
Code Comprehension: Review and Large Language

Models Exploration

Jielun Cui

 Computer Science

 University of Cincinnati

 Cincinnati, USA

 cuiju@mail.uc.edu

Yutong Zhao

 Computer Science and

Cybersecurity

 University of Central Missouri

 Warrensburg, USA

 yutongzhao@ucmo.edu

 Chong Yu

 Computer Science

 University of Cincinnati

 Cincinnati, USA

 yuc5@ucmail.uc.edu

Jiaqi Huang

 Computer Science and

Cybersecurity

 University of Central Missouri

 Warrensburg, USA

 jhuang@ucmo.edu

 Yuanyuan Wu

 Computer Science

 University of Cincinnati

 Cincinnati, USA

 wu3yy@mail.uc.edu

 Yu Zhao

 Computer Science

 University of Cincinnati

 Cincinnati, USA

 zhao3y3@ucmail.uc.edu

Abstract—This paper presents a comprehensive survey

of code comprehension, a crucial aspect of Software

Engineering that encompasses the process by which

developers understand code. Our study categorizes code

comprehension research into four areas: code comment

generation, the correlation of EEG signals with code

comprehension, experimental studies on code

comprehension, and code visualization, detailing

methodologies within each. Further, we investigate the role

of Large Language Models (LLMs) in enhancing code

comprehension tasks, highlighting the potential future

research opportunities. This research aims to provide

software engineers and researchers with a comprehensive

understanding of the current technologies for code

comprehension and to point out possible directions for

future research.

Keywords—Code comprehension, LLMs, comment

generation

I. INTRODUCTION

 Code Comprehension is a fundamental concept in the
domains of Software Engineering. It describes the process
through which developers interpret and understand the meaning
of code. This includes not only the direct grasp of the code's
semantics but also an understanding of the underlying design
goals, architecture, and significant potential impacts. Such
comprehension is crucial for various aspects of software
development, including the need for developers to reuse legacy
code written by others and software maintenance requiring
updates/fixes to existing code. A study [1] found that about half
of software engineers leave their jobs every two years. This
frequent job switching makes it even more important to
understand other developer’s code quickly and efficiently.
Moreover, software maintenance, a critical stage of the

Software Development Life Cycle (SDLC), can account for up
to a huge percentage of a software's total cost of ownership [2].
With an estimated 70% of a developer's time spent
understanding code [3], there's a strong incentive for software
companies and developers to develop strategies for more
efficient code comprehension solutions to reduce costs.

 This paper aims to offer a thorough review of code
comprehension, detailing the distribution and trends of research
across various categories. It is structured around four key
research fields related to code comprehension: code comment
generation [4]-[7], the correlation between
electroencephalogram (EEG) signals and code comprehension
[8]-[11], experimental studies on code comprehension [12]-
[14], and code visualization [15]-[18]. For each category, we
will present a selection of representative approaches,
accompanied by an in-depth discussion of their methodologies.

In addition to analyzing existing literature, our study
leverages the innovative capabilities of Large Language Models
(LLMs) to assist in code comprehension. The emergence of
LLMs — pre-trained models enriched with vast amounts of real-
world data, exemplified by ChatGPT [19]—has notably
advanced progress across various software engineering tasks in
recent years. For instance, Liu et al. have employed LLMs to
generate test inputs for Android applications [20]. In our work,
we design specific prompts to investigate the current capacity of
LLMs in code comprehension tasks, aiming to uncover future
research opportunities. Some existing works have previously
explored methods for generating source code comments, such as
the study by Xiaotao et al. [21]. However, this particular study
was published in 2019, a period during which Large Language
Models (LLMs) had not yet demonstrated their current level of
efficiency, resulting in their exclusion from the analysis.
Another work Codex [22] is a GPT-3 based approach for
automating the generation of code comments. Nevertheless, this
approach was limited to generating comments at the function

183

2024 4th IEEE International Conference on Software Engineering and Artificial Intelligence

979-8-3503-7434-6/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 4
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g

an
d

Ar
tif

ic
ia

l I
nt

el
lig

en
ce

 (S
EA

I)
|

97
9-

8-
35

03
-7

43
4-

6/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SE

AI
62

07
2.

20
24

.1
06

74
26

3

Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

level. In contrast, our current work leverages the latest version
of GPT, namely GPT-4, to design a variety of prompts that
facilitate comment generation at two granularities: within
individual lines of code and at the function level. Furthermore,
we employ Meteor [23] as the metric for assessing comment
generation performance, replacing BLEU [24]. This decision is
based on Meteor's ability to recognize synonymous words that
differ in appearance, offering a more nuanced evaluation of
semantic accuracy. Moreover, we extend the use of GPT-4
beyond comment generation, employing it to investigate
additional code comprehension functionalities, such as code
visualization.

In summary, this paper makes the following contributions:

1. A comprehensive survey of four research fields related to
code comprehension approaches.

2. An exploration into the use of LLMs for code
comprehension tasks.

3. The availability of the LLM-based code comprehension
tasks discussed in this paper, alongside all experimental data,
for public access [25].

II. RELATED WORK

 In addition to the related works discussed in Sections I,
other studies also explore the use of LLMs in software
engineering. For example, a recent study [29] investigate the
use of LLMs in code generation.

III. STUDY OF CODE COMPREHENSION

In this study, we will survey the tools that have been
employed in the domain of code comprehension in the past. In
terms of application, our emphasis will be on four research
categories of comprehending code: code comments, EEG,
experimental comprehension, and visualization.

A. Code Comment Generation

 A code comment describes the logic and function behind the
source code, translating complex code into understandable
natural language. Comprehensive comments can improve the
readability of the project, thereby positively impacting software
maintenance, facilitating software reuse, and benefiting various
other facets of software engineering and related fields.

 To generate code comments efficiently and accurately,
Wong et al. [4] applied Question and Answer (Q&A) sites for
automatic comment generation (AutoComment). By leveraging
Q&A sites, they can post a couple of test questions and receive
the code-description mappings that contain both code segments
and descriptions. With these code-description mappings,
comments can be automatically generated for open-source
projects by matching the code segments. To validate the
proposed approach, this work analyzed Java and Android
tagged Q&A posts and extracted 132,767 code-description
mappings. Utilizing these mappings, 102 comments were
generated for 23 Java and Android projects. This study provides
valuable insights into the area of code comment generation,
shedding light on effective strategies, challenges, and potential
advancements in enhancing code readability and understanding.

However, a limitation of this work is its reliance on existing
templates, especially since templates for specialized functions
may not always be available.

To eliminate reliance on templates, Liang et al. [5]
developed a comment generation framework consisting of Code
RNN and Code-GRU. In this framework, Code RNN is an
arbitrary tree, where each program's parse tree is encoded into a
neural network and each syntactic node is represented by a
vector, thereby describing the structural information of source
code. Code-GRU, a variant of Recurrent Neural Networks
(RNNs), incorporates an additional choice gate, enabling it to
directly handle the representation vectors of code blocks. When
vector representations generated by Code RNN are fed into a
Code-GRU, the entire framework effectively produces text
descriptions of the code. This study utilized 10 open-source Java
code repositories sourced from GitHub for performance
validation. Compared with learning-based approaches, it
achieved superior accuracy in code comments. This study offers
a compatibility framework applicable to a range of
programming languages, provided we have access to the parse
tree of the input program.

Loyola et al. [6] leveraged both code commits and intra-code
documentation to produce informative and concise descriptions.
They assumed that these two types of docstrings are
interdependent, as any alterations to the code are expected to be
reflected in its functionality. Based on this hypothesis, they
designed an architecture that merges change descriptions with
source code documentation, utilizing their relationship to guide
the generation of comment descriptions. For the purpose of
performance validation, this study created a dataset containing
change history and docstring data from various real-world open-
source Python projects. The results show that considering
signals from the content of the source code file contributes to
improving the quality of comments. The finding suggests that
further research considering the generation of descriptions from
software artifacts from a more systemic perspective may be
warranted.

B. EEG

The integration of EEG technology with machine learning
and computational tools has opened new avenues in
understanding the cognitive aspects of software development
and code comprehension. This cutting-edge approach to
neuroscientific research is increasingly being recognized for its
potential to decode the complex neural activities underlying
programming tasks, from code generation to debugging. By
leveraging EEG data in conjunction with advanced analytical
methods, researchers are embarking on a journey to uncover the
cognitive processes that drive software engineering. This section
is dedicated to exploring the innovative efforts, which combine
EEG technology with diverse computational strategies, aiming
to illuminate the neural mechanisms that support software
engineering tasks and ultimately enhance our grasp of the
cognitive dynamics involved in programming.

Lin et al. [10] set the foundation by exploring cognition
during program comprehension through EEG activities and eye
movements. They analyzed how 33 computer science
undergraduates’ cognitive processes, such as working memory
and attention allocation, affect their performance in

184
Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

programming tasks. The experiments read two programming
tasks while their EEG activities and eye movements were
recorded. The findings indicated that participants with high
performance demonstrated superior working memory, as
evidenced by increased theta power, more efficient allocation of
attention resources (shown by reduced alpha power), and
enhanced collaboration between working memory and semantic
memory (reflected in elevated alpha power), during the
understanding of complex programming constructs. This study
not only highlights the cognitive roles in program
comprehension but also offers insights for designing effective
pedagogical strategies.

Building upon this foundational knowledge, Ishida and
Uwano [9] investigated the synchronization of eye movements
and EEG activities during program comprehension tasks. They
measured brain waves and eye movements of programmers as
they comprehended source code to analyze differences in time-
series brain wave features between successful and unsuccessful
comprehension. They discovered that participants who
understood the code demonstrated significant increases in the α
wave power spectrum and shifted their focus from specifications
to source code more rapidly. This investigation into
synchronized analysis suggests a method for real-time detection

of programmers' comprehension.

Gonçales et al. [8] expanded the exploration by assessing the
potential of EEG data, combined with machine learning
classifiers, to distinguish developers' code comprehension
levels. Utilizing a dataset from 35 developers undertaking code
comprehension tasks, this study evaluates K-Nearest Neighbor
(KNN), Neural Network (NN), Naïve Bayes (NB), Random
Forest (RF), and Support Vector Machine (SVM) classifiers.
Results highlight the KNN classifier's superior performance,
achieving an 86% f-measure mean compared to the other
methods with 80%. This study underscores the potential of using
EEG data to classify code comprehension, suggesting a
paradigm shift towards integrating psychophysiological data in
software engineering to enhance task assignment and assess
code quality, presenting a significant leap towards
understanding the cognitive process of code comprehension
through ML and EEG data.

In a subsequent study, Gonçales et al. [11] further refined the
methodology by delving into the impact of filtering EEG signals
on the classification of developers' code comprehension. The
study enhances the precision of classification by employing both
high and low pass filtering techniques designed with a Finite
Impulse Response (FIR) filter using a Hamming window, aimed
at removing noise and artifacts not pertinent to the cognitive
processes involved in programming tasks. This meticulous
process also encompassed the removal of abnormal signals and
the application of Independent Component Analysis (ICA)
through the fast ICA method, specifically to eliminate eye
movement artifacts, thereby purifying the EEG data for analysis.
The findings revealed a notable improvement in classification
accuracy for the model trained on filtered EEG data,
underscoring the efficacy of sophisticated EEG signal filtering
in augmenting the precision of machine learning-based
classification of developers' code comprehension.

C. Experimental Comprehension

To delve into the complexities of software readability and
comprehension, Borsteler et al. [13] embarked on a study
examining the influence of method chains and code comments
through a detailed experimental analysis. Their investigation
utilized code snippets that varied in the presence of method
chains (with or without) and the nature of code comments (good,
bad, or none). The participants, comprising first and second-year
Computer Science students of varied coding backgrounds, were
exposed to a series of code snippets in two rounds, tasked with
evaluating the code and completing a cloze test. Analyzing data
from 104 subjects, their findings revealed that while statement-
level code comments impacted software readability, they did not
significantly affect comprehension. Similarly, the presence or
absence of method chains showed no substantial correlation
with either readability or comprehension.

In a separate study, Swidan et al. [12] explored the "Reading
Code Aloud" technique's effect on comprehension, engaging 49
primary school students in their experiment. The students were
divided into a control group of 24 and an experimental group of
25, with both groups receiving three programming lessons
lasting 1.5 hours each. Unlike the control group, the
experimental group was instructed to read the code aloud
collectively following the instructor. The evaluation, informed
by Bloom’s taxonomy through an 11-question assessment,
sought to gauge the students' understanding and comprehension
levels. The outcomes suggested that while "Reading Code
Aloud" enhanced code memorization, it did not significantly
improve comprehension. These results indicate the potential of
the method in educational settings, though they prompt further
investigation with a larger sample size to validate the
experiment's reliability.

To explore the broader landscape of code comprehension
research, Wyrich et al. [14] took a systematic mapping study, in
which 95 experiments from 1979 to 2019 were reviewed. This
comprehensive analysis aimed to understand how various
studies approached the challenge of measuring code
comprehension, focusing on experimental designs, participant
demographics, and the nature of code snippets used. The study
discovered a predominant use of within-subject designs and a
shift towards using Java as the principal programming language
in experiments. It also identified significant research themes,
including the impact of semantic cues and developer
characteristics on comprehension. The findings suggest a need
for more standardized experiment designs and reporting to
enhance the comparability and reliability of future code
comprehension research. This mapping study provides a
foundational resource for researchers by consolidating design
characteristics and highlighting prevalent issues and
opportunities for advancing the field of code comprehension.

D. Visualization
In the ever-evolving field of software development, the quest

to enhance program comprehension through innovative
visualization tools has led to a series of impactful studies, which
illustrate a progressive journey toward understanding the
multifaceted ways in which visual aids can improve our grasp of
complex software systems.

Cornelissen et al. [15] initiated this exploration by
conducting a controlled experiment to quantitatively evaluate

185
Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

the effectiveness of trace visualization, particularly through their
tool EXTRAVIS, in enhancing program comprehension.
EXTRAVIS offers interactive visualization of execution traces,
including a massive sequence view and a circular bundle view,
enabling users to grasp the program's global structure and
behavior efficiently. The study showed statistically significant
benefits in employing trace visualization, with users
experiencing a 22% reduction in time required and a 43%
improvement in task accuracy. Building on this foundation.

Building upon this foundational insight into the benefits of
visualization, Asenov et al. [16] expanded the scope by
investigating the impact of enriched code visualizations on
program comprehension through a user study involving 33
developers. This research compared traditional syntax
highlighting with enhanced visual presentations, demonstrating
that richer visualizations could significantly reduce the time
needed to answer code-related questions without causing visual
overload. Their findings recommend increasing the visual
variety in code presentations to boost developers' efficiency and
understanding.

Further advancing the conversation on the utility of specific
visualization techniques, Umphress et al. [18] delved into the
Control Structure Diagram (CSD) and the Complexity Profile
Graph (CPG), demonstrating their roles in enhancing and
measuring software code comprehensibility. The CSD, by
overlaying graphical notations on source code, significantly
improved comprehension among students, enabling more
accurate and swift answers about the code. Conversely, the
CPG, aiming to depict the relative complexity of code segments,
showed its potential as a comprehensibility predictor by
correlating complexity measures with the time required for
correct understanding, despite no significant correlation with
error rates.

Yin and Keller [17] tied these thematic threads together by
introducing “Visualization in Contexts”, a strategy that
leverages tools like the Context Viewer within the SPOOL
environment to foster program comprehension across various
contexts and abstraction levels. This comprehensive strategy
supports the formation and integration of diverse mental models
through visualization, showcasing the potential of tools like the
Context Viewer to significantly improve the efficiency and
accuracy in understanding complex software systems. Together,
these studies paint a progressive picture of the evolving
landscape of software visualization tools and strategies, from
foundational insights into trace visualization's benefits to the
comprehensive application.

IV. EVALUATION

To explore the potential of utilizing LLMs in enhancing code
comprehension, we developed two primary strategies: comment
generation and code visualization. Please note that our objective
is not to evaluate the overall performance of LLMs across tasks
within a large dataset. Instead, we are conducting a thorough
exploration to assess the potential performance of LLMs in code
comprehension.

To assess the capability of LLMs in generating code, we
opted not to use the widely recognized Codexglue dataset [26].
This decision was driven by the following rationale: The

Codexglue dataset consists of a vast amount of commented
source code from real-world industry software, including
numerous definitions and web API uses. However, our interest
primarily lies in exploring the most challenging aspects of code
comprehension, such as understanding code algorithms.
Therefore, we randomly selected 9 algorithmic code samples
from GeeksforGeeks [27], evenly distributed across difficulty
levels with 3 easy, 3 medium, and 3 hard questions, to better
align with our research focus. For our evaluation, we employed
the Meteor [23], a widely recognized metric for assessing
machine-generated text.

A. Comment Generation
For comment generation, we crafted two GPT prompts

tailored to different levels of detail. The first prompt, "Please
generate comments after each line of code," is designed for
generating line-specific comments. The second, "Please
generate a description for the whole function," aims to provide
an overall description on entire functions.

In our dataset of algorithmic code, the BLEU scores
approach zero due to the presence of synonymous words
generated by GPT-4.0 offering the same meaning which affect
the precision of comment generation evaluation. The evaluation
results using the METEOR metric are as follows: METEOR
scores for easy, medium, and hard code comment generation
tasks are 0.24/0.2/0.18, respectively. Similarly, the scores for
easy, medium, and hard function description generation tasks
are 0.34/0.30/0.30. These findings suggest that comment
generation and function description generation exhibit
acceptable performance levels.

Fig. 1. GPT generated CFG

B. Code Visualization
In our study, we employ GPT 4.0 to generate Control Flow

Graphs (CFGs) — a foundational graphical representation of
code for code visualization purposes. After experimenting with
various prompts, we find the most effective one to be: "Could
you generate a control flow graph of the code in matplotlib
format, ensuring that the nodes and edges do not overlap? On
each node of the control flow graph, please use a short
explanation sentence rather than raw code." An illustrative
example is the code snippet titled "Capitalize the 1st character
of all words having at least K characters" from GeeksforGeeks
[28], which is used to generate a CFG as shown in Fig. 1.

186
Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

In the resulting CFG, GPT 4.0 adeptly identifies each line of
code and its structure, utilizing the code's functional essence to
label the nodes within the CFG. This approach, facilitated by
GPT 4.0, significantly enhances code comprehension by
providing a clear, structured visual representation. Upon
manually reviewing all the code snippets in our dataset, we
noted that GPT-4.0 was able to accurately and clearly generate
CFG for 7 out of 9 code snippets. One CFG generated from
medium code is incorrect due to errors within the generated
CFG. Furthermore, one CFG generated from an easy level code
snippet is not flawless because GPT only use raw code for each
node in the CFG. In the future work, researchers can design
prompts to leverage GPT to generate other visualization graphs
as shown in section II.D.

V. CONCLUSION AND FUTURE WORK

By categorizing and examining the distribution of research
across four pivotal areas—code comment generation, EEG-
based cognitive studies, experimental comprehension studies,
and code visualization techniques—this paper has provided a
detailed overview of the methodologies and approaches
employed to enhance the understanding of code among
developers. Moreover, the exploration of LLMs, particularly in
the realms of comment generation and code visualization,
underscores the transformative potential these technologies hold
for the future of improving code comprehension. In future work,
we plan to refine and tune LLMs to enhance the accuracy of
comment and visualization graphs other than CFG generation.

ACKNOWLEDGMENT

This research is supported by the NSF grant CCF-2342355.

REFERENCES

[1] How long do software engineers stay at a job?
https://www.linkedin.com/pulse/how-long-do-software-engineers-stay-
job-firas-abbasi/

[2] Software Maintenance Costs in Brief: https://www.scnsoft.com/software-
development/maintenance-and-support/costs

[3] Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I know what
you did last summer—An investigation of how developers spend their
time. In Proceedings of the IEEE 23rd International Conference on
Program Comprehension. IEEE, 25–35.

[4] Wong, Edmund, Jinqiu Yang, and Lin Tan. "Autocomment: Mining
question and answer sites for automatic comment generation." 2013 28th
IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2013.

[5] Liang, Yuding, and Kenny Zhu. "Automatic generation of text descriptive
comments for code blocks." Proceedings of the AAAI conference on
artificial intelligence. Vol. 32. No. 1. 2018.

[6] Loyola, Pablo, et al. "Content aware source code change description
generation." Proceedings of the 11th International Conference on Natural
Language Generation. 2018.

[7] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, ‘‘Deep code comment generation,’’
in Proc. 26th Conf. Program Comprehension, May 2018, pp. 200–210.

[8] Gonçales, Lucian José, Kleinner Farias, Lucas Silveira Kupssinskü, and
Matheus Segalotto. "An empirical evaluation of machine learning
techniques to classify code comprehension based on EEG data." Expert
Systems with Applications 203 (2022): 117354.

[9] Ishida, Toyomi, and Hidetake Uwano. "Synchronized analysis of eye
movement and EEG during program comprehension." In 2019
IEEE/ACM 6th International Workshop on Eye Movements in
Programming (EMIP), pp. 26-32. IEEE, 2019.

[10] Lin, Yu-Tzu, Yi-Zhi Liao, Xiao Hu, and Cheng-Chih Wu. "EEG activities
during program comprehension: An exploration of cognition." IEEE
Access 9 (2021): 120407-120421.

[11] Gonçales, Lucian Jose, Kleinner Farias, Lucas Kupssinskü, and Matheus
Segalotto. "The effects of applying filters on EEG signals for classifying
developers’ code comprehension." Journal of applied research and
technology 19, no. 6 (2021): 584-602.

[12] Swidan, Alaaeddin, and Felienne Hermans. “The effect of reading code
aloud on comprehension: an empirical study with school students.” In
Proceedings of the ACM Conference on Global Computing Education, pp.
178-184. 2019.

[13] Börstler, Jürgen, and Barbara Paech. "The role of method chains and
comments in software readability and comprehension—an experiment."
IEEE Transactions on Software Engineering 42, no. 9 (2016): 886-898.

[14] Wyrich, Marvin, Justus Bogner, and Stefan Wagner. "40 years of
designing code comprehension experiments: A systematic mapping
study." ACM Computing Surveys 56, no. 4 (2023): 1-42.

[15] Cornelissen B, Zaidman A, van Deursen A. A controlled experiment for
program comprehension through trace visualization[J]. IEEE
Transactions on Software Engineering, 2010, 37(3): 341-355.

[16] Asenov D, Hilliges O, Müller P. The effect of richer visualizations on
code comprehension[C]//Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems. 2016: 5040-5045.

[17] Yin R, Keller R K. Program comprehension by visualization in contexts[C]
International Conference on Software Maintenance, 2002. Proceedings.
IEEE, 2002: 332-341.

[18] Umphress D A, Hendrix T D, Cross Ii J H, et al. Software visualizations
for improving and measuring the comprehensibility of source code[J].
Science of Computer Programming, 2006, 60(2): 121-133.

[19] ChatGPT: https://chat.openai.com/

[20] Liu, Zhe, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu,
Xing Che, Dandan Wang, and Qing Wang. "Make LLM a Testing Expert:
Bringing Human-like Interaction to Mobile GUI Testing via
Functionality-aware Decisions." arXiv preprint arXiv:2310.15780 (2023).

[21] Song, Xiaotao, et al. "A survey of automatic generation of source code
comments: Algorithms and techniques." IEEE Access 7 (2019).

[22] Khan, Junaed Younus, and Gias Uddin. "Automatic code documentation
generation using gpt-3." In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1-6.
2022.

[23] Agarwal, Abhaya, and Alon Lavie. "Meteor, m-bleu and m-ter:
Evaluation metrics for high-correlation with human rankings of machine
translation output." In Proceedings of the Third Workshop on Statistical
Machine Translation, pp. 115-118. 2008.

[24] Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. "Bleu:
a method for automatic evaluation of machine translation." In Proceedings
of the 40th annual meeting of the Association for Computational
Linguistics, pp. 311-318. 2002.

[25] PublicAccess https://github.com/Paul-Cui-Bugkiller/Code-
Comprehension-Review-and-Large-Language-Models-Exploration

[26] Lu, Shuai, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,
Ambrosio Blanco, Colin Clement et al. "Codexglue: A machine learning
benchmark dataset for code understanding and generation." arXiv preprint
arXiv:2102.04664 (2021).

[27] GeeksforGeeks https://www.geeksforgeeks.org/

[28] "Capitalize 1st character of all words having at least K characters” in
GeeksforGeeks, https://www.geeksforgeeks.org/capitalize-1st-character-
of-all-words-having-at-least-k-characters/

[29] Wang, Jianxun, and Yixiang Chen. "A Review on Code Generation with
LLMs: Application and Evaluation." 2023 IEEE International Conference
on Medical Artificial Intelligence (MedAI). IEEE, 2023.

[30] Conrad Czejdo and Sambit Bhattacharya, "Increasing, Accessibility of
Language Models with Multi-stage Information Extraction," Advances in
Information Technology, Vol.13, No. 2, pp. 181-185Apri1 2022.

[31] Herry Sujaini, Samuel Cahyawijaya, and Arif B. Putra, "Analysis of
Language Model Role in improving Machine Translation Accuracy for
Extremely Low Resource Languages," Journal of Advances in
Information Technology, Vol. 14, No.5, pp.1073-1081, 2023

187
Authorized licensed use limited to: University of Cincinnati. Downloaded on January 23,2025 at 01:44:32 UTC from IEEE Xplore. Restrictions apply.

