSKRP
(InfRP) (12)

Algorithm 1: Obfuscated Rule Generation Algorithm.

Require: The Snort rule set R = {R1, R2, . . . , Rι}, the
shortest length lenwin of all content options in rule set, and
the initial information of transaction InfDC (i.e., Equ. (3))
from DC and the signature SignDC (i.e., Equ. (4)) of DC,
where Ri={coni1: modi1 ; coni2: modi2 ; · · · ; coniτ :
modiτi; actioni}.
Ensure: InfRP and SignRP .

(1) Key Acquisition.
� Obtaining KSET = (Ks,Kh,Kl) from
EncPKminids

(KSET);
� Verifying the validity of the signature SignSKDC

with transaction ID Tranid, keys KSET , and time
stamp ts.

(2) Preliminary Treatment.
� For each i ∈ {1, . . . , ι}, j ∈ {1, . . . , τi}, conij is
divided into sub-contents with length lenwin:
segiji1, segiji2, . . . , segijiσiji

.
(3) Random ID Generation.
� The rules {R1, R2, . . . , Rι} are reordered randomly,
and the new sequence number of Ri is denoted by
ridRi

;
� The random ID of the j-th content of Ri is denoted
by idij = ridRi

||j||bij , where bij ∈ {0, 1}, and bij = 1
if j = σij ; bij = 0, otherwise.

(4) Action and Modifiers Hiding.
� For all i, randomly choosing τi − 1 bit strings
qi1 , . . . , qiτi−1 with the same length as actioni, and
taking qiτi =qi1⊕ · · · ⊕ qiτi−1⊕ actioni;
� ∀j ∈ {1, 2, . . . , τi}, let
Cij = H(idij , qij ,modij)||qij ||modij ;
� For all Cij , randomly choosing σij − 1 strings
pij (1), . . . , and pij (σij − 1) with the same length of
Cij , and taking
pij (σij) = pij (1)⊕ · · · ⊕ pij (σij − 1)⊕ Cij , such
that

Cij = pij (1)⊕ · · · ⊕ pij (σi − 1)⊕ pij (σij);

� Finally, rule Ri can be processed as Equ. (10).
(5) Obfuscated Map Generation.
� For all θ ∈ {1, 2, . . . , σij}, (idij ||pij (θ))⊕ s is
inserted into map Obm[loc], where s = f(Kh, segijθ),
loc = G(Kl, l) and l = F (Ks, segijθ).
� Taking SKRP as the secret key of MinerRP , and
computing

InfRP = Tranid||ts||lenwin||Obm||SignSKDC

× (Tranid||KSET ||ts)
and the signature SignRP = SignSKRP

(InfRP).

where SKRP is the secret key of MinerRP .
For the details of Obfuscated Rule Generation Algorithm,

please refer to Algorithm 1.

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PRIVACY-PRESERVING ANOMALY DETECTION OF ENCRYPTED SMART CONTRACT FOR BLOCKCHAIN-BASED DATA TRADING 4517

C. Randomized Token Generation

To realize the detection on encrypted smart contract, TR
needs to generate a randomized token collection T, besides
the traditional encrypted information EKAES

(Msc), where Msc

denotes the plaintext of smart contract. To obtain T, TR first
gets the InfRP and SignRP from the RP chain, and checks
the validity of the signatures SignDC and SignRP . If so, TR
divides the entire smart contract M into a token collection
W = {W1,W2, . . . ,W	}, i.e.,

W = {W1,W2, . . . ,W	} = Token(Msc) (13)

by using a sliding-window-based tokenization algorithm
Token(·), where each word Wi have the same length of sliding
window lenwin.

Then, TR utilizes pseudorandom functions and keys KSET

to generate randomized tokens T as follows. For each ι ∈
{1, . . . , �},TR computesTi = F (Ks,Wι)||f(Kh,Wι) by using
two pseudorandom functions F and f with the keys Ks and Kh,
respectively. Besides matching the rule’s content options, it also
needs to satisfy the corresponding requirements in the modifier
options. Therefore, the starting position spι of Wι should be
added as the following form.

Tι = F (Ks,Wι)||f(Kh,Wι)||spι (14)

Next, TR can obtain the transaction information
TransInfTR = InfTR||SignTR by computing

InfTR = Tranid||ts||lenwin||ids||addrTR

||addrDC ||T||EKAES
(Msc) (15)

SignTR = SignSKTR
(InfTR) (16)

where addrTR denotes the IP addresses of TR, addrdest indi-
cates the IP address of DC, T = {Tι}	ι=1, and SKTR denotes
the secret key of TR.

Finally, TR puts TransInfTR into the transaction pool of
main chain for subsequent token detection operations.

D. Malicious Detection

In token detection phase, a miner MinerDE is introduced as
a detector to detect the malicious code in the smart contract.
Before performing token detection, the following verification
operations are required.
� MinerDE first obtains InfTR and SignTR from the trans-

action pool of main chain, and InfRP and SignRP from
RP chain.

� And then, MinerDE compares whether the lenwin in
InfTR and InfRP are the same: if so, MinerDE con-
tinues with the following step; otherwise, the transaction
is invalid.

� Next, MinerDE checks the validity of the two signa-
tures SignTR and SignRP : if so, MinerDE continues
with the following step; otherwise, the transaction is
invalid.

� Finally, MinerDE extracts the randomized token collec-
tion T and obfuscated mapping table Obm.

After accomplishing the verification, MinerDE performs the
following steps.
� For ι ∈ {1, 2, . . . , �}, MinerDE splits Ti into t′ι =
F (Ks,Wι), t′′ι = f(Kh,Wι) and Lι = spι, calculates the
loc = G(Kl, t

′
ι), and looks up the Obm mapping table

through the location information loc to find the stored result
Obm[loc] = (idij ||pij (θ))⊕ s.

� Obm[loc] is XOR with t′′ι to obtain the splicing of ID idij
and the share pij (θ), where idij = ridRi

||j||bij .
� MinerDE maintains a table Tcon, and stores the divided
idij , pij (θ), and spι.

� For each idij , let {idij , pij (θν), spιν}ν0
ν=1 be the set of

triples with the same content ID idij . If |spιν − spιν−1 | =
lenwin for ν < ν0 and |spιν − spιν−1 | ≤ lenwin for ν =
ν0, then, MinerDE computes

Ĉij = Ĥij ||q̂ij ||̂modij =

ν0⊕
ν=1

pij (θν) (17)

� MinerDE maintains a table Trule as follows. For each idij ,

if (1) ̂modij is a valid modifier and the starting position
spι1 and the ending position spιν0+lenwin conform to this

modifier, and (2) Ĥij = H(idij , q̂ij ,̂modij), then ridRi
,

j||bij , Ĥij , q̂ij , and ̂modij are stored in table Trule.
� MinerDE maintains a table Taction as follows. For

each rule ridRi
, if each element in {1||0, 2||0, . . . , j1−

1||0, j1||1} is included in Trule, then MinerDE restores
actioni by computing

actioni = qi1 ⊕ qi2 ⊕ · · · ⊕ qij1 (18)

Finally, ridRi
and actioni are stored in table Taction for

MinerDE to record the matching rules and actions.
If Taction is empty after completing the detection, it means

that the content of the smart contract is legal, and InfTR will
be put on the blockchain for further data mining; otherwise, it is
considered that the smart contract contains malicious informa-
tion, and MinerDE directly discards InfTR.

After receiving InfTR, DC can obtain the smart contract
Msc from EAES(Msc) with key KAES . Then DC checks the
consistency of the smart contractMsc and the randomized tokens
T. Finally,DC performs AI algorithm in smart contractMsc over
it’s data set to get the final results, and return the results toDET .

VI. SECURITY ANALYSIS

In this section, a novel security model will be introduced, and
then the security theorem and its proof will be presented.

A. Security Model

Definition 3: A privacy-preserving anomaly detection
scheme Π = (Setup,ObMapGen, RaTokenGen,Match)
over message space M consists of a tuple of p.p.t. algorithms
Setup, ObMapGen, RaTokenGen and Match as follows:
� Setup(1λ,KeyGen,KeyDist): Let λ be a security

parameter. Algorithm KeyGen outputs a key k =
(KCS ,KRP); a key distribution protocol KeyDist can

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

4518 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

distribute KRP to rule processor, and KCS to sender and
receiver, securely.

� ObMapGen(KRP ,R): Algorithm ObMapGen outputs
an obfuscated map Obm by inputting the keys KRP and a
rule R.

� RaTokenGen(k,W1,W2, . . . ,W): Algorithm
RaTokenGen outputs a set of randomized tokens
{T1, T2, . . . , T	} by inputting the key k and a set of �
original tokens {W1,W2, . . . ,W	} for message M ∈ M.

� Match(Obm, T1, T2, . . . , T): Algorithm Match outputs
a set of Ture/Flase values {V1, V2, . . . , V	} by inputting
the obfuscated map Obm and the set of randomized to-
kens T1, T2, . . . , T	, where Ture (i.e., 1) indicates that it
matches successfully; Flase (i.e., 0) means no match was
found.

Definition 4 (Completeness): Scheme Π is completeness if
for all efficient adversary Adv, the following two equations

Advfn−corΠ,Adv (λ)=Pr[FNCorAdv
Π (λ)=1] (19)

Advfp−corΠ,Adv (λ)=Pr[FPCorA
Π(λ)=1] (20)

are negligible, where FNCorAdv
Π (λ) and FPCorAdv

Π (λ) are
Experiment 1 and Experiment 2 respectively, as follows.

Experiment 1: FNCorAdv
Π (λ).

1: k = (KCS ,KRP)← KeyGen(1λ)
2: R = {R1, . . . , R|R|} ← Aav(1λ)
3: Obm← ObMapGen(KRP ,R)
4: W = {W1,W2, . . . ,W	} ← Adv(1λ)
5: T = {T1, T2, . . . , T	} ← RaTokenGen(KCS ,W)
6: Result←Match(Obm, T)
7: if Ri0 = Wj0 (for some i0 and j0) and Result = 0, then

b=1
8: return b

Experiment 2: FPCorAdv
Π (λ).

1: k = (KCS ,KRP)← KeyGen(1λ)
2: R = {R1, . . . , R|R|} ← Adv(1λ)
3: Obm← ObMapGen(KRP ,R)
4: W = {W1,W2, . . . ,W	} ← Adv(1λ)
5: T = {T1, T2, . . . , T	} ← RaTokenGen(KCS ,W)
6: Result←Match(Obm, T)
7: if Ri0 	= Wj0 (for some i0 and j0) and Result = 1, then

b=1
8: return b

Definition 5 (L-secure Against Adaptive Attacks): An en-
crypted data malicious detection scheme scheme Π is L-secure
against adaptive attacks if, for all efficient adversary A, there
exists an efficient simulator S, such that

AdvadapΠ,A,S(λ)= |Pr[RealA
Π(λ)=1]−Pr[IdealA

L,S(λ)=1]|
(21)

is negligible, where the games Real and Ideal are Game 1 and
Game 2 respectively, as follows.

Game 1: RealA
Π(λ).

1: k = (KCS ,KRP)← KeyGen(1λ)
2: R = {R1, . . . , R|R|} ← A(1λ)
3: Obm← ObMapGen(KRP ,R)
4: W = {W1,W2, . . . ,W	} ← A(1λ)
5: T = {T1, T2, . . . , T	} ← RaTokenGen(KCS ,W)
6: b← A(Obm, T)

Game 2: IdealA
L,S(λ).

1: R = {R1, . . . , R|R|} ← A(1λ)

2: ˜Obm← S(L(R))
3: W = {W1,W2, . . . ,W	} ← A(1λ)
4: T = {T1, T2, . . . , T	} ← RaTokenGen(KCS ,W)

5: b← A(˜Obm, T)

In RealA
Π(λ), the challenger calls KeyGen(1λ) to out-

put k = {KCS ,KRP }. The adversary A selects a rule R
for the challenger to create an obfuscated map Obm via
ObMapGen(KRP , R). Then A adaptively transmits a polyno-
mial number of strings, which is extracted from the data packet,
i.e., {W1,W2, . . . ,W	}. After that, the challenger responds to A
with the corresponding tokens T1, T2, . . . , T	. Finally, A outputs
a decision bit b with inputting the tokens and Obm.

In IdealA
L,S(λ), A selects a rule set R, and a simulator S gener-

ates ˜Obm based on leakage information L(R). Then A adaptively
transmits a polynomial number of strings, which is extracted
from the data packet, i.e., {W1,W2, . . . ,W	}. After that, A ob-
tains T1, T2, . . . , T	 from an oracle, which runs RaTokenGen
with inputting {W1,W2, . . . ,W	} and KCS . Finally, A outputs
a bit b. The L mentioned above is a state leakage function which
describes what information is to be leaked from the inputs.

B. Security Theorem

In our security analysis, we assume that the symmetric en-
cryption algorithm (EK , DK) and the public key encryption al-
gorithm (EncPK , DecSP) are secure, which can be considered
as psedudorandom permutations.

Here, we simplify our scheme Π0 as follows. As-
sumed that F : K s × {0, 1}l1 → {0, 1}l2 , G : K l × {0, 1}l2 →
{0, 1}l3 and f : Kh × {0, 1}l4 → {0, 1}l5 are three pseudoran-
dom functions; and H : {0, 1}l6 → {0, 1}l7 is a hash function;
� Setup(1λ,KeyGen,KeyDist): It generates a secure key

tuple k = (Ks,Kh,Kl) between TR and DC, and sends
key k to MinerRP securely.

� ObMpGen(k,R): It calculates obfuscated map Obm with
key k and the set of rules R. The form of each map entry is
Obm[loc] = (id||p)⊕ s, where id is the random ID of each
rule, p is the secret share used to restore the content options
for a single rule con, s = f(Kh, seg), loc = G(Kl, l) is
the input of obfuscated map, and l = F (Ks, seg). Here,
con = H(id, q,Mod)||q||Mod, whereMod is the modifier
collection of a single content option and q is the secret share
used to restore rule headeraction for subsequent operation.

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PRIVACY-PRESERVING ANOMALY DETECTION OF ENCRYPTED SMART CONTRACT FOR BLOCKCHAIN-BASED DATA TRADING 4519

Experiment 3: FNCorAdv
Π0

(λ) (resp. FPCorAdv
Π0

(λ)).

1: k = (KCS ,KRP)← KeyGen(1λ)
2: R← Adv(1λ)
3: Obm← ∅
4: for i ∈ {1, . . . , |R|} do
5: id← idGen(Ri)
6: Ci = {coni : modi; actioni} ← ruleSplit(Ri)
7: Seg = {segi1, . . . , segiσi

: modi; actioni} ←
contentSplit(Ci)

8: for θ ∈ {1, . . . , σi} do
9: s← f(Kh, segθ)

10: mapContent← (id||p)⊕ s
11: l← F (Ks, segθ)
12: loc← G(Kl, l)
13: Obm← Obm ∪ (loc,mapContent)
14: W = {W1,W2, . . . ,W	} ← Adv(1λ)
15: ι ∈ {1, 2, . . . , �} do Tι ← F (Ks,Wι)||f(Kh,Wι)||spι
16: Result←Match(Obm, T), where T = {T1, . . . , Tι}
17: if Ri0 = Wj0 (for some i0 and j0) and Result = 0, then

b=1 (17: if Ri0 	= Wj0 (for some i0 and j0) and
Result = 1, then b=1)

18: return b

� TokenGen(k,W1, . . . ,W): It generates a set
of randomized tokens {T1, . . . , T	}, where Ti =
F (Ks,Wi)||f(Kh,Wi)||spi, where spi is the starting
position of Wi.

� Match(T1, . . . , T	, Obm): Outputs a set of Ture/Flase val-
ues: {Ind1, . . . , Ind	}, where Indj = Ture if an action
is restored; otherwise, Indj = Flase.

Remark: In the subsequent of this paper, each rule in R
contains only one content option and one response operation,
and the length of the content option is the same as that of the
plaintext token. Moreover, the length of response operation of
all rules in R is equal.

Theorem 1: The proposed Scheme Π0 is completeness if F ,
G and f are secure PRF and the hash function H utilized in the
proposed scheme is collision-resistant.

Proof: FNCorAdv
Π0

(λ) and FPCorAdv
Π0

(λ) are shown in Ex-
periment 18. It is clear that

Advfn−corΠ0,A (λ)=Pr[FNCorA
Π0

(λ)=1] = 0 (22)

We define (1) BADF be the event that there is a Wι0

and segθ0 (θ0 ∈ {1, . . . , σi0} for some i0 in {1, . . . , |R|})
with Wι0 	= segθ0 such that F (Ks,Wi0) = F (Ks, segθ0);
(2) BADf be the event that there is a Wι0 and segθ0
(θ0 ∈ {1, . . . , σi0} for some i0 in {1, . . . , |R|}) with Wι0 	=
segθ0 such that f(Kh,Wi0) = f(Kh, segθ0); (3) BADG

be the event that there is a Wι0 and segθ0 (θ0 ∈
{1, . . . , σi0} for some i0 in {1, . . . , |R|}) withWι0 	= segθ0 such
that G(Kl, F (Ks,Wi0)) = G(Kl, F (Ks, segθ0)); BADH be
the event that H(idi0 , q

′,Modi0) = H(idi1 , q
′′,Modi1) with

(idi0 , q
′,Modi0) 	= (idi1 , q

′′,Modi1) for some idi0 idi1 , q′,
q′′, Modi0 , and Modi1 in obfuscated rule generation phase.

Game 4: Input(R,W0, . . . ,W)//G0.

1: k = (Ks,Kh,Kl)← Setup(1λ)
2: Obm← ∅
3: for ι ∈ {1, 2, . . . , �} do
4: Tι ← F (Ks,Wι)||f(Kh,Wι)||spι
5: for i ∈ {1, . . . , |R|} do
6: id← idGen(Ri)
7: Ci = {coni : modi; actioni} ← ruleSplit(Ri)
8: Seg = {segi1, . . . , segiσi

: modi; actioni} ←
contentSplit(Ci)

9: for θ ∈ {1, . . . , σi} do
10: s← f(Kh, segθ)
11: mapContent← (id||p)⊕ s
12: l← F (Ks, segθ)
13: loc← G(Kl, l)
14: Obm← Obm ∪ (loc,mapContent)
15: return b← A(Obm, T1, . . . , T)

Here, H can be regarded as a keying hash function, in
where, the random ID id and random number q are used
as a key.
FPCorA

Π(λ)=1 happens only when one of the events
BADF , BADf BADG, and BADH happens. Note that, ad-
versary A does not know the keys (KCS ,KRP) in Scheme Π0.
Therefore, from the fact that F , G and f are secure PRF and the
hash function H used in the scheme is collision-resistant, we
have the probability of BADF , BADf BADG, and BADH

are negligible.

Advfp−corΠ0,Adv
(λ)=Pr[FPCorA

Π0
(λ)=1]

≤ Pr[BADF] + Pr[BADf] + Pr[BADG] + Pr[BADH]

≤ negl(λ) (23)

�
Theorem 2: Scheme Π0 is L-secure against adaptive attacks

if F , G and f are secure PRF.
Proof: We consider games G0, G1, and G2, in which, G0 is

used to compute a distribution identical to RealAΠ0
(λ), and G2

is used to compute a distribution identical to IdealA
L,S(λ).

The first game G0 computes Obm and randomized tokens
Ti as specified in the adaptive game. It selects a key set
k = (Ks,Kh,Kl) via Setup(1λ). For each Wi, G0 computes
F (Ks,Wi)||f(Kh,Wi)||spi as Ti. Moreover, it computes ob-
fuscated map Obm using key set k for each original rule.
Accordingly, for any p.p.t. adversary A

Pr[G0] = Pr[RealA
Π0

(λ) = 1] (24)

In Game G1, the outputs of tree random oracles RF (∅, ·),
RF ′(∅, ·) and RF ′′(∅, ·) are used to replace that of F (Ks, ·),
f(Kh, ·) and G(Kl, ·) in G0, respectively. This means that all
of the Ti are uniform and independent strings.

Let Game G′0 be the game which utilizes RF (∅, ·) to replace
F (Ks, ·) in Game G0, and let Game G′1 be the game which uses
RF ′(∅, ·) to replace f(Kh, ·) in Game G′0. Then, from that fact

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

4520 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

Game 5: Input(R,W0, . . . ,W)//G1.

1: k = (Ks,Kh,Kl)← Setup(1λ)
2: Obm← ∅
3: for ι ∈ {1, 2, . . . , �} do

Tι ← RF (∅,Wι)||RF ′(∅,Wι)||spι
4: for i ∈ {1, . . . , |R|} do
5: id← idGen(Ri)
6: Ci = {coni : modi; actioni} ← ruleSplit(Ri)
7: Seg = {segi1, . . . , segiσi

: modi; actioni} ←
contentSplit(Ci)

8: for θ ∈ {1, . . . , σi} do
9: s← RF ′(∅, segθ)

10: mapContent← (id||p)⊕ s
11: l← RF (∅, segθ)
12: loc← RF ′′(∅, l)
13: Obm← Obm ∪ (loc,mapContent)
14: return b← A(Obm, T1, . . . , T)

that F , f and G are pseudorandom functions, we can obtain that

|Pr[G0]− Pr[G′0]| ≤ negl(λ) (25)

|Pr[G′0]− Pr[G′1]| ≤ negl(λ) (26)

|Pr[G′1]− Pr[G1]| ≤ negl(λ) (27)

for any efficient adversary A. As a result, for any efficient
adversary A, we can obtain that

|Pr[G0]− Pr[G1]| ≤ negl(λ) (28)

Note we consider Game G2. In this game, random tokens
T0, . . . , T	 are generated by F (Ks, ·) and f(Kh, ·) with in-
putting W0, . . . ,W	.

Note that, if F (Ks, ·) and f(Kh, ·) are pseudo-random func-
tions, then F̂ (Ks,Kh, ·) (= (F (Ks, ·), f(Kh, ·))) is also a
pseudo-random function. Then, we claim that,

|Pr[G1]− Pr[G2]| ≤ negl(λ) (29)

Actually, if there is an efficient adversary A1 such that

|Pr[G1]− Pr[G2]| > negl(λ) (30)

then an efficient adversary B1 exists to satisfy

Advpdf
̂F,B1

(λ) > negl(λ) (31)

Here, the adversary B1 has access to an oracleRF (·, ·),RF ′(·, ·),
and RF ′′(·, ·). B1 runs A1 to get (R,W0, . . . ,W), and then uses
output of A1 as its own.

An effective simulator S takes the information output by the
leakage function L as the initial input. Specifically, L(R) =
{|loc|, |mapContent|, |e|, {|d|}|e|}, where |loc| is the length of
the input of the obfuscated map, |mapContent| is the length of
the value in the obfuscated map, |e| is the number of entries in
the obfuscated map, and {|d|}|e| is the size of the corresponding
bucket for each entry. S simulates and constructs the obfuscated
map ˜Obm through the leakage function. Compared S with G2,

Game 6: Input(R,W0, . . . ,W)//G2

1: k = (Ks,Kh,Kl)← Setup(1λ)
2: Obm← ∅
3: for ι ∈ {1, 2, . . . , �} do

Tι ← F (Ks,Wι)||f(Kh,Wι)||spι
4: for i ∈ {1, . . . , |R|} do
5: id← idGen(Ri)
6: Ci = {coni : modi; actioni} ← ruleSplit(Ri)
7: Seg = {segi1, . . . , segiσi

: modi; actioni} ←
contentSplit(Ci)

8: for θ ∈ {1, . . . , σi} do
9: s← RF ′(∅, segθ)

10: mapContent← (id||p)⊕ s
11: l← RF (∅, segθ)
12: loc← RF ′′(∅, l)
13: Obm← Obm ∪ (loc,mapContent)
14: return b← A(Obm, T1, . . . , T)

the keys and values in ˜Obm are random independent strings so
that

Pr[G2] = Pr[IdealA
L,S(λ) = 1] (32)

Accordingly, we have

AdvadapΠ0,A,S(λ) = |Pr[RealA
Π0

(λ) = 1]− Pr[IdealA
L,S(λ) = 1]|

= |Pr[G0]− Pr[G2]|
= |Pr[G0]− Pr[G1]|+ |Pr[G1]− Pr[G2]|
≤ negl(λ) (33)

Consequently, ifF , f andG are secure PRFs, the scheme PESCI
Π0 is correct and L-secure against adaptive attacks. �

VII. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to discuss
the performance of our scheme.

A. Experimental Settings

In our experiments, a desktop computer (AMD Ryzen 7
4800H) is used with 64-bit Linux operating system, Radeon
Graphics 2.90 GHz and 16.0 GB of RAM. Moreover, all exper-
iments are conducted with the libraries of Python. The pseudo-
random functions F , G, f and H are implemented by SHA1,
SHA224, SHA256 and MD5 respectively. Both of them are
built on the Python library Crypto. Moreover, the size of the
function code of a smart contract is set to 5∼110 KB. The size
of the sliding window is determined according to the length
of the shortest “content” option in all selected rules. In our
experiments, the size of the sliding window is set to 2 bytes,
as the shortest length of “content” option of Snort rule set used
in our experiments is 2 bytes.

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PRIVACY-PRESERVING ANOMALY DETECTION OF ENCRYPTED SMART CONTRACT FOR BLOCKCHAIN-BASED DATA TRADING 4521

Fig. 3. Time consumption versus rule number.

Fig. 4. Communication cost of obfuscated map versus rule number.

B. Exploration of System Parameters

We now discuss the impact of system parameters on compu-
tation cost and communication cost of the proposed scheme. We
first conduct an experiment to discuss the effect of the size of
Snort rule set |R| and the size of smart contract file |M | on the
overhead of the proposed scheme. In our experiment, the size of
rule set is chosen from 500 to 10000 with step 500, and the size of
smart contractM is set as 15 KB. The time cost of the obfuscated
map generation and token detection against the varied size of
original rule set is first studied. As shown in Fig. 3, the time cost
of both obfuscated map generation and token detection increases
approximately linearly with the increase in the size of rule set.
Then, the communication overhead of the proposed method
versus the varied size of original rule set is discussed. From
Fig. 4, it can be seen that, the communication overhead of the
proposed scheme the bandwidth consumption of the generated
obfuscated map increases linearly as the cardinality of rule set
increases. Specifically, when the size of the smart contract is
fixed at 15 KB, the time cost is around 112 ms and the bandwidth
consumption is 5316 KB in the randomized token generation
phase.

Then, the overhead of the randomized token generation and
token detection under different size of smart contract (from 5 KB
to 110 KB with step 5 KB) is discussed. Fig. 5 plots the time
cost of two main phases under different size of smart contract.
It can be seen that, the time cost is mainly concentrated on the
token detection phase. The reason is that, with the increase of the

Fig. 5. Time consumption versus smart contract size.

Fig. 6. Communication cost of token set versus smart contract size.

size of smart contract file, the number of the tokens increases,
which further leads to the increase of time consumption of token
detection. In Fig. 6, the communication overhead of two main
phases under different size of smart contract is presented. From
Fig. 6, we have that the communication overhead of randomized
token generation increases with the increase of smart contract
size linearly. Specifically, when the cardinality of the rule set
is fixed at 3000, the time consumption of the obfuscated map
generation phase is 1927 ms and the bandwidth consumption is
14938 KB.

C. Performance Analysis

An experiment is carried out to discuss the overall perfor-
mance of our scheme by taking the size of smart contracts
from 5 KB to 110 KB with step 5 KB. In this experiment, four
rule sets containing 4000 rules are selected. These sets have no
intersection of rules and are all from suricata-5.0. It should be
noted that the main difference between these rule sets is the
length of the shortest “content” options, which are 2, 3, 4 and 5
bytes respectively. According to the shortest length from small
to large, the four sets are defined as ruleset1, ruleset2, ruleset3
and ruleset4 respectively.

Fig. 7(a) shows the time cost of randomized token generation
phase under different sizes of smart contract. From Fig. 7(a),
we have the result that for four rule sets with different sliding
windows (i.e. 2, 3, 4 and 5), the time consumption decreases
with the increase of the size of sliding window. Meanwhile, for

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

4522 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

Fig. 7. Time and communication cost of the proposed scheme versus varying size of smart contract in different rule set.

TABLE III
TIME CONSUMPTION AND COMMUNICATION COST OF OBFUSCATED MAP

GENERATION PHASE

different rule sets, the time cost at this phase shows an upward
trend as the size of the smart contract increases. Fig. 7(b) shows
the time cost of obfuscated map generation phase. It can be
seen that, the time cost of this phase raises with increasing
the size of the sliding window or the size of smart contract.
Fig. 7(c) shows the communication overhead of randomized
token generation phase of the proposed scheme by changing
the size of sliding window. As shown in this figure, with the
increase of sliding window size, the communication overhead
of randomized token generation phase decreases. The reason is
that, for the larger sliding window, the fewer randomized tokens
are generated, which reduces the bandwidth. Meanwhile, as the
increase of smart contract size, the bandwidth corresponding to
each experimental rule set in randomized token generation is
increasing.

As shown in Table III, since the rules and sliding windows
in the three rule sets are fixed, the time cost and communica-
tion overhead corresponding to each rule set in the obfuscated
map generation phase is constant. Specifically, the communi-
cation cost corresponding to ruleset1, ruleset2, ruleset3 and
ruleset4 is 8,488 KB, 14,623 KB, 16,042 KB and 20,125 KB,
respectively.

D. Comparison With Existing Schemes

We conduct an experiment to compare the time and commu-
nication overhead of our scheme with existing schemes (i.e.,
PrivDPI [32] and PETI [34]). In this experiment, the rule length
ruleLen of the proposed scheme and PETI [34] are set to 8
bytes and 16 bytes, and the rule length ruleLen of PrivDPI [32]
is set to 8 bytes, respectively; the number of rules is 6000 for
ruleLen = 8 bytes, and 3000 for ruleLen = 16 bytes; and the
size of the smart contract is set to 19.2 KB. Since the ORG phase

Fig. 8. Comparison of the time consumption of the proposed scheme with
existing schemes.

of PrivDPI in the subsequent session can reuse the obfuscated
rules in the first session to reduce time and communication
consumption [32], we consider two consecutive sessions in
anomaly detection of encrypted smart contract to fairly compare
the performance of the above schemes.

Fig. 8 shows the comparison of the time consumption of
the proposed scheme with existing schemes in two consecutive
sessions. It can be found that, (1) the computational overhead
of our scheme is significantly smaller than that of PrivDPI and
PETI in all three phases of two sessions; and (2) there is not much
difference between the first and second execution of the proposed
scheme, while the computational overhead of the ORG phase
during the second session of PrivDPI is significantly reduced
due to the fact that PrivDPI utilizes the results of the first session
for simplicity of computation.

Fig. 9 plots the comparison of the communication cost of
the proposed scheme with existing schemes in two consecutive
sessions. It can be seen that, (1) in the ORG phase, the com-
munication cost of the proposed scheme and PETI is almost
the same, which are less than that of PrivDPI; (2) in the TD
phase, there is no communication cost for all three schemes;
and (3) the proposed scheme has a considerable advantage over
privDPI and PETI in the RTG phase of the first session, and
the communication overhead of PrivDPI in the RTG phase of
the second session is extremely small due to the utilization of
the results of the first session.

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: PRIVACY-PRESERVING ANOMALY DETECTION OF ENCRYPTED SMART CONTRACT FOR BLOCKCHAIN-BASED DATA TRADING 4523

Fig. 9. Comparison of the communication cost of the proposed scheme with
existing schemes.

E. Discussion

In our system, it is assumed that the miners MinerDE and
MinerPR are semi-honest. A feasible approach based on the
admission and punishment mechanism to eliminate this assump-
tion is as follows. Each miner participating in the task of Obfus-
cated Rule Generation and Malicious Detection needs to have a
certain access mechanism and pay a certain amount of deposit for
the penalty in case of dishonesty. When dishonest event occurs,
data center first detects the honesty of MinerPR. Note that, in
the proposed protocol, MinerPR needs to process the matching
rules into obfuscated map, and store it and the corresponding
signature on the RP chain. If MinerPR is a dishonest node and
generates a fake obfuscated map for a transaction, the data center
can generate a real obfuscated map using the real rule set and
key, and then compare it with the fake obfuscated map on the rule
processing chain, so as to find out the evidence of dishonesty of
MinerPR. Then, data center verifies the honesty of MinerDE .
If node MinerPR is honest while MinerDE is dishonest in
the detection process. The data center can extract the electronic
contract and decrypt the transaction content; and then use the
real rule set to detect the decrypted electronic contract. If the
detection result is inconsistent with the system detection result,
then MinerDE is dishonest. When a miner acts dishonestly,
his qualification as a miner may be revoked or he may be fined
depending on the severity of the behavior.

VIII. CONCLUSION

In this paper, a blockchain-based data trading platform has
been considered, in which, data users can purchase data set
and computing power through encrypted smart contracts. A
privacy-preserving encrypted smart contract detection system
has been proposed in the blockchain-based data trading platform
with the help of two kinds of miners. One kind of miner acts as
a rule processor to generate an obfuscated map with the original
open-source malicious rule set; and another kind of miner acts
as a detector to perform malicious inspection by inputting the
obfuscated map and the randomized tokens of smart contract.
We have is defined the security syntax of encrypted smart
contract inspection, and proved that the proposed scheme is

L-secure against adaptive attacks. Experimental results demon-
strate that our scheme can achieve malicious code detection with
high detection accuracy, low time cost and low communication
overhead. The assumption that all miners are semi-honest in
the proposed scheme is relatively strong, which weakens the
application in the practical peer-to-peer network environment.
In the future, we would like to continue working on this topic
and propose a privacy-preserving anomaly detection scheme for
encrypted smart contracts under the dishonest miner model.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Bus. Rev., 2008, Art. no. 21260.

[2] Y. Liu, J. Liu, Q. Wu, H. Yu, Y. Hei, and Z. Zhou, “SSHC: A secure and
scalable hybrid consensus protocol for sharding blockchains with a formal
security framework,” IEEE Trans. Dependable Secure Comput., vol. 19,
no. 3, pp. 2070–2088, May/Jun. 2022.

[3] M. Song, Z. Hua, Y. Zheng, H. Huang, and X. Jia, “Blockchain-based
deduplication and integrity auditing over encrypted cloud storage,” IEEE
Trans. Dependable Secure Comput., vol. 20, no. 6, pp. 4928–4945,
Nov./Dec. 2023, doi: 10.1109/TDSC.2023.3237221.

[4] Y. Chen, J. Zhao, Y. Wu, J. Huang, and X. Shen, “QoE-aware decentralized
task offloading and resource allocation for end-edge-cloud systems: A
game-theoretical approach,” IEEE Trans. Mobile Comput., vol. 23, no. 1,
pp. 769–784, Jan. 2024, doi: 10.1109/TMC.2022.3223119.

[5] N. Zhang, P. Yang, J. Ren, D. Chen, L. Yu, and X. Shen, “Synergy
of big data and 5G wireless networks: Opportunities, approaches, and
challenges,” IEEE Wirel. Commun., vol. 25, no. 1, pp. 12–18, Feb. 2018.

[6] W. Wu et al., “AI-native network slicing for 6G networks,” IEEE Wirel.
Commun., vol. 29, no. 1, pp. 96–103, Feb. 2022.

[7] Y. Jiang and Y. Zhong, “IIoT data sharing based on blockchain: A mul-
tileader multifollower stackelberg game approach,” IEEE Internet Things
J., vol. 9, no. 6, pp. 4396–4410, Mar. 2022.

[8] M. Kumar et al., “ANAF-IoMT: A novel architectural framework for
IoMT-Enabled smart healthcare system by enhancing security based on
RECC-VC,” IEEE Trans. Ind. Inform., vol. 18, no. 12, pp. 8936–8943,
Dec. 2022.

[9] X. Li et al., “Big data analysis of the internet of things in the digital twins of
smart city based on deep learning,” Future Gener. Comput. Syst., vol. 128,
pp. 167–177, 2022.

[10] W. Dai, C. Dai, K. -K. R. Choo, C. Cui, D. Zou, and H. Jin, “SDTE:
A secure blockchain-based data trading ecosystem,” IEEE Trans. Inf.
Forensics Secur., vol. 15, pp. 725–737, 2019.

[11] D. Chen, S. Jiang, N. Zhang, L. Liu, and K. -K. R. Choo, “On message
authentication channel capacity over a wiretap channel,” IEEE Trans. Inf.
Forensics Secur., vol. 17, pp. 3107–3122, 2022.

[12] N. Zhang, N. Lu, N. Cheng, J. W. Mark, and X. S. Shen, “Cooperative
spectrum access towards secure information transfer for CRNs,” IEEE J.
Sel. Areas Commun., vol. 31, no. 11, pp. 2453–2464, Nov. 2013.

[13] S. Sedkaoui and M. Khelfaoui, Sharing Economy and Big Data Analytics,
Hoboken, NJ, USA: Wiley, 2020.

[14] X. Yang, R. Lu, J. Shao, X. Tang, and A. A. Ghorbani, “Achieving
efficient secure deduplication with user-defined access control in cloud,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 1, pp. 591–606,
Jan./Feb. 2022.

[15] Y. Li, L. Li, Y. Zhao, N. Guizani, Y. Yu, and X. Du, “Toward decentralized
fair data trading based on blockchain,” IEEE Netw., vol. 35, no. 1, pp. 304–
310, Jan./Feb. 2021.

[16] L. D. Nguyen, I. Leyva-Mayorga, A. N. Lewis, and P. Popovski, “Modeling
and analysis of data trading on blockchain-based market in IoT networks,”
IEEE Internet Things J., vol. 8, no. 8, pp. 6487–6497, Apr. 2021.

[17] D. Zhang, J. Le, X. Lei, T. Xiang, and X. Liao, “Secure redactable
blockchain with dynamic support,” IEEE Trans. Dependable Secure Com-
put., to be published, doi: 10.1109/TDSC.2023.3261343.

[18] J. Zhang, Y. Ye, W. Wu, and X. Luo, “Boros: Secure and efficient off-
blockchain transactions via payment channel hub,” IEEE Trans. Depend-
able Secure Comput., vol. 20, no. 1, pp. 407–421, Jan./Feb. 2023.

[19] C. Li et al., “Blockchain-based data trading in edge-cloud computing
environment,” Inf. Process. Manage., vol. 59, no. 1, pp. 1–22, 2022.

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TDSC.2023.3237221
https://dx.doi.org/10.1109/TMC.2022.3223119
https://dx.doi.org/10.1109/TDSC.2023.3261343

4524 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 5, SEPTEMBER/OCTOBER 2024

[20] B. An, M. Xiao, A. Liu, Y. Xu, X. Zhang, and Q. Li, “Secure crowdsensed
data trading based on blockchain,” IEEE Trans. Mobile Comput., vol. 22,
no. 3, pp. 1763–1778, Mar. 2023.

[21] N. Szabo, “Formalizing and securing relationships on public networks,”
First Monday, vol 2, no. 9, 1997. [Online]. Available: http://firstmonday.
org/ojs/index.php/fm/article/view/548/469

[22] L. Ale, N. Zhang, H. Wu, D. Chen, and T. Han, “Online proactive caching in
mobile edge computing using bidirectional deep recurrent neural network,
IEEE Internet Things J., vol. 6, no. 3, pp. 5520–5530, Jan. 2019.

[23] D. Chen et al., “MAGLeak: A learning-based side-channel attack for
password recognition with multiple sensors in IIoT environment,” IEEE
Trans. Ind. Inform., vol. 18, no. 1, pp. 467–476, Jan. 2022.

[24] X. Liu, Y. Zheng, X. Yuan, and X. Yi, “Securely outsourcing neural
network inference to the cloud with lightweight techniques,” IEEE Trans.
Dependable Secure Comput., vol. 20, no. 1, pp. 620–636, Jan./Feb. 2023.

[25] A. Kosba et al., “Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts,” in Proc. IEEE Symp. Secur. Privacy,
2016, pp. 839–858.

[26] S. Steffen, B. Bichsel, M. Gersbach, P. Tsankov, and M. Vechev, “zkay:
Specifying and enforcing data privacy in smart contracts,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2019, pp. 1759–1776.

[27] P. Pal and K. Sudharsana, “WiP: Criminal smart contract for private key
theft in end to end encrypted applications,” in Proc. Int. Conf. Inf. Syst.
Secur., 2019, pp. 21–32.

[28] G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, no. 2014, pp. 1–32,
2014.

[29] Y. Wu, S. Tang, B. Zhao, and Z. Peng, “BPTM: Blockchain-based
privacy-preserving task matching in crowdsourcing,” IEEE Access, vol. 7,
pp. 45605–45617, 2019.

[30] J. Shi and Y. Zhang, “Privacy-preserving network functionality outsourc-
ing,” 2015, arXiv:1502.00389.

[31] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox: Deep packet
inspection over encrypted traffic,” in Proc. SIGCOMM Conf., London,
U.K., 2015, pp. 213–226.

[32] J. Ning, G. S. Poh, J. Loh, J. Chia, and E. Chang, “PrivDPI: Privacy-
preserving encrypted traffic inspection with reusable obfuscated rules,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., London, U.K., 2019,
pp. 1657–1670.

[33] X. Yuan, X. Wang, J. Lin, and C. Wang, “Privacy-preserving deep packet
inspection in outsourced middleboxes,” in Proc. IEEE 35th Annu. Int.
Conf. Comput. Commun., 2016, pp. 1–9.

[34] D. Chen et al., “Privacy-preserving encrypted traffic inspection with sym-
metric cryptographic techniques in IoT,” IEEE Internet Things J., vol. 9,
no. 18, pp. 17265–17279, Sep. 2022.

[35] A. C. Yao, “How to generate and exchange secrets,” in Proc. 27th Annu.
Symp. Found.s Comput. Sci., 1986, pp. 162–167.

[36] M. Naor and B. Pinkas, “Oblivious transfer with adaptive queries,” in Proc.
Annu. Int. Cryptol. Conf., 1999, pp. 573–590.

[37] D. Yuan, Q. Li, G. Li, Q. Wang, and K. Ren, “PriRadar: A privacy-
preserving framework for spatial crowdsourcing,” IEEE Trans. Inf. Foren-
sics Secur., vol. 15, pp. 299–314, 2020.

[38] M. Deng, K. Zhang, P. Wu, M. Wen, and J. Ning, “DCDPI: Dynamic
and continuous deep packet inspection in secure outsourced middleboxes,”
IEEE Trans. Cloud Comput., vol. 11, no. 4, pp. 3510–3524, Fourth Quarter
2023, doi: 10.1109/TCC.2023.3293134.

[39] S. Gao et al., “Privacy-preserving industrial control system anomaly detec-
tion platform,” Secur. Commun. Netw., vol. 2023, 2023, Art. no. 7010155.

[40] C. Zhang, M. Zhao, L. Zhu, W. Zhang, T. Wu, and J. Ni, “FRUIT: A
blockchain-based efficient and privacy-preserving quality-aware incentive
scheme,” IEEE J. on Sel. Areas Commun., vol. 40, no. 12, pp. 3343–3357,
Dec. 2022.

[41] C. Sendner et al., “Smarter contracts: Detecting vulnerabilities in smart
contracts with deep transfer learning,” in Proc. Annu. Netw. Distrib. Syst.
Secur. Symp., 2023, pp. 1–18.

[42] N. Ivanov and Q. Yan, “TxT: Real-time transaction encapsulation for
ethereum smart contracts,” IEEE Trans. Inf. Forensics Secur., vol. 18,
pp. 1141–1155, 2023.

[43] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. IEEE Symp. Secur. Privacy, Oakland, CA,
USA, 2000, pp. 44–55.

[44] R. Curtmola et al., “Searchable symmetric encryption: Improved defi-
nitions and efficient constructions,” J. Comput. Secur., vol. 19, no. 5,
pp. 895–934, 2011.

[45] D. Cash et al., “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in Proc. Annu. Netw. Distrib. Syst.
Secur. Symp., San Diego, CA, USA, 2014, pp. 1–16.

[46] A. Joux, “A one round protocol for tripartite Diffie-Hellman,” J. Cryptol.,
vol. 17, no. 4, pp. 263–276, 2004.

[47] C. Lan et al., “Embark: Securely outsourcing middleboxes to the cloud,”
in Proc. 13th USENIX Symp. Networked Syst. Des. Implementation, 2016,
pp. 255–273.

[48] S. Canard et al., “BlindIDS: Market-compliant and privacy-friendly intru-
sion detection system over encrypted traffic,” in Proc. ACM Asia Conf.
Comput. Commun. Secur., 2017, pp. 561–574.

[49] M. Bellare and P. Rogaway, “The exact security of digital signatures-How
to sign with RSA and Rabin,” in Proc. Int. Conf. Theory Appl. Crypto-
graphic Techn., Berlin, Heidelberg, 1996, pp. 399–416.

Dajiang Chen (Member, IEEE) received the PhD de-
gree in information and communication engineering
from the University of Electronic Science and Tech-
nology of China, in 2014. He is currently an associate
professor with the School of Information and Soft-
ware Engineering, University of Electronic Science
and Technology of China (UESTC). He was a postdoc
research fellow with the BBCR group, Department
of Electrical and Computer Engineering, University
of Waterloo, Canada, from 2015 to 2017. He served
as the workshop chair for BDEC-SmartCity’19 (in

conjunction with IEEE WiMob 2019). He also served as a Technical Program
Committee Member for IEEE Globecom, IEEE ICC, and IEEE VTC. His current
research interests include physical layer security, secure channel coding, and
machine learning and its applications in wireless network security and wireless
communications.

Zeyu Liao received the BS degree in software engi-
neering from the School of information and Software
Engineering, University of Electronic Science and
Technology of China, in 2021. He is currently work-
ing toward the postgraduate degree with the School
of Information and Software Engineering, University
of Electronic Science and Technology of China. His
research interests include security and privacy pro-
tection in wireless networks.

Ruidong Chen received the PhD degree in informa-
tion and communication engineering from the Univer-
sity of Electronic Science and Technology of China,
in 2019. He is currently an associate research fellow
with the School of Computer Science and Engineer-
ing, University of Electronic Science and Technology
of China. His research interests include blockchain,
and security and privacy protection in information
systems, software, networking, and databases.

Hao Wang received the BS degree in software engi-
neering from the School of information and software
Engineering, University of Electronic Science and
Technology of China, in 2019. He is currently work-
ing toward the postgraduate degree with the School
of Information and Software Engineering, University
of Electronic Science and Technology of China. His
research interests include security and privacy pro-
tection in different application scenarios of Wireless
networks (e.g., IoT, Edge Computing, and Internet of
Vehicles).

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

http://firstmonday.org/ojs/index.php/fm/article/view/548/469
http://firstmonday.org/ojs/index.php/fm/article/view/548/469
https://dx.doi.org/10.1109/TCC.2023.3293134

CHEN et al.: PRIVACY-PRESERVING ANOMALY DETECTION OF ENCRYPTED SMART CONTRACT FOR BLOCKCHAIN-BASED DATA TRADING 4525

Chong Yu (Graduate Student Member, IEEE) re-
ceived the BSc degree in communication engineering
and the MSc degree in communication and informa-
tion system from Northeastern University, Shenyang,
China, in 2015 and 2017, respectively. She is currently
working toward the PhD degree with the Department
of Electrical and Computer Engineering, University
of Nebraska-Lincoln, Omaha, NE, USA. Her research
interests include intelligent Internet of Things, cyber-
security, intelligent vehicle, cloud/edge computing,
and machine learning.

Kuan Zhang (Member, IEEE) received the BSc de-
gree in communication engineering and the MSc de-
gree in computer applied technology from Northeast-
ern University, China, in 2009 and 2011, respectively,
and the PhD degree in electrical and computer engi-
neering from the University of Waterloo, in 2016. He
has been an assistant professor with the Department of
Electrical Communication Engineering, University of
Nebraska-Lincoln, since 2017. He was also a postdoc-
toral fellow with the Broadband Communications Re-
search (BBCR) group, University of Waterloo from

2016 to 2017. His research interests include security and privacy for mobile
social networks, cloud/edge computing, and cyber physical systems.

Ning Zhang (Senior Member, IEEE) received the
PhD degree in electrical and computer engineering
from the University of Waterloo, Canada, in 2015.
He is an associate professor with the Department
of Electrical and Computer Engineering, University
of Windsor, Canada. After that, he was a postdoc
research fellow with the University of Waterloo and
University of Toronto, Canada, respectively. His re-
search interests include connected vehicles, mobile
edge computing, wireless networking, and machine
learning. He is a Highly Cited Researcher (Web of

Science). He received an NSERC PDF award in 2015 and 6 Best Paper Awards
from IEEE Globecom in 2014, IEEE WCSP in 2015, IEEE ICC in 2019, IEEE
ICCC in 2019, IEEE Technical Committee on Transmission Access and Optical
Systems in 2019, and Journal of Communications and Information Networks in
2018, respectively. He serves as an associate editor of IEEE Internet of Things
Journal, IEEE Transactions on Cognitive Communications and Networking, and
IEEE Systems Journal; and a guest editor of several international journals, such
as IEEE Wireless Communications, IEEE Transactions on Industrial Informat-
ics, and IEEE Transactions on Cognitive Communications and Networking.

Xuemin (Sherman) Shen (Fellow, IEEE) received
the BSc degree from Dalian Maritime University,
China, in 1982, and the MSc and PhD degrees electri-
cal engineering from Rutgers University, New Jersey,
USA, in 1987 and 1990. He is a University pro-
fessor and the associate chair for Graduate Studies,
Department of Electrical and Computer Engineering,
University of Waterloo, Canada. His research focuses
on wireless resource management, wireless network
security, social networks, smart grid, and vehicular
ad hoc and sensor networks. He is the elected IEEE

ComSoc VP Publication, was a member of IEEE ComSoc Board of Governor,
and the Chair of Distinguished Lecturers Selection Committee. He served as
the Technical Program Committee Chair/Co-Chair for IEEE Globecom’16,
Infocom’14, IEEE VTC’10 Fall, and Globecom’07, etc. He also serves/served
as the editor-in-chief for IEEE Internet of Things Journal, IEEE Network,
Peer-to-Peer Networking and Application, and IET Communications; a founding
area editor for IEEE Transactions on Wireless Communications; and an associate
editor for IEEE Transactions on Vehicular Technology and IEEE Wireless
Communications, etc. He received the IEEE ComSoc Education Award, the
Joseph LoCicero Award for Exemplary Service to Publications, the Excellent
Graduate Supervision Award in 2006, and the Premier’s Research Excellence
Award (PREA) in 2003 from the Province of Ontario, Canada. He is a registered
professional engineer of Ontario, Canada, an Engineering Institute of Canada
Fellow, a Canadian Academy of Engineering Fellow, a Royal Society of Canada
Fellow, and a distinguished lecturer of IEEE Vehicular Technology Society and
Communications Society.

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:45:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

