
Detecting Poisoning Attacks
with DynaDetect

Sabrina Perry1 , Yili Jiang1(B) , Fangtian Zhong2 , and Chong Yu3

1 University of Mississippi, University, MS 38677, USA
yjiang7@olemiss.edu

2 Montana State University, Bozeman, MT 59717, USA
3 University of Cincinnati, Cincinnati, OH 45221, USA

Abstract. In the age of increasing reliance on machine learning (ML) in
various environments, ensuring the security and reliability of ML models
is essential. Data poisoning attacks pose a significant threat to ML mod-
els, compromising their reliability. Although the traditional K-Nearest
Neighbor (KNN) algorithm can offer potential defense mechanisms due to
its adaptability and capability to detect poisoned data, its static nature
limits its effectiveness against dynamic malicious challenges. To this
end, this work proposes DynaDetect, a dynamic KNN-based algorithm
designed to detect data poisoning attacks. Our methodology adapts the
traditional KNN model to a dynamic framework, allowing to adjust its
parameters, such as the number of neighbors considered, based on the
characteristics of the data. The experimental results indicate a marked
improvement in the detection accuracy of poisoned data, enhancing the
reliability of ML models.

Keywords: machine learning security · dynamic KNN · data
poisoning attacks

1 Introduction

Machine learning (ML) has gained significant attention in various industries,
including healthcare and autonomous vehicles, due to its ability to learn and
make predictions guided by patterns extracted from data [2]. As ML models
evolve, they increasingly utilize sophisticated data-driven techniques to enhance
their decision-making abilities. Although this allows for improving accuracy
in predictions, it simultaneously makes these models vulnerable to malicious
attacks, compromising their security, reliability, and overall performance [16].
Data poisoning attacks have emerged as significant threats, impacting various
applications, ranging from autonomous vehicles and spam filters to healthcare
[5]. In these attacks, attackers can manipulate training data, causing models to
make incorrect predictions or classifications, leading to degradation of a model’s
performance [1,9,13].

As we refine ML models for better decision-making in various applications
like healthcare and autonomous driving, their susceptibility to data poisoning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Kadoch et al. (Eds.): ISICN 2024, LNNS 1094, pp. 241–255, 2024.
https://doi.org/10.1007/978-3-031-67447-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-67447-1_17&domain=pdf
http://orcid.org/0000-0003-0916-2770
http://orcid.org/0000-0003-0340-1152
http://orcid.org/0000-0002-1125-7472
http://orcid.org/0000-0002-6244-3486
https://doi.org/10.1007/978-3-031-67447-1_17


242 S. Perry et al.

increases. This attack manipulates training data, leading directly to incorrect
model outputs. For example, in healthcare, corrupted or poisoned medical images
can lead to misdiagnoses, potentially endangering patients. In a digital environ-
ment, a poisoned spam filter might fail to catch phishing attempts, increasing
the risk of data breaches. Likewise, in autonomous vehicles, misinterpretations
of traffic signs can lead to potential accidents on roads and highways.

Given the increasing threats from poisoning attacks in machine learning, var-
ious detection and mitigation techniques have been developed. The K-Nearest
Neighbors (KNN) algorithm stands out due to its straightforward approach and
adaptability. KNN’s principle, based on the proximity of data points in a fea-
ture space, makes it a practical choice for classification tasks. This method is
particularly effective because it does not presume any specific data distribution,
enhancing its versatility across different datasets. In addition to KNN, other
significant methods have been explored. For instance, supervised learning tech-
niques have shown promise, as evidenced by Ning et al. [8] in their work using
a Resnet18 classifier trained on a mix of poisoned and clean images. Moreover,
heuristic approaches have been investigated for online learning contexts. Zhang
et al. [18] have made notable contributions by employing model predictive con-
trol and deep reinforcement learning to counteract data poisoning.

However, the KNN algorithm still faces significant barriers when addressing
sophisticated poisoning attacks and unpredictable changes in real-world data.
Firstly, the algorithm’s static nature leads to high computational overhead in
large datasets where computing distances among all data points is necessary.
Secondly, optimizing the value of k is crucial, as it determines the number of
nearest neighbors to be considered and, therefore, affects the algorithm’s perfor-
mance in terms of accuracy. Thirdly, in high-dimensional spaces, KNN suffers
from high computational costs due to the complexity of calculating distance
measurements. In addition, the traditional method of assigning equal weights to
all neighbors does not guarantee the most accurate results, highlighting the need
for more advanced detection methods to maintain the reliability and efficiency
of machine learning models amidst dynamic challenges [10,12,14,17].

To address the above challenges, we are motivated to design a defense frame-
work that can detect data poisoning attacks in a dynamic manner. Particularly,
in this work, we consider Poison Brew [5], a typical data poisoning attack that
employs a gradient matching technique. To efficiently detect Poison Brew, we
propose DynaDetect: a dynamic KNN-based detection algorithm. Key highlights
of our work contributions are:

– Dynamic Parameter Tuning: Unlike the traditional KNN, which uses
a fixed k value and distance metric, our proposed DynaDetect adaptively
adjusts these parameters. It accesses the data, adjusts k, and chooses the
most appropriate distance metric based on current data. This enhances its
resilience to subtle Poison Brew [5] manipulations.

– Gradient Analysis for Neighbor Assessment: In our approach for
detecting the Poison Brew [5] attack, where data gradients are intentionally
manipulated, our work adopts a strategic method. It does not treat all neigh-



Detecting Poisoning Attacks with DynaDetect 243

boring data points equally. Instead, the algorithm examines both the gradient
directions, indicating how data points are changing and their distances from
one another. This approach is built on the assumption that attacks display
two principal behaviors: the uniformity in the direction of data changes among
close neighbors and the intentional grouping of altered data points to create
densely packed areas of concern within the data space.

– Data Understanding: Our model employs an evolving approach to develop
a profound understanding of the data it processes. Especially over time, it
becomes adept at discerning clean data points from potentially poisoned data
created through Poison Brew [5] gradient matching.

– Improved Detection Performance: Through experiments, we demon-
strate that DynaDetect outperforms the traditional KNN model in accu-
rately identifying poisoning attacks. Our results significantly improve detec-
tion accuracy, highlighting the practical effectiveness of our dynamic KNN-
based approach in real-world scenarios.

The rest of the paper is organized as follows. Section 2 introduces related
work. Section 3 describes Poison Brew, a data poisoning attack conducted by
Geiping et al. [5], leveraging their methodology and findings as a framework
in our work to develop a detection algorithm for poisoning attacks. Section 4
delves deeply into our proposed DynaDetect, a dynamic KNN-based methodol-
ogy, emphasizing its differences from the traditional KNN approach. Following
this, Sect. 5 outlines our experimental design, encompassing datasets and config-
urations. Section 6 unveils the experimental results of the proposed DynaDetect
in identifying poison images. Moving forward, Sect. 7 scrutinizes DynaDetect’s
performance and highlights its strengths. Section 8 draws conclusions.

2 Related Work

The field of secure machine learning has witnessed a growing interest on research-
ing data poisoning attacks targeting machine learning algorithms. In these data
poisoning attacks, attackers intentionally manipulate specific instances in the
training data to compromise the performance of the machine learning system.

In further exploration of these threats, Aryal et al. [2] investigated the
resilience of ML-based malware detectors to data poisoning attacks. Their
research assessed eight widely used machine learning models in the realm of
malware detection by introducing 10 percent and 20 percent poisoned data into
the training datasets. All models experienced a decline in performance, exposing
the crucial vulnerabilities of malware detection when confronted with intentional
poisoning attacks. Unexpectedly, certain models, such as the SVM, exhibited bet-
ter performance with 20 percent poisoned data than 10 percent. This surprising
outcome was attributed to the unconstrained approach to data poisoning that
was employed.

Seetharaman et al. [11] introduced an influenced-based defense mechanism
to counter data poisoning attacks in online learning. They addressed the decep-
tive nature of such attacks, which carefully corrupt training data to damage



244 S. Perry et al.

learning models. Their strategy employed influence functions coupled with Slab
data sanitization method, focusing on identifying and reducing the impact of
questionable data points.

Paudice et al. [9] proposed a defense mechanism utilizing the KNN analogy
in response to the increasing threats of poison attacks. Their approach aimed to
restore the label integrity by enforming homogeneity among close instances, espe-
cially those distant from the decision boundary. By examining each instance’s
k nearest neighbor in the feature space, the algorithm determined if this local
area’s dominant label aligned with the instance’s label. If a significant misalign-
ment is detected, determined by a threshold parameter n, the instance label
was adjusted to match the local consensus. This method counters the attack by
relabeling suspicious instances, potentially neutralizing the adversarial effect of
data poisoning. Additionally, Taher et al. [13] introduced the Label-based Semi-
Supervised Defense (LSD) approach, designed to counter data poisoning attacks
with partially labeled data. The LSD algorithm ranked predicted labels based on
validation data and utilized techniques like Label Propagation (LP) and Label
Spreading (LS) to mitigate labeling noise. It aims to create a two-stage frame-
work for learning flipped labels and employs voting to determine final labels for
training samples.

While the aforementioned works have significantly advanced our understand-
ing of machine learning attacks, they have limitations. Our work aims explicitly
to enhance the detection of poisoned data in machine learning, addressing these
gaps. Aryal et al. [2] insightful work, for instance, primarily focuses on fixed per-
centages of poisoned data and might not fully capture subtler attack patterns.
Seetharaman et al. [11] method, while effective in online learning environments,
may have limited applicability in other contexts. Paudice et al. [9] KNN-based
approach might only identify some poisoned data, particularly in cases of sophis-
ticated poisoning techniques. Likewise, Taher et al. [13] strategy for handling
partially labeled data may need help with complex labeling noise. DynaDetect
advances the field by overcoming the limitations of current models, serving as an
adaptable tool for detecting data poisoning threats in machine learning systems.

3 Poison Brew

Geiping et al. [5] revealed a detailed data poisoning attack, Poison Brew,
which highlights subtle vulnerabilities in machine learning models. Poison Brew
employs a gradient matching technique to subtly inject poisoned data into the
dataset, unnoticeable yet effectively influencing model training. This clever tech-
nique of embedding poisoned data enables evasion of traditional detection mech-
anisms.

In detail, by using gradient matching techniques, Poison Brew [5] can subtly
guide the model’s learning path by introducing poisoned data points that inge-
niously mimicked the gradients of target data. This methodology is expressed in
Eq. 1



Detecting Poisoning Attacks with DynaDetect 245

B(∆, θ) = 1 −

〈
∇θL(F (xt, θ), yadv),

∑P
i=1 ∇θL(F (xi + ∆i, θ), yi)

〉

‖∇θL(F (xt, θ), yadv)‖ ·
∥∥∥
∑P

i=1 ∇θL(F (xi + ∆i, θ), yi)
∥∥∥
. (1)

1. B(∆, θ): Quantifies the alignment of the gradients between the poisoned and
target data, a measure necessary for the success of the attack. The closer this
value is to 1, the more influential the poisoning.

2. The gradient, represented by ∇θL, shows how the loss or error changes as the
model parameters, θ, are tweaked.

3. F (xt, θ): This is what the model predicts for an input, xt, with current param-
eters.

4. yadv: The desired (often malicious) outcome for the target data.
5. xi + ∆i: These are the real data points that have been slightly altered.
6. yi: The actual labels for those data points.

Fig. 1. Poison Brew [5]: a data poisoning attack on image classification using gradient
matching techniques.

Figure 1 depicts the stages of the poisoning attack on a machine learning
model. The attack begins with a dataset of clean, unaltered images. Before the
model starts training, selected images are altered with subtle gradient changes
that were difficult for humans to spot but significant enough to deceive the
machine learning algorithm. These altered images, now poisoned, are reintro-
duced into the model’s training data. During training, the model learns from
both the clean and the poisoned images, which unknowingly misleads to incor-
rect predictions. Therefore, the model displays inaccuracies in classifying new
images.

The enlightening outcomes of their research demonstrates the effectiveness of
the Poison Brew [5] attack. As Poison Brew introduces nuanced vulnerabilities
expertly concealed, it bypasses standard detection safeguards without difficulty,
effectively but noticeably misleading predictions. Therefore, it is necessary to
design defense mechanisms against such data poisoning attacks.



246 S. Perry et al.

Building on this groundbreaking research, our work proposes a dynamic
KNN-based algorithm to detect Poison Brew. It leverages the principles of gradi-
ent alignment, dynamically adjusting the weighting and assessment of neighbor-
ing data points. Our algorithm operates in real-time, constantly analyzing data
and adapting to new threats as they emerge. It provides continuous detection
against advanced threats, guaranteeing machine learning models’ integrity.

4 Methodology

4.1 Dynamic KNN Overivew

The KNN algorithm is an important classification algorithm that needs several
parameters to work properly. Its main goal is to predict the label of a given
data point. Features are attributes that help to differentiate data points from
each other. In the traditional KNN method, the number of nearest neighbors
considered for labeling is determined by the k parameter. However, our work
introduces a new variable radius parameter called b that is used to establish a
flexible radius around a data point for neighborhood determination. This method
offers more flexibility than the fixed k parameter and improves the algorithm’s
resilience by allowing adjustments to different data densities. As a result, it
enhances the detection of abnormalities that could indicate data poisoning.

4.2 Proposed DynaDetect Detection Algorithm Using Dynamic
KNN

We propose DynaDetect, a dynamic KNN-based detection algorithm, to detect
poisoned data in Poison Brew. The dynamic KNN approach with our method-
ology is simplified through the KNNModelPersisted class. This class incorpo-
rates a training methodology that handles parameters such as features, labels,
k, b, and the type of methods. When set to adaptive, the RadiusNeighborsClas-
sifier is employed, which uses a specified radius b for neighbor identification.
The trained classifier predicts labels using the radius b. Each model possesses
a unique identifier derived from attributes such as method type, k value, and b
value, simplifying the model storage and retrieval process.

As outlined in Algorithm 1, our methodology is central to applying dynamic
KNN to differentiate between clean images (free from malicious poisoning) and
poisoned images (manipulated) within diverse datasets, inspired by the find-
ings of Geiping et al. [5]. Our method involves training a classifier on a dataset
containing clean and poisoned images, with the primary goal of accurately iden-
tifying the poisoned images. This enhances the model’s defense against mali-
cious manipulations. The approach involves dynamically adjusting the number
of neighbors in the KNN algorithm, allowing it to effectively adapt to different
data densities.



Detecting Poisoning Attacks with DynaDetect 247

4.3 Adaptive Parameterization in KNN-Based Detection

In the development of our DynaDetect algorithm, we initially set specific values
for two key parameters: the threshold (T) and radius (b), based on our analysis
of the test datasets. However, it’s important to note that these values are not
fixed constants but rather starting points for parameter tuning. The selection
of these values was influenced by the characteristics of the datasets used in our
initial experiments, and they may vary in different contexts or with diverse types
of poisoning attacks.

Our algorithm assesses the likelihood of each data point being manipulated
within the dataset. It computes a ‘poisoned score’ for every data point based on
certain characteristics identified as indicators of data poisoning, such as the align-
ment with its neighbors. Higher scores indicate a greater probability of manipu-
lation. In our preliminary analysis, we observed a consistent pattern where data
points with poisoned scores above the threshold of 5 were generally associated
with poisoning. Therefore, we initially classify data points with scores exceed-
ing this threshold as poisoned, indicating a high probability of manipulation.
In contrast, we consider those below the threshold as clean, suggesting a lower
likelihood of poisoning.

However, the adaptability of the threshold T and the radius b is a key fea-
ture of our methodology, allowing for the algorithm’s effective application across
various datasets and attack scenarios. This flexibility is crucial, as the opti-
mal threshold and radius may differ based on specific dataset characteristics
and the nature of the poisoning attack. We emphasize the need to adjust these
parameters to ensure the robustness and accuracy of the algorithm in identifying
poisoned data in diverse situations.

Algorithm 1. DynaDetect: Dynamic KNN-based Detection
1: Input: A set of mixed training dataset (both clean and poisoned data), dataset of

poisoned images Xp, radius b, threshold T = 5
2: Initialize a classifier C
3: Train C on mixed dataset using RadiusNeighborsClassifier with radius b
4: Initialize predictions list P to store status of each image xi

5: for each image xi in Xp do
6: Classify xi using C
7: if classifier identifies xi as an anomaly and the anomaly score is above threshold

T then
8: Append ”poison” to P
9: else
10: Append ”clean” to P
11: end if
12: end for
13: return P



248 S. Perry et al.

4.4 Distance Metrics

KNN algorithm distance metrics play an important role. These metrics measure
the proximity between two data points and help to determine whether the data
points are considered neighbors. The choice of distance metrics can significantly
influence the performance of the KNN algorithm [6] [3]. In this work, we employ
one primary distance metric: Mean Squared Error (MSE).

MSE: To understand the difference between two images, MSE is utilized, as
shown in Eq. 2. It calculates the average squared difference between the corre-
sponding pixels of the two images

MSE(I1, I2) =
1
N

N∑

i=1

(I1i − I2i)2, (2)

where I1 represents the first image and I2 the second, and N is the number of
pixels. The importance of utilizing MSE in our work is its ability to quantify
the similarities between images. In Algorithm 1, MSE accesses the similarities
between a test image xi and its neighbors within the specified radius b. If the
MSE between xi and its neighbors falls below a certain threshold, it indicates
that these neighbors are very similar to xi, which is valuable for classifying test
images.

Neighborhood Consideration in Dynamic KNN: Unlike the traditional
KNN, which classifies a sample based on the top k closest training samples,
the dynamic radius-based KNN used in this work employs a different approach
for defining neighbors. In this method, neighbors are identified as all training
samples that fall within a predefined radius b

Neighbors(x) = x′, |,MSE(x, x′) < b, (3)

where x is the test sample, and y represents samples from the training data. In
our work, a radius of 0.50 was utilized to define the neighborhood. This radius
was determined through a series of experiments with various radius values to
find the one that best balances the accurate detection of poisoned data and high
classification performance. A 0.50 radius ensures that only samples within this
distance are considered neighbors, effectively allowing our algorithm to adapt to
the local data density. Such neighborhood consideration is crucial for our work
as it determines which training samples are relevant for classification, enhancing
the algorithm’s ability to detect poisoned data in diverse datasets by making
decisions based on nearby data points.

5 Implementation

5.1 Hardware Configuration

Our experiments are conducted on a Linux server equipped with 4 NVIDIA
GPUs, ensuring efficient computation and parallel processing capabilities.



Detecting Poisoning Attacks with DynaDetect 249

5.2 Datasets

Our experiments utilize diverse datasets to evaluate the dynamic KNN-based
detection mechanism. These datasets include:

– CIFAR-10 [7]: This dataset contains 50,000 images with dimensions of
32× 32 pixels in RGB format, distributed across 100 classes, each having
500 images. The CIFAR-10 is a well-established dataset for assessing image
classification tasks. For our training, we used a subset of this dataset, con-
sisting of 48,500 poisoned images and an equal number of clean images.

– Fashion MNIST (F-MNIST) [15]: This dataset comprises 60,000 images
of 28× 28 pixels in grayscale format, divided into 10 classes, each containing
6,000 images. Out of these, 50,000 images are designated for training and
10,000 for testing. The images depict various clothing items. Given their lower
resolution, distinguishing between some images can be challenging, which
adds complexity to the classification task. Our training employed a balanced
selection of 33,500 poisoned and 33,500 clean images.

– ImageNet [4]: This dataset includes an extensive collection of over 1.2 million
images, but for our work, we specifically utilized a subset of 40,000 images.
These consist of 20,000 images with dimensions of 224× 224 pixels in RGB
format, chosen from 1,000 classes, each class contributing 200 images. The
diversity of the dataset, characterized by varying object scales, occlusions, and
contexts, presents a significant challenge in identification tasks. For training
our model, we selected a balanced set comprising 20,000 poisoned and 20,000
clean images from this subset, providing comprehensive and high-dimensional
data to rigorously test and validate our model’s performance.

After training our model with the specified datasets, we conduct a validation
phase to assess the model’s ability to accurately identify poisoned data. For this
purpose, we use a separate set of 1,000 known clean images and 1,000 known
poisoned images that the model has never encountered before. This validation
set is specifically chosen to ensure a thorough test of the model’s ability to
generalize to new data.

The inclusion of this unseen data is crucial in our experimental setup, as it
provides a measure of the model’s effectiveness in real-world conditions, where
it encounters data that is not part of its training environment. By using this
approach, we can evaluate our model’s accuracy and robustness in detecting
poisoned data under conditions that closely mimic actual deployment scenarios.

5.3 Attack Intensity

In evaluating our approach for detecting data poisoning, we quantify the strength
of the poisoning attack using an epsilon (ε) value, which we set to 8. This ε value
dictates the maximum change allowed for each pixel in an image. Essentially, it
caps how much we can adjust the brightness or color of each pixel. With ε set
to 8, we ensure that the alterations to each pixel are moderate but not extreme.
This constraint on pixel intensity alteration, defined by ε is expressed in Eq. 4:



250 S. Perry et al.

x′ = x+ δ, ‖δ‖∞ ≤ ε, (4)

where x is the original pixel value, x′ is the altered value, and δ is the change.

6 Data Preprocessing

We commence our with the dataset initially employed by Geiping et al. [5],
specifically by introducing poisoned data to enhance the resilience of our analysis.
A meticulous preprocessing phase was conducted to guarantee the cleanliness of
the dataset and ensure accurate labeling. In the initial phase, images from the
entire dataset were loaded and subjected to preprocessing steps to optimize the
data for consistency and effectiveness. Each image was resized to a uniform
dimension of 224× 224 pixels, ensuring consistent compatibility with our model.

Afterward, the images were converted to grayscale, which allows the model
to focus on the structure of an image rather than the color information. This
is beneficial so that the model can focus on essential features. Normalization
was applied to the preprocessed images, ensuring that the dataset values were
within a suitable scale. Normalization ensures that all pixel values are within
a similar scale, which is essential for the model to learn effectively during the
training process. This crucial normalization process enhanced the model’s sta-
bility and performance effectiveness. Utilizing the powerful capabilities of the
Python NumPy library, each image was flattened by a process that transformed
them into one-dimensional arrays, which further optimized them for efficient and
precise analysis by our algorithm.

To enhance our work, we extended our dataset beyond the initial dataset used
by Geiping et al. [5]. This extension involved incorporating a range of diverse
datasets, each carefully preprocessed and organized to maintain the highest data
integrity and reliability in our analysis. Such rigor ensures that our findings pro-
vide a robust examination of our algorithm’s performance in detecting poisoned
data across various datasets.

7 Performance Evaluation

Our evaluation compares traditional KNN [14] and our proposed DynaDetect.
Traditional KNN, with its static selection of k nearest neighbors, may be vul-
nerable to poisoned images due to its fixed parameters. In contrast, DynaDetect
dynamically adjusts k, offering enhanced stability against poisoned images. We
assess the performance of both algorithms across various datasets-CIFAR-10,
F-MNIST, and ImageNet-to ensure the reliability of predictions in the presence
of poisoning attacks, as shown in Figs. 2, 3 and 4.

In our performance evaluations, we observe consistent improvements with
DynaDetect over traditional KNN across all datasets. For example, using the
CIFAR-10 dataset, DynaDetect shows a 4–5% higher detection accuracy across
different k values compared to traditional KNN. Similarly, in the F-MNIST



Detecting Poisoning Attacks with DynaDetect 251

and ImageNet datasets, DynaDetect maintains a higher accuracy, reinforcing its
adaptability and robustness in diverse image classification tasks. These results
illustrate DynaDetect’s ability to handle complex patterns in the data, providing
more accurate and reliable classifications.

Across all tested datasets, the trend remains clear: DynaDetect consistently
outperforms traditional KNN, especially as the k value increases. This consistent
performance across different types of datasets from grayscale images in F-MNIST
to the varied and complex images in ImageNet-demonstrates the versatility and
effectiveness of DynaDetect in varied image recognition scenarios.

In conclusion, our evaluation reveals the comparative performance of the
traditional KNN and our proposed DynaDetect KNN algorithm in detecting
poisoned images across various datasets. The traditional KNN, with its static
k, shows limitations in adaptability and performance across diverse datasets,
requiring a careful initial k selection. In contrast, our work displays improved
performance and adaptability with its dynamic k adjustment. This finding high-
lights the DynaDetect KNN’s resilience and reliability, making it a more helpful
choice for handling dynamic datasets and ensuring possible predictions against
poisoning attacks.

Fig. 2. Performance evaluation of Traditional KNN and DynaDetect on CIFAR-10
Dataset.

8 Discussion

This work introduces DynaDetect, a dynamic KNN-based detection algorithm,
advancing the detection of poisoned images in machine learning datasets. We



252 S. Perry et al.

Fig. 3. Performance evaluation of Traditional KNN and DynaDetect on FMNIST
Dataset.

Fig. 4. Performance evaluation of Traditional KNN and DynaDetect on ImageNet
Dataset.

compare its performance with traditional KNN methods across diverse datasets
such as CIFAR-10, F-MNIST, and ImageNet. These comparisons demonstrate
DynaDetect’s superior adaptability and accuracy.

Traditional KNN, with its static approach to selecting the k nearest neigh-
bors, exhibits vulnerabilities, especially when dealing with poisoned images.
DynaDetect addresses this by dynamically adjusting k, leading to more stable
performance in the presence of poisoned data. Our results show that DynaDetect



Detecting Poisoning Attacks with DynaDetect 253

consistently outperforms traditional KNN in detection accuracy, with improve-
ments ranging from 4% to 5%, depending on the dataset and k value.

The capabilities of the dynamic KNN-based detection algorithm indicate
its potential usefulness in various fields. For instance, in autonomous vehicles,
where decision-making relies heavily on data integrity, a dynamic KNN-based
detection algorithm could be key in distinguishing between clean images and
those compromised by poison attacks. In healthcare, the algorithm’s precision in
identifying clean data could be instrumental in ensuring accurate diagnoses, free
from the influence of manipulated information. Similarly, dynamic KNN could
enhance the accuracy of spam filters in digital communication by more effectively
separating authentic emails from spam. These examples highlight the possible
benefits of applying our findings to practical, real-world challenges where clean
data is crucial.

9 Conclusion

In response to the evolving field of image detection and the increasing threat of
poisoning attacks, we have proposed DynaDetect, a dynamic KNN-based detec-
tion algorithm designed to detect Poison Brew attacks. Our algorithm improves
the detection accuracy of data poisoning attacks by addressing the drawbacks
of traditional KNN models. Our experimental findings have highlighted the fol-
lowing advantages of the proposed DynaDetect algorithm:

– Our dynamic KNN-based detection algorithm has consistently outperformed
traditional KNN models through testing across multiple datasets and varying
k values. The significant improvement in detection accuracy as the k values
increase highlights the benefits of our dynamic parameter tuning and gradient
analysis for neighbor assessment.

– Furthermore, our model identifies poisoned data instances, showcasing its
stability in the face of growing poisoning attacks. These results emphasize
the real-world impact of our dynamic parameter tuning, gradient analysis for
neighbor assessment, and data understanding contributions.

Our future work will focus on enhancing the robustness of DynaDetect and its
applicability in real-time scenarios. We aim to optimize its performance for prac-
tical applications such as image recognition in autonomous vehicles. Moreover,
we see potential in integrating DynaDetect with other machine learning mod-
els, which could lead to significant advancements in data security and model
reliability.

Acknowledgements. This work is partially supported by IDS Data Science and AI
Fellowship at the University of Mississippi.



254 S. Perry et al.

References

1. Aghakhani, H., Meng, D., Wang, Y.X., Kruegel, C., Vigna, G.: Bullseye polytope: a
scalable clean-label poisoning attack with improved transferability. In: 2021 IEEE
European Symposium on Security and Privacy (EuroS&P), pp. 159–178. IEEE
(2021)

2. Aryal, K., Gupta, M., Abdelsalam, M.: Analysis of label-flip poisoning attack on
machine learning based malware detector. In: 2022 IEEE International Conference
on Big Data (Big Data), pp. 4236–4245. IEEE (2022)

3. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. The-
ory 13(1), 21–27 (1967)

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR09 (2009)

5. Geiping, J., et al.: Witches’ brew: industrial scale data poisoning via gradi-
ent matching. In: International Conference on Learning Representations (2021).
https://openreview.net/forum?id=01olnfLIbD

6. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE
Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)

7. Krizhevsky, A., Hinton, G.E.: Learning multiple layers of features from tiny images.
University of Toronto, Tech. rep. (2009)

8. Ning, R., Li, J., Xin, C., Wu, H.: Invisible poison: a blackbox clean label backdoor
attack to deep neural networks. In: IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, pp. 1–10 (2021)

9. Paudice, A., Muñoz-González, L., Lupu, E.C.: Label sanitization against label
flipping poisoning attacks. In: Alzate, C., et al. (eds.) ECML PKDD 2018. LNCS
(LNAI), vol. 11329, pp. 5–15. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-13453-2 1

10. Ray, S.: A quick review of machine learning algorithms. In: 2019 International Con-
ference on Machine Learning, Big Data, Cloud and Parallel Computing (COMIT-
Con), pp. 35–39. IEEE (2019)

11. Seetharaman, S., Malaviya, S., Vasu, R., Shukla, M., Lodha, S.: Influence based
defense against data poisoning attacks in online learning. In: 2022 14th Inter-
national Conference on COMmunication Systems & NETworkS (COMSNETS),
pp. 1–6. IEEE (2022)

12. Sun, S., Huang, R.: An adaptive k-nearest neighbor algorithm. In: 2010 Seventh
International Conference on Fuzzy Systems and Knowledge Discovery, vol. 1, pp.
91–94. IEEE (2010)

13. Taheri, R., Javidan, R., Shojafar, M., Pooranian, Z., Miri, A., Conti, M.: On defend-
ing against label flipping attacks on malware detection systems. Neural Comput.
Appl. 32, 14781–14800 (2020)

14. Taunk, K., De, S., Verma, S., Swetapadma, A.: A brief review of nearest neigh-
bor algorithm for learning and classification. In: 2019 International Conference on
Intelligent Computing and Control Systems (ICCS), pp. 1255–1260. IEEE (2019)

15. Zalando, S.E.: Fashion MNIST (2023). https://github.com/zalandoresearch/
fashion-mnist

16. Zhang, J., et al.: Poison ink: robust and invisible backdoor attack. IEEE Trans.
Image Process. 31, 5691–5705 (2022)

https://openreview.net/forum?id=01olnfLIbD
https://doi.org/10.1007/978-3-030-13453-2_1
https://doi.org/10.1007/978-3-030-13453-2_1
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist


Detecting Poisoning Attacks with DynaDetect 255

17. Zhang, S., Li, X., Zong, M., Zhu, X., Wang, R.: Efficient kNN classification with
different numbers of nearest neighbors. IEEE transactions on neural networks and
learning systems 29(5), 1774–1785 (2017)

18. Zhang, X., Zhu, X., Lessard, L.: Online data poisoning attacks. In: Proceedings of
the Learning for Dynamics and Control Conference, pp. 201–210. PMLR (2020)


	 Preface
	 Organization
	 Acknowledgement
	 Contents
	Intelligent Platforms and Systems
	LSTM Model for Sepsis Detection and Classification Using PPG Signals
	1 Introduction
	2 Methodology
	2.1 Dataset
	2.2 Preprocessing and Quality Estimation
	2.3 Classification

	3 Results
	3.1 Detection Sepsis
	3.2 Classification of Sepsis, Severe Sepsis, and Septic Shock

	4 Conclusion and Future Work
	References

	Fair and Efficient Traffic Light Control with Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Model of the Crossroad Intersection
	3.2 Objective

	4 Methodology
	4.1 Offline Training
	4.2 Z-score Normalization Process
	4.3 Agent Design
	4.4 DQN Structure

	5 Experiments and Evaluation
	5.1 Simulation Setup and Dataset
	5.2 Implementation Parameters
	5.3 Baselines and Metrics
	5.4 Performance Evaluation

	6 Conclusion
	References

	Advancing Networked Airborne Computing with MmWave for Air-to-Air Communications
	1 Introduction
	2 Related Works
	3 Networked Airborne Computing
	4 Hardware Design: Overall System
	5 Hardware Design: A2A Communications
	5.1 Sub-6 GHz-Based A2A Communications
	5.2 MmWave-Based A2A Communications
	5.3 Comparison of Potential MmWave Devices for A2A Communication

	6 Software Design for mmWave-NAC
	6.1 Neighbor Discovery
	6.2 Routing
	6.3 Resource Allocation
	6.4 Machine Learning

	7 Conclusion and Open Issues
	7.1 Robust Connectivity Under High Mobility and Environmental Uncertainties
	7.2 Joint Computation Offloading, Routing, and Resource Allocation
	7.3 UAV and Task Heterogeneity

	References

	A Software Defined Radio Testbed to Analyze the Performance of Channel Estimation in MIMO Systems
	1 Introduction
	2 MIMO Channel Estimation Performance Analysis Framework
	2.1 System Model
	2.2 Channel Estimation
	2.3 Channel Precoding
	2.4 Salient Features of Proposed Framework

	3 Preliminary Evaluation Results
	3.1 Flow Graph of the Proposed Framework
	3.2 Description of the Flow Graph
	3.3 System Settings
	3.4 Preliminary Results
	3.5 Observations and Future Works

	4 Conclusion
	References

	HawkRover: An Autonomous mmWave Vehicular Communication Testbed with Multi-sensor Fusion and Deep Learning
	1 Introduction
	2 System Architect Design and Data Collection
	2.1 System Overview and Implementation
	2.2 Lab Data Collection

	3 Sensor-Aided mmWave Beam Alignment
	3.1 Dataset Pre-processing
	3.2 Beam Prediction with Multimodal Sensor Fusion

	4 A Case Study and Results
	5 Conclusions
	References

	The Right to Personal Data Portability: Practices and Prospects
	1 Introduction
	2 The Meaning of the Right to Data Portabilitye
	3 International Schemes and Current Situation
	3.1 EU Scheme
	3.2 American Scheme
	3.3 Asian Scheme

	4 The Exploration of Personal Data Portability in China
	4.1 The Chinese Personal Data Protection Legal Framework
	4.2 Challenges and Solutions to the Realization of Personal Data Portability Rights
	4.3 The Technical Practice of the Right to Portability of Personal Data in China
	4.4 Summary and Future Work

	5 Summary and Future Work
	References

	A Quality of Service Optimization Strategy for Aggregated Cloud Storage
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 System Function Description
	3.2 QoS Description

	4 Optimization of Cloud Storage QoS
	4.1 Cloud Storage QoS Level
	4.2 Dynamic Replication and Deletion Policy

	5 Experimental Results and Analysis
	5.1 Performance of Multiple Cloud Storage Systems
	5.2 Other Solution Concerns

	6 Conclusion
	References

	Advanced Learning Techniques and Applications
	Time-Sensitive Local Differential Privacy-Based Federated Learning for Vehicular Digital Twin Networks
	1 Introduction
	2 Related Work
	2.1 Federated Learning in VDTNs
	2.2 Differential Privacy Protection Mechanism

	3 System Model
	3.1 DT System Model
	3.2 Personalized Local Differential Privacy
	3.3 Differential-Privacy-Based Federated Learning Model
	3.4 Communication Model

	4 Time-Sensitive Personalized LDP-Based FL Approach in VDTNs
	5 Experimental Results
	5.1 Experiment Settings
	5.2 Evaluation Metrics
	5.3 Performance Analysis

	6 Conclusion
	References

	Deep Learning Methods to Help Predict Properties of Molecules from SMILES
	1 Introduction 
	1.1 Contributions
	1.2 Paper Organization

	2 Motivation and Background 
	2.1 Motivation
	2.2 Problem Formulation
	2.3 PubChem Database
	2.4 SMILES Representations
	2.5 Applying NLP Ideas

	3 Deep Learning Architectures 
	3.1 Overview
	3.2 Character-Level Embeddings 
	3.3 Deep Learning to Predict Molecular Weight from SMILES
	3.4 Deep Learning to Predict XLogP from SMILES
	3.5 Deep Learning to Predict XLogP from SMILES and Fragments

	4 Experiments
	4.1 Computational Environment
	4.2 Datasets
	4.3 Baseline
	4.4 Training Our Models
	4.5 Discussion of Results

	5 Related Works 
	6 Conclusions
	References

	Anomaly Detection for Internet of Medical Things Using Chameleon Optimization-Based Feature Selection
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiments
	5 Conclusion
	References

	A Novel ML Method for Temporal Evolution of Geographic Clusters of Disease Spread Patterns
	1 Introduction
	2 Infection Modeling Background
	3 Method
	3.1 Data
	3.2 Algorithm

	4 Results and Discussion
	4.1 Temporal Evolution of Geographical Clusters
	4.2 Summary

	5 Conclusions and Future Work
	References

	Families of Multidimensional Periodic Arrays with Optimal Low Cross-Correlation
	1 Introduction
	2 Preliminaries
	2.1 Direct Product
	2.2 Arrays
	2.3 Sidelinkov Sequences
	2.4 Logarithmic Quadratic Functions

	3 Construction of Families of Multidimensional Periodic Arrays Based on Columns
	4 Correlation Properties
	5 Welch Bound
	6 Conclusions and Future Work
	References

	Boundary Generative Adversarial Network-Based Anomalous Traffic Detection for the Smart Grid Internet of Things
	1 Introduction
	2 Related Works
	2.1 Traditional Anomaly Detection Algorithms
	2.2 Deep Anomaly Detection Algorithms

	3 The Proposed Method
	3.1 Brief Description of the Overall Process
	3.2 Introduction to Boundary Generative Adversarial Networks
	3.3 Boundary Generation Adversarial Network Model

	4 Experimental Evaluation
	4.1 Experimental Settings
	4.2 Evalutaion Results
	4.3 Discussion

	5 Conclusion and Future Work
	References

	Intelligent Security and Privacy
	Machine Learning Based Audio Analysis to Detect Fraud Call in 4G-5G Wireless Networks
	1 Introduction
	2 Proposed Solution
	3 Experimental Results
	4 Summary and Future Work
	References

	WCFG: A Weighted Control Flow Graph Dataset Design for Malware Classification
	1 Introduction
	2 Background
	2.1 Malware Classification Methods
	2.2 Control Flow Graphs
	2.3 Malicious Function Identification

	3 Malware Datasets and Related Works
	3.1 PE Malware Machine Learning Dataset (PEMML)
	3.2 Malware Open-Source Threat Intelligence Family Dataset (MOTIF)
	3.3 Ember
	3.4 YANCFG Dataset
	3.5 Microsoft Malware Classification Challenge Hosted by Kaggle (MSKFG)

	4 Methodology
	5 Proposed Design
	5.1 Dataset Design
	5.2 Phases of Dataset Generation

	6 Dataset Description (General)
	6.1 Data Layout

	7 Results
	8 Discussion and Conclusion
	References

	Towards Robust IoT Security: A Blockchain Design with Attribute-Based Encryption
	1 Introduction
	2 Related Work
	2.1 Attribute-Based Encryption (ABE)
	2.2 Blockchain Technology
	2.3 ABE Techniques Used in Conjunction with Blockchain

	3 Preliminaries
	3.1 Cryptographic Background
	3.2 Access Trees
	3.3 A Chain of Blocks

	4 IoT Threat Model
	5 The Scheme
	5.1 Ciphertext-Policy Attribute-Based Encryption
	5.2 Blockchain Design with Attribute-Based Encryption
	5.3 UML Sequence Diagrams

	6 Proposed Solution
	7 Performance Evaluation
	8 Conclusion and Future Work
	References

	Detecting Poisoning Attacks with DynaDetect
	1 Introduction
	2 Related Work
	3 Poison Brew
	4 Methodology
	4.1 Dynamic KNN Overivew
	4.2 Proposed DynaDetect Detection Algorithm Using Dynamic KNN
	4.3 Adaptive Parameterization in KNN-Based Detection
	4.4 Distance Metrics

	5 Implementation
	5.1 Hardware Configuration
	5.2 Datasets
	5.3 Attack Intensity

	6 Data Preprocessing
	7 Performance Evaluation
	8 Discussion
	9 Conclusion
	References

	Header Modification Attack Against Intrusion Detection Systems
	1 Introduction
	2 Threat Model
	3 Attack Description
	3.1 No-Ops in IPv4 Packets
	3.2 Determining How Many No-Ops to Add

	4 Ethical Statement
	5 Results
	5.1 Data Description
	5.2 Establishing IDS Baseline
	5.3 Disguising Malicious Traffic

	6 Conclusions
	References

	Adversarial Attacks in Problem Space for VBA Code Samples
	1 Introduction
	2 Background
	2.1 Microsoft Windows Defender
	2.2 Machine Learning
	2.3 Adversarial Attacks

	3 Attack Path
	3.1 Obtain a Corpus of VBA Macros
	3.2 Data Cleaning
	3.3 Initial Classification of Samples
	3.4 Feature Extraction
	3.5 Extracting Feature Importance
	3.6 Modifying the VBA Code Samples

	4 Results
	5 Conclusion and Future Work
	References

	Intelligent Communications and Signal Processing
	A Two-Stage AP Selection Approach for Scalable User-Centric Cell-Free Massive MIMO Systems
	1 Introduction
	2 Related Work
	3 System Model
	4 Two-Stage AP Selection Approach
	5 Methodology
	6 Simulation Setup
	7 Results and Discussion
	8 Practical Applications
	9 Conclusions
	References

	Study of Reconfigurable Intelligent Surface Deployment for Non-Orthogonal Multiple Access Wireless Communication Networks
	1 Introduction
	2 Related Works
	3 Analytical RIS–NOMA System Models
	3.1 Basic NOMA Model Without RIS
	3.2 Fair Rate Driven RIS–NOMA Model

	4 Data Driven Search Methodology for RIS–NOMA Location Study
	4.1 Simulation Setting up
	4.2 Simulating RIS at Various Locations for NOMA
	4.3 RIS–NOMA Data Rate Calculation

	5 Simulation Results
	6 Conclusion
	References

	Modulation Classification Through Convolutional Spiking Neural Networks with Data Fusion
	1 Introduction
	2 Related Works
	3 Automatic Modulation Recognition Method
	3.1 Spiking Neural Networks
	3.2 Convolutional SNN

	4 Classification Performance Evaluation
	4.1 Training Accuracy
	4.2 Confusion Matrix
	4.3 Impact of the SNR on Classification Accuracy
	4.4 Power Utilization and Running Times

	5 Conclusion
	References

	Analysis of Reciprocity Based Downlink Channel Estimation with Uneven Uplink Channel
	1 Introduction
	2 Framework of Unequal Channel Estimation Approach
	2.1 Overview of Unequal Channel Estimation Approach
	2.2 Studied System Model
	2.3 Channel Estimation and Extrapolation
	2.4 Significance of Extrapolation

	3 Evaluation Results
	3.1 Dataset and Evaluation Settings
	3.2 Preliminary Evaluation Results
	3.3 Observations

	4 Conclusion and Future Works
	References

	Analysis of Path Prediction Error for a High-Mobility Massive MIMO-OTFS System
	1 Introduction
	2 Studied Massive MIMO-OTFS System
	2.1 Overall Framework
	2.2 Path Modeling

	3 Path Prediction Scheme
	4 BER Performance Analysis
	4.1 Symbol Detection Analysis
	4.2 BER Analysis on Erroneous Path Prediction

	5 Evaluation Results
	6 Conclusion and Future Work
	References

	Real Time American Sign Language Recognition Using Yolov6 Model
	1 Introduction
	2 Previous Work
	3 Methodology
	3.1 Images Dataset

	4 YOLO Architecture
	5 Model Training Process
	6 Results
	7 Discussion
	8 Conclusion
	References

	AI-Enabled IoT and Real-Time Edge Computing
	Real-Time Traffic Management Using Feature Selection and Deep Learning in Vehicular Fog Computing
	1 Background
	2 Related Works
	3 Problem Statement and Objectives
	4 Methods
	5 Expected Results
	6 Conclusion
	References

	A Real-Time Edge Computing System for Monitoring Bees at Flowers
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 System Components
	3.2 Video Processing Pipeline
	3.3 Web Application
	3.4 Bee Visit Detection
	3.5 Flower Patch Re-calibration

	4 Performance
	5 Discussion
	6 Conclusions and Future Work
	References

	Fall Detection Through Inferencing at the Edge
	1 Introduction
	2 Methods
	2.1 Reason for Using Convolutional Neural Networks
	2.2 Inherent Feature Characterization
	2.3 Sensor Design
	2.4 Human Subjects Data Acquisition
	2.5 Data Representation and Pre-processing
	2.6 Data Segmentation and Labeling
	2.7 Data Collection Methodology and Considerations
	2.8 CBSR Neural Network Model

	3 Results
	3.1 Model Training and Validation
	3.2 Power Overview
	3.3 Hardware Simulation Results
	3.4 Comparative Analysis in FDS Development

	4 Conclusion and Future Work
	4.1 Conclusion
	4.2 Future Work

	References

	Cyber Attack Detection in IoT Using Enhanced Stream Classification Algorithm
	1 Introduction
	2 Related Work
	2.1 AI for Intrusion Detection in IoT Networks
	2.2 EVL Environment for Attack Detection in IoT Networks

	3 Methodology
	3.1 Problem Formulation
	3.2 The Proposed eSCARGC

	4 Evaluation
	4.1 Dataset and Evaluation Settings
	4.2 Simulated EVL Scenario in IoT Cyberattack Detection
	4.3 Baseline Classifiers
	4.4 Evaluation Metrics
	4.5 Evaluation Results

	5 Conclusion
	References

	Explainable Artificial Intelligence Enabled Intrusion Detection in the Internet of Things
	1 Introduction
	2 Methodology
	2.1 SHapley Additive ExPlanations
	2.2 Local and Global Explanation
	2.3 New IDS Model Guided by Explanation Results

	3 Evaluation
	3.1 Dataset and Environment
	3.2 Evaluated Scenarios
	3.3 Baseline IDS Models
	3.4 Evaluation Metrics
	3.5 Evaluation Results

	4 Conclusions and Future Work
	References

	A Survey on Digital Twin Networks: Use Cases and Enabling Technologies
	1 Introduction
	1.1 Definitions of DT and DTNs
	1.2 Clarification of DTNs, Simulation, and CPS
	1.3 Motivation
	1.4 System Model

	2 Development of DT and DTNs
	2.1 History of DT
	2.2 Emergence of DTNs

	3 Use Cases
	3.1 Autonomous Vehicles
	3.2 Smart Manufacturing
	3.3 Smart City
	3.4 Health Care and Medicine
	3.5 Sustainable Energy Systems
	3.6 Aviation and Aerospace
	3.7 5G/6G Development

	4 Enabling Technologies
	4.1 Artificial Intelligence Approaches
	4.2 Hardware
	4.3 Modeling Techniques
	4.4 Communication
	4.5 Data Processing

	5 Challenges and Directions
	5.1 Real-Time Communication
	5.2 Scalability and Adaptability
	5.3 Data Privacy
	5.4 Large Language Model

	6 Conclusions
	References

	Author Index

