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Abstract. In the age of increasing reliance on machine learning (ML) in
various environments, ensuring the security and reliability of ML models
is essential. Data poisoning attacks pose a significant threat to ML mod-
els, compromising their reliability. Although the traditional K-Nearest
Neighbor (KNN) algorithm can offer potential defense mechanisms due to
its adaptability and capability to detect poisoned data, its static nature
limits its effectiveness against dynamic malicious challenges. To this
end, this work proposes DynaDetect, a dynamic KNN-based algorithm
designed to detect data poisoning attacks. Our methodology adapts the
traditional KNN model to a dynamic framework, allowing to adjust its
parameters, such as the number of neighbors considered, based on the
characteristics of the data. The experimental results indicate a marked
improvement in the detection accuracy of poisoned data, enhancing the
reliability of ML models.

Keywords: machine learning security · dynamic KNN · data
poisoning attacks

1 Introduction

Machine learning (ML) has gained significant attention in various industries,
including healthcare and autonomous vehicles, due to its ability to learn and
make predictions guided by patterns extracted from data [2]. As ML models
evolve, they increasingly utilize sophisticated data-driven techniques to enhance
their decision-making abilities. Although this allows for improving accuracy
in predictions, it simultaneously makes these models vulnerable to malicious
attacks, compromising their security, reliability, and overall performance [16].
Data poisoning attacks have emerged as significant threats, impacting various
applications, ranging from autonomous vehicles and spam filters to healthcare
[5]. In these attacks, attackers can manipulate training data, causing models to
make incorrect predictions or classifications, leading to degradation of a model’s
performance [1,9,13].

As we refine ML models for better decision-making in various applications
like healthcare and autonomous driving, their susceptibility to data poisoning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Kadoch et al. (Eds.): ISICN 2024, LNNS 1094, pp. 241–255, 2024.
https://doi.org/10.1007/978-3-031-67447-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-67447-1_17&domain=pdf
http://orcid.org/0000-0003-0916-2770
http://orcid.org/0000-0003-0340-1152
http://orcid.org/0000-0002-1125-7472
http://orcid.org/0000-0002-6244-3486
https://doi.org/10.1007/978-3-031-67447-1_17


242 S. Perry et al.

increases. This attack manipulates training data, leading directly to incorrect
model outputs. For example, in healthcare, corrupted or poisoned medical images
can lead to misdiagnoses, potentially endangering patients. In a digital environ-
ment, a poisoned spam filter might fail to catch phishing attempts, increasing
the risk of data breaches. Likewise, in autonomous vehicles, misinterpretations
of traffic signs can lead to potential accidents on roads and highways.

Given the increasing threats from poisoning attacks in machine learning, var-
ious detection and mitigation techniques have been developed. The K-Nearest
Neighbors (KNN) algorithm stands out due to its straightforward approach and
adaptability. KNN’s principle, based on the proximity of data points in a fea-
ture space, makes it a practical choice for classification tasks. This method is
particularly effective because it does not presume any specific data distribution,
enhancing its versatility across different datasets. In addition to KNN, other
significant methods have been explored. For instance, supervised learning tech-
niques have shown promise, as evidenced by Ning et al. [8] in their work using
a Resnet18 classifier trained on a mix of poisoned and clean images. Moreover,
heuristic approaches have been investigated for online learning contexts. Zhang
et al. [18] have made notable contributions by employing model predictive con-
trol and deep reinforcement learning to counteract data poisoning.

However, the KNN algorithm still faces significant barriers when addressing
sophisticated poisoning attacks and unpredictable changes in real-world data.
Firstly, the algorithm’s static nature leads to high computational overhead in
large datasets where computing distances among all data points is necessary.
Secondly, optimizing the value of k is crucial, as it determines the number of
nearest neighbors to be considered and, therefore, affects the algorithm’s perfor-
mance in terms of accuracy. Thirdly, in high-dimensional spaces, KNN suffers
from high computational costs due to the complexity of calculating distance
measurements. In addition, the traditional method of assigning equal weights to
all neighbors does not guarantee the most accurate results, highlighting the need
for more advanced detection methods to maintain the reliability and efficiency
of machine learning models amidst dynamic challenges [10,12,14,17].

To address the above challenges, we are motivated to design a defense frame-
work that can detect data poisoning attacks in a dynamic manner. Particularly,
in this work, we consider Poison Brew [5], a typical data poisoning attack that
employs a gradient matching technique. To efficiently detect Poison Brew, we
propose DynaDetect: a dynamic KNN-based detection algorithm. Key highlights
of our work contributions are:

– Dynamic Parameter Tuning: Unlike the traditional KNN, which uses
a fixed k value and distance metric, our proposed DynaDetect adaptively
adjusts these parameters. It accesses the data, adjusts k, and chooses the
most appropriate distance metric based on current data. This enhances its
resilience to subtle Poison Brew [5] manipulations.

– Gradient Analysis for Neighbor Assessment: In our approach for
detecting the Poison Brew [5] attack, where data gradients are intentionally
manipulated, our work adopts a strategic method. It does not treat all neigh-
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boring data points equally. Instead, the algorithm examines both the gradient
directions, indicating how data points are changing and their distances from
one another. This approach is built on the assumption that attacks display
two principal behaviors: the uniformity in the direction of data changes among
close neighbors and the intentional grouping of altered data points to create
densely packed areas of concern within the data space.

– Data Understanding: Our model employs an evolving approach to develop
a profound understanding of the data it processes. Especially over time, it
becomes adept at discerning clean data points from potentially poisoned data
created through Poison Brew [5] gradient matching.

– Improved Detection Performance: Through experiments, we demon-
strate that DynaDetect outperforms the traditional KNN model in accu-
rately identifying poisoning attacks. Our results significantly improve detec-
tion accuracy, highlighting the practical effectiveness of our dynamic KNN-
based approach in real-world scenarios.

The rest of the paper is organized as follows. Section 2 introduces related
work. Section 3 describes Poison Brew, a data poisoning attack conducted by
Geiping et al. [5], leveraging their methodology and findings as a framework
in our work to develop a detection algorithm for poisoning attacks. Section 4
delves deeply into our proposed DynaDetect, a dynamic KNN-based methodol-
ogy, emphasizing its differences from the traditional KNN approach. Following
this, Sect. 5 outlines our experimental design, encompassing datasets and config-
urations. Section 6 unveils the experimental results of the proposed DynaDetect
in identifying poison images. Moving forward, Sect. 7 scrutinizes DynaDetect’s
performance and highlights its strengths. Section 8 draws conclusions.

2 Related Work

The field of secure machine learning has witnessed a growing interest on research-
ing data poisoning attacks targeting machine learning algorithms. In these data
poisoning attacks, attackers intentionally manipulate specific instances in the
training data to compromise the performance of the machine learning system.

In further exploration of these threats, Aryal et al. [2] investigated the
resilience of ML-based malware detectors to data poisoning attacks. Their
research assessed eight widely used machine learning models in the realm of
malware detection by introducing 10 percent and 20 percent poisoned data into
the training datasets. All models experienced a decline in performance, exposing
the crucial vulnerabilities of malware detection when confronted with intentional
poisoning attacks. Unexpectedly, certain models, such as the SVM, exhibited bet-
ter performance with 20 percent poisoned data than 10 percent. This surprising
outcome was attributed to the unconstrained approach to data poisoning that
was employed.

Seetharaman et al. [11] introduced an influenced-based defense mechanism
to counter data poisoning attacks in online learning. They addressed the decep-
tive nature of such attacks, which carefully corrupt training data to damage
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learning models. Their strategy employed influence functions coupled with Slab
data sanitization method, focusing on identifying and reducing the impact of
questionable data points.

Paudice et al. [9] proposed a defense mechanism utilizing the KNN analogy
in response to the increasing threats of poison attacks. Their approach aimed to
restore the label integrity by enforming homogeneity among close instances, espe-
cially those distant from the decision boundary. By examining each instance’s
k nearest neighbor in the feature space, the algorithm determined if this local
area’s dominant label aligned with the instance’s label. If a significant misalign-
ment is detected, determined by a threshold parameter n, the instance label
was adjusted to match the local consensus. This method counters the attack by
relabeling suspicious instances, potentially neutralizing the adversarial effect of
data poisoning. Additionally, Taher et al. [13] introduced the Label-based Semi-
Supervised Defense (LSD) approach, designed to counter data poisoning attacks
with partially labeled data. The LSD algorithm ranked predicted labels based on
validation data and utilized techniques like Label Propagation (LP) and Label
Spreading (LS) to mitigate labeling noise. It aims to create a two-stage frame-
work for learning flipped labels and employs voting to determine final labels for
training samples.

While the aforementioned works have significantly advanced our understand-
ing of machine learning attacks, they have limitations. Our work aims explicitly
to enhance the detection of poisoned data in machine learning, addressing these
gaps. Aryal et al. [2] insightful work, for instance, primarily focuses on fixed per-
centages of poisoned data and might not fully capture subtler attack patterns.
Seetharaman et al. [11] method, while effective in online learning environments,
may have limited applicability in other contexts. Paudice et al. [9] KNN-based
approach might only identify some poisoned data, particularly in cases of sophis-
ticated poisoning techniques. Likewise, Taher et al. [13] strategy for handling
partially labeled data may need help with complex labeling noise. DynaDetect
advances the field by overcoming the limitations of current models, serving as an
adaptable tool for detecting data poisoning threats in machine learning systems.

3 Poison Brew

Geiping et al. [5] revealed a detailed data poisoning attack, Poison Brew,
which highlights subtle vulnerabilities in machine learning models. Poison Brew
employs a gradient matching technique to subtly inject poisoned data into the
dataset, unnoticeable yet effectively influencing model training. This clever tech-
nique of embedding poisoned data enables evasion of traditional detection mech-
anisms.

In detail, by using gradient matching techniques, Poison Brew [5] can subtly
guide the model’s learning path by introducing poisoned data points that inge-
niously mimicked the gradients of target data. This methodology is expressed in
Eq. 1
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B(∆, θ) = 1 −

〈
∇θL(F (xt, θ), yadv),

∑P
i=1 ∇θL(F (xi + ∆i, θ), yi)

〉

‖∇θL(F (xt, θ), yadv)‖ ·
∥∥∥
∑P

i=1 ∇θL(F (xi + ∆i, θ), yi)
∥∥∥
. (1)

1. B(∆, θ): Quantifies the alignment of the gradients between the poisoned and
target data, a measure necessary for the success of the attack. The closer this
value is to 1, the more influential the poisoning.

2. The gradient, represented by ∇θL, shows how the loss or error changes as the
model parameters, θ, are tweaked.

3. F (xt, θ): This is what the model predicts for an input, xt, with current param-
eters.

4. yadv: The desired (often malicious) outcome for the target data.
5. xi + ∆i: These are the real data points that have been slightly altered.
6. yi: The actual labels for those data points.

Fig. 1. Poison Brew [5]: a data poisoning attack on image classification using gradient
matching techniques.

Figure 1 depicts the stages of the poisoning attack on a machine learning
model. The attack begins with a dataset of clean, unaltered images. Before the
model starts training, selected images are altered with subtle gradient changes
that were difficult for humans to spot but significant enough to deceive the
machine learning algorithm. These altered images, now poisoned, are reintro-
duced into the model’s training data. During training, the model learns from
both the clean and the poisoned images, which unknowingly misleads to incor-
rect predictions. Therefore, the model displays inaccuracies in classifying new
images.

The enlightening outcomes of their research demonstrates the effectiveness of
the Poison Brew [5] attack. As Poison Brew introduces nuanced vulnerabilities
expertly concealed, it bypasses standard detection safeguards without difficulty,
effectively but noticeably misleading predictions. Therefore, it is necessary to
design defense mechanisms against such data poisoning attacks.
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Building on this groundbreaking research, our work proposes a dynamic
KNN-based algorithm to detect Poison Brew. It leverages the principles of gradi-
ent alignment, dynamically adjusting the weighting and assessment of neighbor-
ing data points. Our algorithm operates in real-time, constantly analyzing data
and adapting to new threats as they emerge. It provides continuous detection
against advanced threats, guaranteeing machine learning models’ integrity.

4 Methodology

4.1 Dynamic KNN Overivew

The KNN algorithm is an important classification algorithm that needs several
parameters to work properly. Its main goal is to predict the label of a given
data point. Features are attributes that help to differentiate data points from
each other. In the traditional KNN method, the number of nearest neighbors
considered for labeling is determined by the k parameter. However, our work
introduces a new variable radius parameter called b that is used to establish a
flexible radius around a data point for neighborhood determination. This method
offers more flexibility than the fixed k parameter and improves the algorithm’s
resilience by allowing adjustments to different data densities. As a result, it
enhances the detection of abnormalities that could indicate data poisoning.

4.2 Proposed DynaDetect Detection Algorithm Using Dynamic
KNN

We propose DynaDetect, a dynamic KNN-based detection algorithm, to detect
poisoned data in Poison Brew. The dynamic KNN approach with our method-
ology is simplified through the KNNModelPersisted class. This class incorpo-
rates a training methodology that handles parameters such as features, labels,
k, b, and the type of methods. When set to adaptive, the RadiusNeighborsClas-
sifier is employed, which uses a specified radius b for neighbor identification.
The trained classifier predicts labels using the radius b. Each model possesses
a unique identifier derived from attributes such as method type, k value, and b
value, simplifying the model storage and retrieval process.

As outlined in Algorithm 1, our methodology is central to applying dynamic
KNN to differentiate between clean images (free from malicious poisoning) and
poisoned images (manipulated) within diverse datasets, inspired by the find-
ings of Geiping et al. [5]. Our method involves training a classifier on a dataset
containing clean and poisoned images, with the primary goal of accurately iden-
tifying the poisoned images. This enhances the model’s defense against mali-
cious manipulations. The approach involves dynamically adjusting the number
of neighbors in the KNN algorithm, allowing it to effectively adapt to different
data densities.
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4.3 Adaptive Parameterization in KNN-Based Detection

In the development of our DynaDetect algorithm, we initially set specific values
for two key parameters: the threshold (T) and radius (b), based on our analysis
of the test datasets. However, it’s important to note that these values are not
fixed constants but rather starting points for parameter tuning. The selection
of these values was influenced by the characteristics of the datasets used in our
initial experiments, and they may vary in different contexts or with diverse types
of poisoning attacks.

Our algorithm assesses the likelihood of each data point being manipulated
within the dataset. It computes a ‘poisoned score’ for every data point based on
certain characteristics identified as indicators of data poisoning, such as the align-
ment with its neighbors. Higher scores indicate a greater probability of manipu-
lation. In our preliminary analysis, we observed a consistent pattern where data
points with poisoned scores above the threshold of 5 were generally associated
with poisoning. Therefore, we initially classify data points with scores exceed-
ing this threshold as poisoned, indicating a high probability of manipulation.
In contrast, we consider those below the threshold as clean, suggesting a lower
likelihood of poisoning.

However, the adaptability of the threshold T and the radius b is a key fea-
ture of our methodology, allowing for the algorithm’s effective application across
various datasets and attack scenarios. This flexibility is crucial, as the opti-
mal threshold and radius may differ based on specific dataset characteristics
and the nature of the poisoning attack. We emphasize the need to adjust these
parameters to ensure the robustness and accuracy of the algorithm in identifying
poisoned data in diverse situations.

Algorithm 1. DynaDetect: Dynamic KNN-based Detection
1: Input: A set of mixed training dataset (both clean and poisoned data), dataset of

poisoned images Xp, radius b, threshold T = 5
2: Initialize a classifier C
3: Train C on mixed dataset using RadiusNeighborsClassifier with radius b
4: Initialize predictions list P to store status of each image xi

5: for each image xi in Xp do
6: Classify xi using C
7: if classifier identifies xi as an anomaly and the anomaly score is above threshold

T then
8: Append ”poison” to P
9: else
10: Append ”clean” to P
11: end if
12: end for
13: return P
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4.4 Distance Metrics

KNN algorithm distance metrics play an important role. These metrics measure
the proximity between two data points and help to determine whether the data
points are considered neighbors. The choice of distance metrics can significantly
influence the performance of the KNN algorithm [6] [3]. In this work, we employ
one primary distance metric: Mean Squared Error (MSE).

MSE: To understand the difference between two images, MSE is utilized, as
shown in Eq. 2. It calculates the average squared difference between the corre-
sponding pixels of the two images

MSE(I1, I2) =
1
N

N∑

i=1

(I1i − I2i)2, (2)

where I1 represents the first image and I2 the second, and N is the number of
pixels. The importance of utilizing MSE in our work is its ability to quantify
the similarities between images. In Algorithm 1, MSE accesses the similarities
between a test image xi and its neighbors within the specified radius b. If the
MSE between xi and its neighbors falls below a certain threshold, it indicates
that these neighbors are very similar to xi, which is valuable for classifying test
images.

Neighborhood Consideration in Dynamic KNN: Unlike the traditional
KNN, which classifies a sample based on the top k closest training samples,
the dynamic radius-based KNN used in this work employs a different approach
for defining neighbors. In this method, neighbors are identified as all training
samples that fall within a predefined radius b

Neighbors(x) = x′, |,MSE(x, x′) < b, (3)

where x is the test sample, and y represents samples from the training data. In
our work, a radius of 0.50 was utilized to define the neighborhood. This radius
was determined through a series of experiments with various radius values to
find the one that best balances the accurate detection of poisoned data and high
classification performance. A 0.50 radius ensures that only samples within this
distance are considered neighbors, effectively allowing our algorithm to adapt to
the local data density. Such neighborhood consideration is crucial for our work
as it determines which training samples are relevant for classification, enhancing
the algorithm’s ability to detect poisoned data in diverse datasets by making
decisions based on nearby data points.

5 Implementation

5.1 Hardware Configuration

Our experiments are conducted on a Linux server equipped with 4 NVIDIA
GPUs, ensuring efficient computation and parallel processing capabilities.
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5.2 Datasets

Our experiments utilize diverse datasets to evaluate the dynamic KNN-based
detection mechanism. These datasets include:

– CIFAR-10 [7]: This dataset contains 50,000 images with dimensions of
32× 32 pixels in RGB format, distributed across 100 classes, each having
500 images. The CIFAR-10 is a well-established dataset for assessing image
classification tasks. For our training, we used a subset of this dataset, con-
sisting of 48,500 poisoned images and an equal number of clean images.

– Fashion MNIST (F-MNIST) [15]: This dataset comprises 60,000 images
of 28× 28 pixels in grayscale format, divided into 10 classes, each containing
6,000 images. Out of these, 50,000 images are designated for training and
10,000 for testing. The images depict various clothing items. Given their lower
resolution, distinguishing between some images can be challenging, which
adds complexity to the classification task. Our training employed a balanced
selection of 33,500 poisoned and 33,500 clean images.

– ImageNet [4]: This dataset includes an extensive collection of over 1.2 million
images, but for our work, we specifically utilized a subset of 40,000 images.
These consist of 20,000 images with dimensions of 224× 224 pixels in RGB
format, chosen from 1,000 classes, each class contributing 200 images. The
diversity of the dataset, characterized by varying object scales, occlusions, and
contexts, presents a significant challenge in identification tasks. For training
our model, we selected a balanced set comprising 20,000 poisoned and 20,000
clean images from this subset, providing comprehensive and high-dimensional
data to rigorously test and validate our model’s performance.

After training our model with the specified datasets, we conduct a validation
phase to assess the model’s ability to accurately identify poisoned data. For this
purpose, we use a separate set of 1,000 known clean images and 1,000 known
poisoned images that the model has never encountered before. This validation
set is specifically chosen to ensure a thorough test of the model’s ability to
generalize to new data.

The inclusion of this unseen data is crucial in our experimental setup, as it
provides a measure of the model’s effectiveness in real-world conditions, where
it encounters data that is not part of its training environment. By using this
approach, we can evaluate our model’s accuracy and robustness in detecting
poisoned data under conditions that closely mimic actual deployment scenarios.

5.3 Attack Intensity

In evaluating our approach for detecting data poisoning, we quantify the strength
of the poisoning attack using an epsilon (ε) value, which we set to 8. This ε value
dictates the maximum change allowed for each pixel in an image. Essentially, it
caps how much we can adjust the brightness or color of each pixel. With ε set
to 8, we ensure that the alterations to each pixel are moderate but not extreme.
This constraint on pixel intensity alteration, defined by ε is expressed in Eq. 4:
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x′ = x+ δ, ‖δ‖∞ ≤ ε, (4)

where x is the original pixel value, x′ is the altered value, and δ is the change.

6 Data Preprocessing

We commence our with the dataset initially employed by Geiping et al. [5],
specifically by introducing poisoned data to enhance the resilience of our analysis.
A meticulous preprocessing phase was conducted to guarantee the cleanliness of
the dataset and ensure accurate labeling. In the initial phase, images from the
entire dataset were loaded and subjected to preprocessing steps to optimize the
data for consistency and effectiveness. Each image was resized to a uniform
dimension of 224× 224 pixels, ensuring consistent compatibility with our model.

Afterward, the images were converted to grayscale, which allows the model
to focus on the structure of an image rather than the color information. This
is beneficial so that the model can focus on essential features. Normalization
was applied to the preprocessed images, ensuring that the dataset values were
within a suitable scale. Normalization ensures that all pixel values are within
a similar scale, which is essential for the model to learn effectively during the
training process. This crucial normalization process enhanced the model’s sta-
bility and performance effectiveness. Utilizing the powerful capabilities of the
Python NumPy library, each image was flattened by a process that transformed
them into one-dimensional arrays, which further optimized them for efficient and
precise analysis by our algorithm.

To enhance our work, we extended our dataset beyond the initial dataset used
by Geiping et al. [5]. This extension involved incorporating a range of diverse
datasets, each carefully preprocessed and organized to maintain the highest data
integrity and reliability in our analysis. Such rigor ensures that our findings pro-
vide a robust examination of our algorithm’s performance in detecting poisoned
data across various datasets.

7 Performance Evaluation

Our evaluation compares traditional KNN [14] and our proposed DynaDetect.
Traditional KNN, with its static selection of k nearest neighbors, may be vul-
nerable to poisoned images due to its fixed parameters. In contrast, DynaDetect
dynamically adjusts k, offering enhanced stability against poisoned images. We
assess the performance of both algorithms across various datasets-CIFAR-10,
F-MNIST, and ImageNet-to ensure the reliability of predictions in the presence
of poisoning attacks, as shown in Figs. 2, 3 and 4.

In our performance evaluations, we observe consistent improvements with
DynaDetect over traditional KNN across all datasets. For example, using the
CIFAR-10 dataset, DynaDetect shows a 4–5% higher detection accuracy across
different k values compared to traditional KNN. Similarly, in the F-MNIST
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and ImageNet datasets, DynaDetect maintains a higher accuracy, reinforcing its
adaptability and robustness in diverse image classification tasks. These results
illustrate DynaDetect’s ability to handle complex patterns in the data, providing
more accurate and reliable classifications.

Across all tested datasets, the trend remains clear: DynaDetect consistently
outperforms traditional KNN, especially as the k value increases. This consistent
performance across different types of datasets from grayscale images in F-MNIST
to the varied and complex images in ImageNet-demonstrates the versatility and
effectiveness of DynaDetect in varied image recognition scenarios.

In conclusion, our evaluation reveals the comparative performance of the
traditional KNN and our proposed DynaDetect KNN algorithm in detecting
poisoned images across various datasets. The traditional KNN, with its static
k, shows limitations in adaptability and performance across diverse datasets,
requiring a careful initial k selection. In contrast, our work displays improved
performance and adaptability with its dynamic k adjustment. This finding high-
lights the DynaDetect KNN’s resilience and reliability, making it a more helpful
choice for handling dynamic datasets and ensuring possible predictions against
poisoning attacks.

Fig. 2. Performance evaluation of Traditional KNN and DynaDetect on CIFAR-10
Dataset.

8 Discussion

This work introduces DynaDetect, a dynamic KNN-based detection algorithm,
advancing the detection of poisoned images in machine learning datasets. We
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Fig. 3. Performance evaluation of Traditional KNN and DynaDetect on FMNIST
Dataset.

Fig. 4. Performance evaluation of Traditional KNN and DynaDetect on ImageNet
Dataset.

compare its performance with traditional KNN methods across diverse datasets
such as CIFAR-10, F-MNIST, and ImageNet. These comparisons demonstrate
DynaDetect’s superior adaptability and accuracy.

Traditional KNN, with its static approach to selecting the k nearest neigh-
bors, exhibits vulnerabilities, especially when dealing with poisoned images.
DynaDetect addresses this by dynamically adjusting k, leading to more stable
performance in the presence of poisoned data. Our results show that DynaDetect
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consistently outperforms traditional KNN in detection accuracy, with improve-
ments ranging from 4% to 5%, depending on the dataset and k value.

The capabilities of the dynamic KNN-based detection algorithm indicate
its potential usefulness in various fields. For instance, in autonomous vehicles,
where decision-making relies heavily on data integrity, a dynamic KNN-based
detection algorithm could be key in distinguishing between clean images and
those compromised by poison attacks. In healthcare, the algorithm’s precision in
identifying clean data could be instrumental in ensuring accurate diagnoses, free
from the influence of manipulated information. Similarly, dynamic KNN could
enhance the accuracy of spam filters in digital communication by more effectively
separating authentic emails from spam. These examples highlight the possible
benefits of applying our findings to practical, real-world challenges where clean
data is crucial.

9 Conclusion

In response to the evolving field of image detection and the increasing threat of
poisoning attacks, we have proposed DynaDetect, a dynamic KNN-based detec-
tion algorithm designed to detect Poison Brew attacks. Our algorithm improves
the detection accuracy of data poisoning attacks by addressing the drawbacks
of traditional KNN models. Our experimental findings have highlighted the fol-
lowing advantages of the proposed DynaDetect algorithm:

– Our dynamic KNN-based detection algorithm has consistently outperformed
traditional KNN models through testing across multiple datasets and varying
k values. The significant improvement in detection accuracy as the k values
increase highlights the benefits of our dynamic parameter tuning and gradient
analysis for neighbor assessment.

– Furthermore, our model identifies poisoned data instances, showcasing its
stability in the face of growing poisoning attacks. These results emphasize
the real-world impact of our dynamic parameter tuning, gradient analysis for
neighbor assessment, and data understanding contributions.

Our future work will focus on enhancing the robustness of DynaDetect and its
applicability in real-time scenarios. We aim to optimize its performance for prac-
tical applications such as image recognition in autonomous vehicles. Moreover,
we see potential in integrating DynaDetect with other machine learning mod-
els, which could lead to significant advancements in data security and model
reliability.
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