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Abstract—With the upcoming next generation wireless net-
work, vehicles are expected to be empowered by artificial
intelligence (AI). By connecting vehicles and cloud server via
wireless communication, federated learning (FL) allows vehicles
to collaboratively train deep learning models to support intelli-
gent services, such as autonomous driving. However, the large
number of vehicles and increasing size of model parameters
bring challenges to FL-empowered connected vehicles. Since
communication bandwidth is insufficient to upload full-precision
local models from numerous vehicles, model compression is
usually conducted to reduce transmitted data size. Nevertheless,
conventional model compression methods may not be practical
for resource-constrained vehicles due to the increasing computa-
tional overhead for FL training. The overhead for downloading
global model can also be omitted by existing methods since they
are originally designed for centralized learning instead of FL.
In this paper, we propose a ternary quantization based model
compression method on communication-efficient FL for resource-
constrained connected vehicles. Specifically, we firstly propose a
ternary quantization based local model training algorithm that
optimizes quantization factors and parameters simultaneously.
Then, we design a communication-efficient FL. approach that
reduces overhead for both upstream and downstream commu-
nications. Finally, simulation results validate that the proposed
method demands the lowest communication and computational
overheads for FL training, while maintaining desired model
accuracy compared to existing model compression methods.

Index Terms—Federated learning, model compression, con-
nected vehicles, ternary quantization

I. INTRODUCTION

Benefited from the evolution of Internet of Things (IoT)
and the ubiquity of Artificial Intelligence (AI), the techniques
for autonomous driving are emerging in the next generation
of wireless network. Connected via wireless communication,
vehicles can cooperate with other nearby vehicles and the edge
of network to improve driving safety and traffic efficiency [1].
As shown in Fig. 1, connected vehicles primarily support four
types of intelligent services, including environment perception,
map building, path planning and motion control [2]. These
services are driven by Al to generate deep learning models
for real-time decision making based on the environment and
traffic-related data collected by connected vehicles. To lever-
age the sheer volume of data distributed among a large number
of vehicles in the network, federated learning (FL) is utilized to
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Fig. 1. Intelligent services for connected vehicles to realize autonomous
driving via wireless communication

allow various vehicles to collaboratively train a deep learning
model without sharing their private data. Each vehicle main-
tains its own local model and updates the model parameters
based on local training data with certain optimizer, such as
stochastic gradient descent (SGD) [3]. Then, the local model
parameters are uploaded to the cloud server and aggregated to
generate a global model, whose parameters are downloaded by
vehicles to improve their local models. This process iterates
until the training outcome converges. Empowered by FL,
connected vehicles can extract knowledge about autonomous
driving from distributed data, while preserving the privacy of
users’ driving behaviors.

However, the massive communication and computational
overheads are still major issues for FL-related applica-
tions. Compared with other distributed learning methods,
FL-empowered connected vehicles encounter several unique
challenges. Firstly, communication overhead becomes a major
bottleneck for FL due to the rapidly increasing model com-
plexity and the number of connected vehicles. Gigabytes of
data containing millions of parameters need to be transmitted
to complete a full model update in each training iteration
[4]. Since communication bandwidth is usually limited for
connected vehicles, FL. may become impractical for services
that require timely responses from deep learning models.
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Model compression is necessary to reduce the communication
overhead for transmitting model parameters in FL. Secondly,
the computational resources are constrained for connected ve-
hicles to deploy common model compression methods [5]. Due
to the limited computing power and battery capacity of most
onboard platforms [6], the local training procedure should also
be simplified to alleviate the addition overhead caused by
conducting model compression. Thirdly, both upstream and
downstream communication overheads should be considered
between connected vehicles and cloud server. A complete
iteration of FL contains uploading and downloading of model
updates. As conventional model compression methods [7] are
designed for centralized learning, they only reduce the data
size of local models uploaded from client to server.

To achieve communication-efficient FL for connected vehi-
cles, model compression methods are integrated with FL to
reduce the amount of parameters transmitted in training iter-
ations. Existing model compression methods, such as neural
network pruning [8], low-rank factorization [9], convolutional
filters [10] and knowledge distillation [11], simplify the deep
learning models after local training is completed. These meth-
ods are difficult to be deployed on connected vehicles with
constrained resources, since the additional overhead is not
alleviated for compressing local model parameters. A multi-
objective optimization method is proposed to simultaneously
maximize the model accuracy while minimizing model com-
plexity [12]. Communication efficiency of FL can also be
improved by uploading only parameters that lead to essential
global model update [13]. Nevertheless, these methods only
compress local models uploaded from vehicles to cloud server,
such that the overhead reduction of downstream communica-
tion is omitted. Therefore, a compression method is necessary
for connected vehicles to address the communication and
computational overheads caused by FL.

In this paper, we propose a model compression method for
FL-empowered connected vehicles with constrained resources.
The proposed method reduces the complexity of local model
training while improving the efficiency of both upstream and
downstream communications simultaneously. Specifically, the
contributions of this paper are three-fold.

(1) We propose a ternary quantization based algorithm for
local model training to reduce the number of model parameter
values. The proposed algorithm is integrated with local model
training, so that the quantized values of parameters are opti-
mized for different local models. Since the model parameters
are quantized before being updated with SGD, less computa-
tional overheads are demanded to compute loss functions and
parameter gradients during local training. This alleviates the
addition overhead caused by the proposed method and makes
FL more adaptive to the resource-constrained vehicles with
limited computing power and battery capacity.

(2) We propose a ternary quantization based FL approach to
reduce the overheads of upstream and downstream communi-
cations. The deep learning model complexity can be reduced
for both local models updated in connected vehicles and global
model aggregated on cloud server. In addition to communica-

tion efficiency, the quantized global model parameters also
increase the difficulty to deduce local model parameters from
vehicles, so that privacy preservation is improved.

(3) We conduct extensive simulation to evaluate the pro-
posed method compared with existing model compression
methods by training multiple popular deep learning models.
The models are trained based on battery data collected from
electric vehicles (EVs) [14] to simulate FL-empowered bat-
tery status estimation in connected vehicles. The simulation
results validate that our proposed method achieves the lowest
communication and computational overhead while maintaining
desired model accuracy.

The remainder of the paper is organized as follows. Section
II reviews related works of model compression methods for
FL. In Section III, we propose the ternary quantization based
algorithm and collaborative FL approach. Simulation results
are presented in Section IV. Finally, conclusions are drawn
and future directions are identified in Section V.

II. RELATED WORKS

To improve the communication efficiency of FL, existing
methods can be categorized into three types: local updating,
sparsification and quantization. Firstly, local updating methods
aim to reduce the frequency of communication between the
clients (i.e., connected vehicles) and server. Instead of up-
loading and downloading model parameters in every training
iteration, the clients can perform multiple local updates before
uploading their parameters for aggregation [15]. This tends to
have slight influence on convergence rate of FL as long as the
data is independently and identically distributed among clients.
The number of total communication rounds for FL training can
also be reduced by decomposing the global objective into sub-
problems that can be solved in parallel in each iteration [16].
Secondly, sparsification methods restrict the updated parame-
ters of local model training to a small subset to obtain sparse
information communicated from clients to server. For example,
for SGD-based FL, only gradients whose magnitudes exceed a
predetermined threshold can be uploaded to server, while the
others with less magnitudes accumulate as residual [7]. The
amount of uploaded parameters can also be determined by
a fixed sparsity factor representing the portion of parameters
selected from the full set [17]. Finally, quantization methods
alleviate communication overhead of FL by restricting updated
parameters to a reduced set of values. Instead of decreasing the
number of communicated parameters, quantization methods
reduce the information entropy carried in each communication
round. Existing quantization strategies include binary sign
[18], universal vector quantization [19], stochastic gradient
decomposition [20] and so on.

However, the aforementioned methods for communication-
efficient FL. have limitations to be deployed on resource-
constrained connected vehicles. Local updating methods lever-
age distributed data processing to reduce communication
overheads among vehicles and server, but allocate heavier
burden on local model training. Since onboard platforms of
connected vehicles have limited computing power, massive
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local updating may instead extend the communication delay of
each iteration. In addition, sparsification methods only update
a small subset of parameters depending on their gradient
magnitudes, such that the model compression rate is quite
sensitive to the predetermined threshold or sparsity factor.
Since the deep learning models utilized in various intelligent
services of connected vehicles are highly diverse, adjusting the
thresholds for sparsification methods can be quite difficult and
inflexible. Furthermore, existing quantization methods only
focus on the compression of local models, while the effective
quantization on global model parameters after aggregation
is in lack. The overhead of downstream communication can
hardly be alleviated with conventional model compression
methods. A novel parameter quantization method is necessary
for FL-empowered connected vehicles. Reducing communica-
tion overheads for both uploading and downloading becomes
critical, while integrating model compression with local model
update has a potential to improve training efficiency.

III. TERNARY QUANTIZATION BASED MODEL
COMPRESSION FOR FEDERATED LEARNING

In this section, we propose an adaptive ternary quantization
algorithm that optimizes the quantized values for local model
parameters of different vehicles. Then, a communication-
efficient FL. approach is provided that reduces the overheads
of both upstream and downstream parameter transmission.

A. Adaptive Ternary Quantization with Gradient Descent

The communication efficiency of FL is determined by the
size of transmitted data between connected vehicles and cloud
server. By quantizing the model parameters from continuous
values to discrete values, fewer bits are needed to represent
the deep learning model uploaded or downloaded during FL.
Since the scales and sparsity of model parameters may greatly
differ from vehicle to vehicle, normalization is necessary for
parameters to avoid bias towards larger magnitudes during
quantization. Suppose a deep learning model trained by FL has
L layers, and each layer has d; dimensions wherel = 1,..., L.
Parameter normalization is firstly conducted layer by layer as
0 = g(6;), where §; is the parameters of layer | and g is
a function that normalizes a vector into the range of [—1,1].
Then, ternary quantization assigns the normalized parameters
to be positive, zero, or negative layer by layer

wi, Hl” > A
0; =14 0, 107 < A L
—wy, 0? < —Al

where 6! is the quantized parameter of layer [, w; is a
quantization factor and A; is the threshold for quantization.
Both quantization factors w; and A; should be positive, which
determine the scale and sparsity of model parameters after
quantization respectively, so that both factors have great im-
pacts on the accuracy of compressed models. The quantization
threshold is computed based on parameters in the same layer

d; diya

T MG

i=1 j=1

where 0}, is the entry of i*" row and ;' column of the
parameter matrix ;' for the full connection between layer !
and [ + 1. The factor 7} is another quantization factor that
determines the upper bound of the quantization threshold
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such that the boundary of parameter values for positive, zero
and negative ranges can be adaptive for different layers. Due
to the divergence among local models generated by different
connected vehicles, the two factors w; and 1; should be
adaptive to the parameter distribution to preserve the highest
model accuracy after quantization.

To obtain the optimal quantization factors for different vehi-
cles and different layers in local models, we propose a gradient
descent based algorithm to update factor values iteratively.
Since most existing FL methods [21]-[23] also apply gradient
descent to optimize local model parameters, the optimization
of quantization can be integrated with local training easily in
each round of FL. Instead of conducting additional computa-
tion for model compression after local model being generated,
the proposed method simplifies local training procedure by
quantizing parameters before optimizing them with SGD. With
previously quantized parameters, computing loss functions and
gradients becomes more efficient than using the continuous
parameter values. This reduces the computational overhead of
resource-constrained vehicles, so that their limited computing
power and battery capacity are no longer bottlenecks to realize
communication-efficient FL. We denote the loss function of
local model training for vehicle k as

[Dy|

|D P Zf(xz,y“ ! “)

where Dy, is the local training dataset of vehicle & containing
pairs of features and objective value (z;,y;) € Dg,i =
1,...,|Dg|. Suppose totally N connected vehicles are in-
volved in FL, the global loss function can be calculated

Je(6%) =

N

| Dy
J(0") = —
; Zl]cvzl |Dk|

Based on the loss function value, the gradients of quantization

factor w; for vehicle k can be calculated

O _
8wl -
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The gradient of factor 7; is more difficult to obtain, since
T} determines the quantization threshold instead of parameter
values. However, 7; has a strong correlation with w;, as
they determine the distribution of quantized model parameters
together. When w; increases, the magnitudes of quantized
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parameters becomes larger in the corresponding layer, such
that 7T; should also increase to assign fewer parameters as w
or —wj. This guarantee that the average value of quantized
parameters remains stable for different iterations of model
training. To this end, we assign the update of 7; in the same
direction as the gradient of w;. After quantization, the model
parameters are updated with gradients to the local loss function
for vehicle k

O _0d 00 [ U< opl<A
00, 00 T 00, | wix %, otherwise.
l

Algorithm 1: Gradient Descent based Ternary Quantiza-
tion Algorithm (GDTQ) for FL

Input: © = {6,...,0.}, where §; € R4>d+1; o T,
for all layers | = 1, ..., L; local dataset (x;,y;) € Dy
for client k; local training iterations I,,q;

Output: quantized parameters O = {0 ... 6% };
updated quantization factors wy, 717;

Initialization: learning rate a, as, a3, loss function f,
normalization function g, ©' = ©;

for iter =1 to Imm do

Jk(@t) = IDkI Zlel I (@i, yis @t)

for | =1to L do

07" = g(61); .

A= Gt S

quantize 0" with Eqn. i to obtain 6};

dz+1
| ligl» |

aJ,
wp = wi + a1
AJk .
T, =T+ agszgn( o 3K
n __ n
1= +ag Gk ael
end
end

The proposed ternary quantization algorithm is summarized
in Algo. 1, where the quantization rules are adaptive to pa-
rameter distributions of different vehicles and neural network
layers. The model compression procedure is integrated with
local model training to reduce the upstream communication
overheads for resource-constrained vehicles. After a certain
number of local training iterations, the quantized model
parameters and quantization factors are uploaded to cloud
server for aggregation. However, the aggregated parameters of
global model can have more diverse values due to the various
quantization scales applied in different local models. Larger
data size is needed to carry the increased information entropy
of global model for downstream communication than local
models. To address this issue, the next subsection discusses
the proposed overall FL approach that achieves efficiency for
both upstream and downstream data transmission.

B. Communication-efficient Federated Learning

The proposed FL approach is illustrated in Fig. 2. Each
vehicle normalizes and quantizes its local model parameters
during the local training as summarized in Algo. 1. After
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Fig. 2. Proposed communication-efficient FL. for connected vehicles

Algorithm 2: Ternary quantization based FL

Initialization: Global model parameters ©y, maximum
number of FL rounds R,,,,, number of involved
vehicles IV, local training iteration I,,q.;

for r =1 to R,qe do

Vehicles do in parallel:

for k=1to N do

load dataset Dy;

@r = @r—l;
for [ =1to L do
T, =0.7;
1
W= LT 2=Gigenut, |9
end

@ﬁ = GDTQ(@T, T7 w, Dka Imaz);
upload O to server with updated factors T, w;

end
Server does:

\DM t
Zk 1y ‘Dk‘@
for l=1to L do
N D
= Zk,’ 1 ZJ\|7 k‘le‘wl ks
Zk 1 ZI\‘I |‘[) |1—‘l ks
d
A= dl><dl+1 Z Z l+1|9m
quantize O, with Eqn 1;

broadcast quantized O, to all vehicles;
end

end

certain iterations, the quantized parameters and corresponding
quantization factors are uploaded to the cloud server. Then,
the global model is generated by aggregating local models as
weighted average

N
|Dk| t

= —~ % 3
k=1 lecvzl ‘Dk‘

where NV i
the size of local dataset from vehicle &k, and 0,2 is the quantized
local model parameters. New quantization factors are obtained
by aggregating uploaded factors from vehicles in a similar way

N

o — Z& "

k= 1Zk 1|Dk|

N

D
7= P g

k=1 Zk:l |Dk|
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Finally, global model parameters are quantized with new
quantization factors to be downloaded by all vehicles. The new
quantization factors obtained on server are not downloaded by
vehicles, since the factors need to be initialized for each round
of FL to remain adaptive to the updated model parameters.
At the beginning of local training, we initialize quantization
threshold factor 7; = 0.7 for all layers [ = 1,...,L, as the
range of normalized parameters is between -1 and 1. The
weight factor is initialized based on updated parameters

1
W =5
"L+ L 2

(1,4)€l,UIn

where I, = {(i,j)6ii; > A} and I, = {(i,))[0; <
—A;}. Based on the proposed Gradient Descent based Ternary
Quantization Algorithm (GDTQ), we propose the overall FL
approach as summarized in Algo. 2. By quantizing local and
global models, the proposed method can substantially reduce
the communication overheads for both upstream and down-
stream data transmission. This brings an essential advantage
for deploying FL in resource-constrained connected vehicles.

61351, (10)

IV. PERFORMANCE EVALUATION

In this section, we conduct extensive simulation to evaluate
the proposed method based on battery operating data of EVs
[14] to conduct battery status estimation. To establish an
accurate estimation model for the status of onboard battery,
large volume of training data need to be collected from
different vehicles. Empowered by FL, connected vehicles can
train the battery model collaboratively without sharing their
private operating data. This is a suitable scenario to validate
our proposed method on supporting communication-efficient
FL for intelligent services of connected vehicles. The training
dataset contains 16 features and over 130000 samples, where
the objective values are classified into 10 different status for
users to monitor the battery operating conditions. As shown
in Fig. 3, totally 10 EVs are connected to conduct FL. The
simulation is repeated for 10 echoes to obtain the average
model accuracy after FL training. Two other model compres-
sion methods based on sparse ternary compression (STC) [5]
and model pruning (MP) [8] are utilized in FL to be compared
with the proposed method. As the performance benchmark,
FL is also conducted without any model compression to
show the impact of quantization on model accuracy. We train
both artificial neural network (ANN) and convolutional neural
network (CNN) in the simulation to validate the generality of
the proposed method on different deep learning models. The
simulation settings are summarized in Table. 1.

To evaluate the obtained accuracy and efficiency, average
model accuracy, transmitted data size and computational time
are measured throughout the FL training procedure for dif-
ferent deep learning models and model compression methods.
As shown in Fig. 4, the proposed method achieves higher
model accuracy than other two model compression methods.
This is because our quantization factors are optimized during
local training to fit the parameter updates, while the compared
methods simplify local models only after training is completed.

Fig. 3. One of the EVs involved in FL for onboard battery status estimation

TABLE I
SETTINGS OF MODEL COMPRESSION ASSISTED FL

Simulation settings
Deep learning model
Model compression method

Applied values
ANN, CNN
Proposed, STC, MP, no compression

Local training iterations 20
FL rounds 100
Clients (connected vehicles) | 10
Simulation repetitions 10

Although ternary quantization decreases parameter precision,
the proposed method can still obtain desired accuracy close to
the baseline after sufficient FL training rounds. Fig. 5 shows
the transmitted data size of model uploading and download-
ing. The proposed method demands the least communication
overhead since it also alleviates downstream overhead, while
conventional methods can only compress uploaded models
when utilized in FL. Fig. 6 shows that two compared methods
cause additional computational overheads to FL to conduct
model compression, while our proposed method reduces the
training overhead compared to baseline. The reason is that
during local training, the model parameters are firstly quan-
tized and then updated with SGD, so that the number of
operations to compute loss functions and gradients can be
substantially reduced. Therefore, simulation results validate
that the proposed method achieves the lowest communication
and computational overheads for FL-empowered connected
vehicles, while maintaining desired model accuracy close to
the original FL approach without model compression.

(@) (b)

Fig. 4. Model accuracy versus global rounds of FL by training: (a) ANN
model; (b) CNN model
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(a) (b)

Fig. 5. Communication overheads of parameter uploading and downloading
versus desired model accuracy by training: (a) ANN model; (b) CNN model

(a) (b)

Fig. 6. Overall computational time of FL versus desired model accuracy by
training: (a) ANN model; (b) CNN model

V. CONCLUSION

In this paper, we have proposed a ternary quantization based
model compression method to realize communication-efficient
FL for resource-constrained connected vehicles. Specifically,
we have proposed a local model training algorithm that inte-
grates quantization with SGD based model training to reduce
computational overhead brought by model compression. Then,
we have designed a ternary quantization based FL approach
for efficient upstream and downstream communications, SO
that FL can be practical for resource-constrained vehicles.
Finally, simulation results validate that the proposed method
can achieve the lowest communication and computational
overheads while maintaining desired model accuracy. In future
works, we will focus on integrating the proposed method with
the methods that reduce transmission overhead from other
directions, such as feature selection and client sampling, to
collaboratively improve the communication efficiency for FL.
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