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Abstract—This paper presents a comprehensive survey 

of code comprehension, a crucial aspect of Software 

Engineering that encompasses the process by which 

developers understand code. Our study categorizes code 

comprehension research into four areas: code comment 

generation, the correlation of EEG signals with code 

comprehension, experimental studies on code 

comprehension, and code visualization, detailing 

methodologies within each. Further, we investigate the role 

of Large Language Models (LLMs) in enhancing code 

comprehension tasks, highlighting the potential future 

research opportunities. This research aims to provide 

software engineers and researchers with a comprehensive 

understanding of the current technologies for code 

comprehension and to point out possible directions for 

future research. 

Keywords—Code comprehension, LLMs, comment 

generation 

I. INTRODUCTION 

   Code Comprehension is a fundamental concept in the 
domains of Software Engineering. It describes the process 
through which developers interpret and understand the meaning 
of code. This includes not only the direct grasp of the code's 
semantics but also an understanding of the underlying design 
goals, architecture, and significant potential impacts. Such 
comprehension is crucial for various aspects of software 
development, including the need for developers to reuse legacy 
code written by others and software maintenance requiring 
updates/fixes to existing code. A study [1] found that about half 
of software engineers leave their jobs every two years. This 
frequent job switching makes it even more important to 
understand other developer’s code quickly and efficiently. 
Moreover, software maintenance, a critical stage of the 

Software Development Life Cycle (SDLC), can account for up 
to a huge percentage of a software's total cost of ownership [2]. 
With an estimated 70% of a developer's time spent 
understanding code [3], there's a strong incentive for software 
companies and developers to develop strategies for more 
efficient code comprehension solutions to reduce costs. 

    This paper aims to offer a thorough review of code 
comprehension, detailing the distribution and trends of research 
across various categories. It is structured around four key 
research fields related to code comprehension: code comment 
generation [4]-[7], the correlation between 
electroencephalogram (EEG) signals and code comprehension 
[8]-[11], experimental studies on code comprehension [12]-
[14], and code visualization [15]-[18]. For each category, we 
will present a selection of representative approaches, 
accompanied by an in-depth discussion of their methodologies. 

In addition to analyzing existing literature, our study 
leverages the innovative capabilities of Large Language Models 
(LLMs) to assist in code comprehension. The emergence of 
LLMs — pre-trained models enriched with vast amounts of real-
world data, exemplified by ChatGPT [19]—has notably 
advanced progress across various software engineering tasks in 
recent years. For instance, Liu et al. have employed LLMs to 
generate test inputs for Android applications [20]. In our work, 
we design specific prompts to investigate the current capacity of 
LLMs in code comprehension tasks, aiming to uncover future 
research opportunities. Some existing works have previously 
explored methods for generating source code comments, such as 
the study by Xiaotao et al. [21]. However, this particular study 
was published in 2019, a period during which Large Language 
Models (LLMs) had not yet demonstrated their current level of 
efficiency, resulting in their exclusion from the analysis. 
Another work Codex [22] is a GPT-3 based approach for 
automating the generation of code comments. Nevertheless, this 
approach was limited to generating comments at the function 
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level. In contrast, our current work leverages the latest version 
of GPT, namely GPT-4, to design a variety of prompts that 
facilitate comment generation at two granularities: within 
individual lines of code and at the function level. Furthermore, 
we employ Meteor [23] as the metric for assessing comment 
generation performance, replacing BLEU [24]. This decision is 
based on Meteor's ability to recognize synonymous words that 
differ in appearance, offering a more nuanced evaluation of 
semantic accuracy. Moreover, we extend the use of GPT-4 
beyond comment generation, employing it to investigate 
additional code comprehension functionalities, such as code 
visualization. 

In summary, this paper makes the following contributions: 

1. A comprehensive survey of four research fields related to 
code comprehension approaches. 

2. An exploration into the use of LLMs for code 
comprehension tasks. 

3. The availability of the LLM-based code comprehension 
tasks discussed in this paper, alongside all experimental data, 
for public access [25]. 

II. RELATED WORK 

      In addition to the related works discussed in Sections I, 
other studies also explore the use of LLMs in software 
engineering. For example, a recent study [29] investigate the 
use of LLMs in code generation.  

 

III. STUDY OF CODE COMPREHENSION 

In this study, we will survey the tools that have been 
employed in the domain of code comprehension in the past. In 
terms of application, our emphasis will be on four research 
categories of comprehending code: code comments, EEG, 
experimental comprehension, and visualization. 

A. Code Comment Generation 

 A code comment describes the logic and function behind the 
source code, translating complex code into understandable 
natural language. Comprehensive comments can improve the 
readability of the project, thereby positively impacting software 
maintenance, facilitating software reuse, and benefiting various 
other facets of software engineering and related fields. 

 To generate code comments efficiently and accurately, 
Wong et al. [4] applied Question and Answer (Q&A) sites for 
automatic comment generation (AutoComment). By leveraging 
Q&A sites, they can post a couple of test questions and receive 
the code-description mappings that contain both code segments 
and descriptions. With these code-description mappings, 
comments can be automatically generated for open-source 
projects by matching the code segments. To validate the 
proposed approach, this work analyzed Java and Android 
tagged Q&A posts and extracted 132,767 code-description 
mappings. Utilizing these mappings, 102 comments were 
generated for 23 Java and Android projects. This study provides 
valuable insights into the area of code comment generation, 
shedding light on effective strategies, challenges, and potential 
advancements in enhancing code readability and understanding. 

However, a limitation of this work is its reliance on existing 
templates, especially since templates for specialized functions 
may not always be available. 

To eliminate reliance on templates, Liang et al. [5] 
developed a comment generation framework consisting of Code 
RNN and Code-GRU. In this framework, Code RNN is an 
arbitrary tree, where each program's parse tree is encoded into a 
neural network and each syntactic node is represented by a 
vector, thereby describing the structural information of source 
code. Code-GRU, a variant of Recurrent Neural Networks 
(RNNs), incorporates an additional choice gate, enabling it to 
directly handle the representation vectors of code blocks. When 
vector representations generated by Code RNN are fed into a 
Code-GRU, the entire framework effectively produces text 
descriptions of the code. This study utilized 10 open-source Java 
code repositories sourced from GitHub for performance 
validation. Compared with learning-based approaches, it 
achieved superior accuracy in code comments. This study offers 
a compatibility framework applicable to a range of 
programming languages, provided we have access to the parse 
tree of the input program. 

Loyola et al. [6] leveraged both code commits and intra-code 
documentation to produce informative and concise descriptions. 
They assumed that these two types of docstrings are 
interdependent, as any alterations to the code are expected to be 
reflected in its functionality. Based on this hypothesis, they 
designed an architecture that merges change descriptions with 
source code documentation, utilizing their relationship to guide 
the generation of comment descriptions. For the purpose of 
performance validation, this study created a dataset containing 
change history and docstring data from various real-world open-
source Python projects. The results show that considering 
signals from the content of the source code file contributes to 
improving the quality of comments. The finding suggests that 
further research considering the generation of descriptions from 
software artifacts from a more systemic perspective may be 
warranted. 

B. EEG 

The integration of EEG technology with machine learning 
and computational tools has opened new avenues in 
understanding the cognitive aspects of software development 
and code comprehension. This cutting-edge approach to 
neuroscientific research is increasingly being recognized for its 
potential to decode the complex neural activities underlying 
programming tasks, from code generation to debugging. By 
leveraging EEG data in conjunction with advanced analytical 
methods, researchers are embarking on a journey to uncover the 
cognitive processes that drive software engineering. This section 
is dedicated to exploring the innovative efforts, which combine 
EEG technology with diverse computational strategies, aiming 
to illuminate the neural mechanisms that support software 
engineering tasks and ultimately enhance our grasp of the 
cognitive dynamics involved in programming. 

Lin et al. [10] set the foundation by exploring cognition 
during program comprehension through EEG activities and eye 
movements. They analyzed how 33 computer science 
undergraduates’ cognitive processes, such as working memory 
and attention allocation, affect their performance in 

184
Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:44:32 UTC from IEEE Xplore.  Restrictions apply. 



programming tasks. The experiments read two programming 
tasks while their EEG activities and eye movements were 
recorded. The findings indicated that participants with high 
performance demonstrated superior working memory, as 
evidenced by increased theta power, more efficient allocation of 
attention resources (shown by reduced alpha power), and 
enhanced collaboration between working memory and semantic 
memory (reflected in elevated alpha power), during the 
understanding of complex programming constructs. This study 
not only highlights the cognitive roles in program 
comprehension but also offers insights for designing effective 
pedagogical strategies. 

Building upon this foundational knowledge, Ishida and 
Uwano [9] investigated the synchronization of eye movements 
and EEG activities during program comprehension tasks. They 
measured brain waves and eye movements of programmers as 
they comprehended source code to analyze differences in time-
series brain wave features between successful and unsuccessful 
comprehension. They discovered that participants who 
understood the code demonstrated significant increases in the α 
wave power spectrum and shifted their focus from specifications 
to source code more rapidly. This investigation into 
synchronized analysis suggests a method for real-time detection 

of programmers' comprehension. 

Gonçales et al. [8] expanded the exploration by assessing the 
potential of EEG data, combined with machine learning 
classifiers, to distinguish developers' code comprehension 
levels. Utilizing a dataset from 35 developers undertaking code 
comprehension tasks, this study evaluates K-Nearest Neighbor 
(KNN), Neural Network (NN), Naïve Bayes (NB), Random 
Forest (RF), and Support Vector Machine (SVM) classifiers. 
Results highlight the KNN classifier's superior performance, 
achieving an 86% f-measure mean compared to the other 
methods with 80%. This study underscores the potential of using 
EEG data to classify code comprehension, suggesting a 
paradigm shift towards integrating psychophysiological data in 
software engineering to enhance task assignment and assess 
code quality, presenting a significant leap towards 
understanding the cognitive process of code comprehension 
through ML and EEG data.  

In a subsequent study, Gonçales et al. [11] further refined the 
methodology by delving into the impact of filtering EEG signals 
on the classification of developers' code comprehension. The 
study enhances the precision of classification by employing both 
high and low pass filtering techniques designed with a Finite 
Impulse Response (FIR) filter using a Hamming window, aimed 
at removing noise and artifacts not pertinent to the cognitive 
processes involved in programming tasks. This meticulous 
process also encompassed the removal of abnormal signals and 
the application of Independent Component Analysis (ICA) 
through the fast ICA method, specifically to eliminate eye 
movement artifacts, thereby purifying the EEG data for analysis. 
The findings revealed a notable improvement in classification 
accuracy for the model trained on filtered EEG data, 
underscoring the efficacy of sophisticated EEG signal filtering 
in augmenting the precision of machine learning-based 
classification of developers' code comprehension.  

C. Experimental Comprehension 

To delve into the complexities of software readability and 
comprehension, Borsteler et al. [13] embarked on a study 
examining the influence of method chains and code comments 
through a detailed experimental analysis. Their investigation 
utilized code snippets that varied in the presence of method 
chains (with or without) and the nature of code comments (good, 
bad, or none). The participants, comprising first and second-year 
Computer Science students of varied coding backgrounds, were 
exposed to a series of code snippets in two rounds, tasked with 
evaluating the code and completing a cloze test. Analyzing data 
from 104 subjects, their findings revealed that while statement-
level code comments impacted software readability, they did not 
significantly affect comprehension. Similarly, the presence or 
absence of method chains showed no substantial correlation 
with either readability or comprehension. 

In a separate study, Swidan et al. [12] explored the "Reading 
Code Aloud" technique's effect on comprehension, engaging 49 
primary school students in their experiment. The students were 
divided into a control group of 24 and an experimental group of 
25, with both groups receiving three programming lessons 
lasting 1.5 hours each. Unlike the control group, the 
experimental group was instructed to read the code aloud 
collectively following the instructor. The evaluation, informed 
by Bloom’s taxonomy through an 11-question assessment, 
sought to gauge the students' understanding and comprehension 
levels. The outcomes suggested that while "Reading Code 
Aloud" enhanced code memorization, it did not significantly 
improve comprehension. These results indicate the potential of 
the method in educational settings, though they prompt further 
investigation with a larger sample size to validate the 
experiment's reliability. 

To explore the broader landscape of code comprehension 
research, Wyrich et al. [14] took a systematic mapping study, in 
which 95 experiments from 1979 to 2019 were reviewed. This 
comprehensive analysis aimed to understand how various 
studies approached the challenge of measuring code 
comprehension, focusing on experimental designs, participant 
demographics, and the nature of code snippets used. The study 
discovered a predominant use of within-subject designs and a 
shift towards using Java as the principal programming language 
in experiments. It also identified significant research themes, 
including the impact of semantic cues and developer 
characteristics on comprehension. The findings suggest a need 
for more standardized experiment designs and reporting to 
enhance the comparability and reliability of future code 
comprehension research. This mapping study provides a 
foundational resource for researchers by consolidating design 
characteristics and highlighting prevalent issues and 
opportunities for advancing the field of code comprehension. 

D. Visualization 
In the ever-evolving field of software development, the quest 

to enhance program comprehension through innovative 
visualization tools has led to a series of impactful studies, which 
illustrate a progressive journey toward understanding the 
multifaceted ways in which visual aids can improve our grasp of 
complex software systems. 

Cornelissen et al. [15] initiated this exploration by 
conducting a controlled experiment to quantitatively evaluate 
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the effectiveness of trace visualization, particularly through their 
tool EXTRAVIS, in enhancing program comprehension. 
EXTRAVIS offers interactive visualization of execution traces, 
including a massive sequence view and a circular bundle view, 
enabling users to grasp the program's global structure and 
behavior efficiently. The study showed statistically significant 
benefits in employing trace visualization, with users 
experiencing a 22% reduction in time required and a 43% 
improvement in task accuracy. Building on this foundation. 

Building upon this foundational insight into the benefits of 
visualization, Asenov et al. [16] expanded the scope by 
investigating the impact of enriched code visualizations on 
program comprehension through a user study involving 33 
developers. This research compared traditional syntax 
highlighting with enhanced visual presentations, demonstrating 
that richer visualizations could significantly reduce the time 
needed to answer code-related questions without causing visual 
overload. Their findings recommend increasing the visual 
variety in code presentations to boost developers' efficiency and 
understanding.  

Further advancing the conversation on the utility of specific 
visualization techniques, Umphress et al. [18] delved into the 
Control Structure Diagram (CSD) and the Complexity Profile 
Graph (CPG), demonstrating their roles in enhancing and 
measuring software code comprehensibility. The CSD, by 
overlaying graphical notations on source code, significantly 
improved comprehension among students, enabling more 
accurate and swift answers about the code. Conversely, the 
CPG, aiming to depict the relative complexity of code segments, 
showed its potential as a comprehensibility predictor by 
correlating complexity measures with the time required for 
correct understanding, despite no significant correlation with 
error rates. 

Yin and Keller [17] tied these thematic threads together by 
introducing “Visualization in Contexts”, a strategy that 
leverages tools like the Context Viewer within the SPOOL 
environment to foster program comprehension across various 
contexts and abstraction levels. This comprehensive strategy 
supports the formation and integration of diverse mental models 
through visualization, showcasing the potential of tools like the 
Context Viewer to significantly improve the efficiency and 
accuracy in understanding complex software systems. Together, 
these studies paint a progressive picture of the evolving 
landscape of software visualization tools and strategies, from 
foundational insights into trace visualization's benefits to the 
comprehensive application. 

IV. EVALUATION 

To explore the potential of utilizing LLMs in enhancing code 
comprehension, we developed two primary strategies: comment 
generation and code visualization. Please note that our objective 
is not to evaluate the overall performance of LLMs across tasks 
within a large dataset. Instead, we are conducting a thorough 
exploration to assess the potential performance of LLMs in code 
comprehension. 

To assess the capability of LLMs in generating code, we 
opted not to use the widely recognized Codexglue dataset [26]. 
This decision was driven by the following rationale: The 

Codexglue dataset consists of a vast amount of commented 
source code from real-world industry software, including 
numerous definitions and web API uses. However, our interest 
primarily lies in exploring the most challenging aspects of code 
comprehension, such as understanding code algorithms. 
Therefore, we randomly selected 9 algorithmic code samples 
from GeeksforGeeks [27], evenly distributed across difficulty 
levels with 3 easy, 3 medium, and 3 hard questions, to better 
align with our research focus. For our evaluation, we employed 
the Meteor [23], a widely recognized metric for assessing 
machine-generated text.  

A. Comment Generation 
For comment generation, we crafted two GPT prompts 

tailored to different levels of detail. The first prompt, "Please 
generate comments after each line of code," is designed for 
generating line-specific comments. The second, "Please 
generate a description for the whole function," aims to provide 
an overall description on entire functions.  

In our dataset of algorithmic code, the BLEU scores 
approach zero due to the presence of synonymous words 
generated by GPT-4.0 offering the same meaning which affect 
the precision of comment generation evaluation. The evaluation 
results using the METEOR metric are as follows: METEOR 
scores for easy, medium, and hard code comment generation 
tasks are 0.24/0.2/0.18, respectively. Similarly, the scores for 
easy, medium, and hard function description generation tasks 
are 0.34/0.30/0.30. These findings suggest that comment 
generation and function description generation exhibit 
acceptable performance levels.  

 

Fig. 1. GPT generated CFG 

B. Code Visualization  
In our study, we employ GPT 4.0 to generate Control Flow 

Graphs (CFGs) — a foundational graphical representation of 
code for code visualization purposes. After experimenting with 
various prompts, we find the most effective one to be: "Could 
you generate a control flow graph of the code in matplotlib 
format, ensuring that the nodes and edges do not overlap? On 
each node of the control flow graph, please use a short 
explanation sentence rather than raw code." An illustrative 
example is the code snippet titled "Capitalize the 1st character 
of all words having at least K characters" from GeeksforGeeks 
[28], which is used to generate a CFG as shown in Fig. 1.  
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In the resulting CFG, GPT 4.0 adeptly identifies each line of 
code and its structure, utilizing the code's functional essence to 
label the nodes within the CFG. This approach, facilitated by 
GPT 4.0, significantly enhances code comprehension by 
providing a clear, structured visual representation. Upon 
manually reviewing all the code snippets in our dataset, we 
noted that GPT-4.0 was able to accurately and clearly generate 
CFG for 7 out of 9 code snippets. One CFG generated from 
medium code is incorrect due to errors within the generated 
CFG. Furthermore, one CFG generated from an easy level code 
snippet is not flawless because GPT only use raw code for each 
node in the CFG. In the future work, researchers can design 
prompts to leverage GPT to generate other visualization graphs 
as shown in section II.D.  

V. CONCLUSION AND FUTURE WORK 

By categorizing and examining the distribution of research 
across four pivotal areas—code comment generation, EEG-
based cognitive studies, experimental comprehension studies, 
and code visualization techniques—this paper has provided a 
detailed overview of the methodologies and approaches 
employed to enhance the understanding of code among 
developers. Moreover, the exploration of LLMs, particularly in 
the realms of comment generation and code visualization, 
underscores the transformative potential these technologies hold 
for the future of improving code comprehension. In future work, 
we plan to refine and tune LLMs to enhance the accuracy of 
comment and visualization graphs other than CFG generation.  
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