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Abstract—Multi-range query (MRQ) is a typical multi-
attribute data query widely used in various practical applications.
It is capable of searching all data objects contained in a
query request. Many privacy-preserving MRQ schemes have
been proposed to realize MRQ on encrypted data. However,
existing MRQ schemes only consider the security threat caused
by access pattern leakage, not the harm of volume pattern
leakage. Moreover, most existing schemes cannot achieve efficient
queries and updates while preserving the access pattern. In
this paper, we propose an efficient MRQ scheme for hiding
volume and access patterns. We first design a joint data index
using Order-Revealing Encryption (ORE) and Pseudo-random
functions (PRFs) to realize volume-hiding range queries. Then,
we combine the private set intersection (PSI) and hardware
Software Guard Extensions (SGX) to compute each attribute’s
intersection of query results. In addition, we preserve access
patterns during queries by designing a batch refresh algorithm
and an update protocol. Finally, rigorous security analysis and
extensive experiments demonstrate the security and performance
of our scheme in real-world scenarios.
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I. INTRODUCTION

NOWADAYS, encrypted MRQs services greatly facilitate
people’s lives. Millions of users are involved in various

applications such as social networks, smart transportation,
and e-healthcare, which rely on encrypted MRQs. Existing
encrypted MRQ schemes allow partial information leakage,
such as access and search patterns, to balance efficiency and
security during the setup and query phases. However, the
adversary can utilize the leaked patterns to launch Leakage-
abused Attacks (LAAs), exploiting vulnerabilities [1], [2], [3],
[4], [5], [6], [7]. For instance, LAAs against encrypted range
queries usually utilize access pattern to rebuild the datasets
[1], [2], [3], [4], while a few advanced LAAs also use search
pattern as supplementary information [5], [6], [7]. Therefore,
existing studies [8], [9], [10] prioritize preserving the access
pattern in encrypted MRQs to mitigate the risk of information
leakage. Furthermore, the correlation between the query token
(used to perform the search) and the response volume of
retrieved data is revealed by different queries (i.e., volume
pattern), such that the adversary can infer the value relations
of index entries using the distribution of the response volume.
In addition, studies [1], [3], [11] identified LAAs exploiting
volume-pattern leakage, which can lead to the unauthorized
access of sensitive information within encrypted datasets and
query responses.

To cope with the new LAAs, recent works [12], [13],
[14], [15], [16], [17] proposed volume-hiding index designs
to enhance security and privacy in keyword-based queries.
However, these schemes face limitations in achieving volume-
hiding over encrypted range queries due to two key features:
(I) Unlike keyword-based queries, the result size of range
queries cannot be pre-determined. Without prior knowledge
of the result size, clients must download all datasets to hide
volume pattern leakage, leading to significant bandwidth over-
head; (II) The continuous nature of range query results (i.e.,
access pattern) creates multiple unique intersections that adver-
saries can exploit to infer plaintext distribution in the dataset.
For instance, the result set for endpoint values appears in all
other range query results. By analyzing these intersections, an
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attacker can infer data distribution even if the volume pat-
tern is protected. To address these challenges, HybrIDX [18]
combines cryptographic primitives with trusted hardware to
enable encrypted range queries with volume-hiding. It utilizes
the enclave to split a range query into independent sub-queries,
protecting confidentiality during searches from an untrusted
server. Similarly, [19] divides the data range into sub-ranges
and designs an inverted index based on order-weighted and
bitmap indexes to achieve volume-hiding encrypted range
queries.

However, despite the effectiveness of both schemes in
single-attribute volume-hiding range queries, challenges per-
sist when extending them to encrypted range queries over
multi-attribute datasets: (I) HybrIDX utilizes enclave to store
indexes and perform searches, but the limited memory of the
enclave (128MB) restricts HybrIDX’s application on large-
scale multi-attribute datasets; (II) In [19], clients are burdened
with storing the binary index BT and performing partial
searches locally, imposing huge overheads on clients. In addi-
tion, the inverted index in [19] cannot be directly extended to
multi-attribute for large-scale range queries. To avoid enclave
memory limitations, we store the joint index on the storage
server, while the enclave is responsible only for generating
query tokens for the multi-maps.

In this paper, we propose VHIDX, a volume-hiding range
queries scheme for encrypted multi-attribute datasets. VHIDX
effectively addresses key challenges while ensuring efficient
privacy-preserving MRQs. To balance security and practicality,
it designs a joint index framework, consisting of range-based
indexes and multi-maps to hide the result volumes for each
attribute. VHIDX then proposes a secure and batch search
protocol to retrieve matched results. It first retrieves attribute
values from the range-based index, and then uses the enclave
to decompose the query into independent sub-queries for
each value. The corresponding results are fetched from the
multi-maps, which consistently have smaller volumes. Finally,
VHIDX applies a private set intersection protocol to compute
the MRQ results and return them to the clients.

To construct fixed-volume result sets for sub-queries with
different attribute values, we draw inspiration from the multi-
map structure used in volume-hiding encrypted queries [15].
For each attribute, the result set of matching values is divided
into ciphertext blocks of equal volume. However, since the
multi-map structure does not directly support range queries,
we design an encrypted range-based index using a binary tree.
This index enables the mapping of index entries to the multi-
maps. Finally, we integrate the joint indexes with our secure
batch query protocol, achieving volume-hiding range queries
over encrypted multi-attribute datasets.

In addition to volume pattern protection, we mitigate access
pattern leakage during queries. To this end, we cache the
query results into the enclave at each query and periodically
refresh the cached data using our proposed secure batch
refresh algorithm. This approach reduces access pattern leak-
age and lowers communication overhead between clients and
the server. We summarize the main contributions below:

1) We design VHIDX as the first scheme that can
perform volume-hiding range queries on encrypted

multi-attribute datasets. For each attribute, the joint
indexes in VHIDX utilize the encrypted tree structure
to index the attribute values, and store the data records
in the multi-maps. Based on the aid of the enclave, the
joint indexes achieve secure and efficient retrieval.

2) We propose a secure batch query protocol and a batch
refresh algorithm. Combined with the joint indexes,
VHIDX implements volume-hiding for query results and
access pattern protection.

3) Based on the analysis and characterization of leakage
information during setup and queries, we formally define
the leakage function of VHIDX and rigorously prove its
security.

4) We implement a prototype of VHIDX and evaluate its
performance under a real-world dataset. The experimen-
tal results demonstrate that VHIDX has a significant
efficiency advantage over the state-of-the-art in existing
encrypted MRQ schemes.

The remainder of this paper is organized as follows:
Section II studies existing work related to our scheme.
Section III presents the preliminaries involved in our design.
Section IV formally defines the security model and describes
the threat model of our scheme as well as the design goals.
Section V presents the concrete construction of our scheme.
Sections VI and VII conduct security analysis and performance
evaluation, respectively. Finally, we summarize the work of
this paper in Section VIII.

II. RELATED WORK

A. Volume-Hiding Scheme

Recent attacks [1], [3], [11] against encrypted queries
highlight the importance of volume-hiding, a novel concept
in LAAs following access and search patterns. Volume-hiding
ensures that the size of query results is hidden. Although a
naive way to achieve volume-hiding involves padding query
results to ensure identical volumes [12], [13], [14], this incurs
extra computational and communication overhead. In their
work [15], [16], Kamara et al. introduced two volume-hiding
encrypted keyword query schemes using multi-maps. They
mapped each keyword query result into multiple fixed-length
ciphertext blocks, so that the (fixed) maximum volume of
the input dataset is consistent with the query results in the
ciphertext blocks. Petal et al. [17] utilized Cuckoo filters
and differential privacy to reduce the cost of padding while
achieving volume-hiding.

However, these keyword-based query schemes do not apply
to range-based queries, as discussed in Section I. Addressing
this limitation, Ren et al. [18] introduced a novel hybrid
data index with a hardware enclave, enabling volume-hiding
in range-based queries. By deploying a binary tree in the
enclave and outsourcing encrypted multi-maps to the server,
they convert range queries into multiple sub-queries using the
tree index and generate encrypted labels. After obtaining the
labels, the server retrieves in encrypted multi-maps and returns
fixed-length ciphertext blocks for clients. Although the trusted
computing environment of the enclave facilitates the scheme
[18], its memory space poses a primary limitation. Similarly,
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the work [19] divides the entire data range into multiple
independent partitions and stores partition information on the
client using a local search tree. Additionally, they combined
the order-weighted inverted index and bitmap structure to
implement range queries with volume-hiding. However, the
client incurs extra overhead by performing exact retrieves
locally after obtaining matched partitions.

B. Encrypted Multi-Attribute Range Queries

In terms of cryptographic primitives, while order-preserving
encryption (OPE) facilitates encrypted range queries [20], [21]
due to its protection of plaintext order, it is vulnerable to
chosen plaintext attacks [22], compromising plaintext order
privacy. Subsequently, efforts integrating public key cryptog-
raphy, such as Hidden Vector Encryption (HVE) [23], [24],
[25], aimed to enhance data privacy in MRQs. Boneh and
Waters [23] achieved data privacy protection in MRQs with
Hidden Vector Encryption (HVE). Moreover, Wang et al.
[24] improved the query efficiency by combining R-tree and
HVE. Shi et al. [25] decomposed multi-attribute ranges into
single-attribute ones, and protected data privacy with bilinear
pairings. However, the above schemes are not applicable
in real scenarios due to the high overhead of public key
cryptography.

On the other hand, certain data structure methods, such
as bucket division [26], [27], focus on maintaining the order
of data within buckets to prevent order information leakage.
However, these methods often burden resource-constrained
clients and may generate false positive records in query
results, thus requiring additional computational overhead for
filtering.

Additionally, tree indexes have emerged as a mainstream
data structure in encrypted MRQs [10], [28], [29], [30], [31],
[32], [33], [34]. Lu et al. [28] combined B+ tree with sym-
metric key encryption to handle single-attribute range queries
and extended it to MRQs. Other schemes [29], [30] utilized
Asymmetric Scalar Product Encryption (ASPE) for data pri-
vacy protection and R-trees for multi-dimensional retrieval.
However, these schemes cannot implement semantic security
in the random oracle model. To improve search efficiency,
Zheng et al. proposed PRQ and PMRQ based on R-tree.
Both schemes utilized encoding techniques to encode attributes
and ASPE to preserve data and query privacy. Yang et al.
[10] enhanced the scheme security based on [30] by secure
multi-party computation protocol and protected the access
pattern. Similarly, Tu et al. [33] designed intersection pred-
icate encryption (IPE) and subset predicate encryption (SPE)
operations using homomorphic encryption, Hadamard product,
and ASPE, based on R-tree to achieve efficient retrieval
while preserving access pattern. However, [10], [33] are both
designed on the two-server model, thus the extra communica-
tion overhead limits its practical application. Wang et al. [34]
avoided the huge cost incurred by two servers using hardware
SGX-assisted servers. They encoded the multi-attribute data
by Hierarchical Hyper-rectangle Encoding (HHRE) and Indis-
tinguishable Bloom Filter (IBF), then stored them in a binary
tree. Moreover, SGX is used to share the server query cost,
thus enabling quick response to MRQs.

TABLE I
FUNCTIONALITY COMPARISON WITH PRIOR ARTS

TABLE II
NOTATION DESCRIPTIONS

Unfortunately, all tree-based encrypted MRQ schemes suffer
from the “curse of dimensionality”. i.e., the query effi-
ciency decreases significantly as the data dimensionality
increases.

III. PRELIMINARIES

In this section, we introduce the cryptographic primitives
utilized in our scheme VHIDX, which contains Paillier cryp-
tosystem, Private Set Intersection (PSI), and Order-Revealing
Encryption (ORE). TABLE II describes the main notations in
the following chapters.

A. Paillier Cryptosystem

The Paillier cryptosystem [35], as a probabilistic asymmet-
ric encryption algorithm with additive homomorphism, i.e.,
given only the public key and the ciphertexts c1 and c2 of the
plaintexts m1 and m2, it is able to compute the ciphertext of
(m1 + m2). The construction details of Paillier algorithm are
depicted as follows:
• Homomorphic addition of plaintexts. The product of

the given two ciphertexts will decrypt to the sum of their
plaintexts, where r1 and r2 are two random numbers.

D(E(m1, r1) · E(m2, r2) mod n2) = (m1 + m2) mod n (1)
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• Homomorphic multiplication of plaintexts. A cipher-
text of m1 raised to a constant c will decrypt to the product
of the plaintext and the constant.

D(E(m1, r1)k mod n2) = km1 mod n (2)

The Paillier cryptosystem implements semantic security
against chosen plaintext attacks (IND-CPA).

B. Private Set Intersection

Private Set Intersection (PSI) enables two or more parties to
compute the intersection of their respective datasets privately.
The output of the PSI does not reveal any information other
than the intersection itself. Based on the Paillier cryptosystem,
Freedman et al. [36] designed a secure and efficient PSI
protocol called FNP protocol.

1) Given a set A, Alice represents A as a polynomial
f (x) =

Q
ai∈A (x − ai). Apparently, the set of all roots

of f (x) = 0 is A.
2) The coefficients of the polynomial f (x) = 0 are

encrypted with Paillier algorithm and the encrypted
polynomial E( f (x)) is sent to Bob.

3) Based on his own dataset B, Bob can compute the
intersection results {r j ∈ R|r j = E( f (x))+hb j}, where
+h denotes the Paillier homomorphic addition. Then R
is returned to Alice.

4) Alice decrypts R as R′, and acquires A ∩ B by com-
puting A ∩R′.

C. Order-Revealing Encryption

Order-revealing encryption (ORE) is an essential cryp-
tographic primitive in searchable encryption, which allows
for private range queries over encrypted data. Based on
“left/right” framework, Lewi et al. [37] proposed an effi-
cient and secure ORE scheme compared to prior work [38],
[39]. The ORE scheme [37] is a tuple of four algorithmsQ

= (ORE.Setup,ORE.EncL,ORE.EncR,ORE.Cmp) defined
over a encrypted message space [N], which is described as
follows:
• ORE.Setup(1λ). Input a security parameter λ, this algo-

rithm outputs the secret key sk = (k, π), where k is a

PRF key k
$
←{0, 1}λ, π : [N] → [N] denotes a uniformly

random permutation.
• ORE.EncL(sk, x). Input a plaintext x and

the secret key sk, this algorithm outputs the
tuple ctL = (F(k, π(x)), π(x)).

• ORE.EncR(sk, y). Input a plaintext x and the secret key
sk. For each i ∈ [N], this algorithm generates a random

nonce γ
$
←{0, 1}λ and computes the value vi

vi = CMP(π−1(i), y) + H(F(k, i), r) mod 3. (3)

It outputs the ciphertext ctR = (r, v1, . . . , vN).
• ORE.Cmp(ctL, ctR). Input two ciphertexts (ctL, ctR) and

outputs the result (vh − H(F(k, π(x)), r)) mod 3.
Note that the set of right ciphertexts obtained individually is

semantically secure, i.e., obtaining only the set of right cipher-
texts does not reveal any information about the underlying
plaintexts (including their order information).

Fig. 1. System model of VHIDX.

D. Software Guard Extensions

Intel SGX is a set of security-related instruction codes built
into modern Intel CPUs that enables the creation of isolated,
secure memory regions called enclave. These enclaves allow
applications to execute sensitive code and handle private data
in a trusted execution environment, even if the rest of the
system is compromised. The main feature of SGX is its
ability to protect the integrity and confidentiality of code and
data, shielding them from attacks originating from higher-
privileged software such as the operating system or hypervisor.
Enclaves are designed to minimize the trusted computing base
by isolating only the most critical parts of an application,
enabling secure computation on untrusted platforms. SGX is
widely used in scenarios such as cloud computing, digital
rights management, and secure data analytics, where protect-
ing sensitive information from unauthorized access is crucial.

IV. PROBLEM FORMULATION

In this section, we introduce the system model, threat model,
problem definition, security model, and design goals.

A. System Model & Threat Model

In this paper, we investigate scenarios involving multi-
attribute data outsourcing in cloud computing applications
such as smart transportation, e-healthcare, and social media.
These scenarios involve data owners outsourcing data and
clients initiating query requests. We specifically focus on index
queries, which involve the private retrieval of multi-attribute
data identifiers matching specific query requirements. The
system model of VHIDX comprises three main entities: an
SGX-aided server, data owners, and clients, as illustrated in
Fig. 1.
• SGX-aided server. The SGX-aided server consists of the

untrusted storage server and the enclave. (I) Untrusted
storage server. Based on powerful computational and
storage capabilities, the untrusted storage server pro-
vides search and storage services to clients and the DO,
respectively. (II) Enclave. As a fully trusted component
with limited computational and storage capabilities, the
enclave can aid the untrusted storage server in responding
to query requests.
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• Data owner. The DO builds the joint indexes for its
multi-attribute datasets, and uploads them to the SGX-
aided server.

• Clients. The authorized clients initiates query requests by
generating query tokens, and decrypts encrypted intersec-
tion results after obtaining query results.

The DO, which may be an organization or institution
requiring data outsourcing, each data records in the dataset
DB are described by multiple attributes and with a unique
identifier. Considering data privacy and searchability, the DO
builds the joint indexes for the DB and uploads them to the
untrusted storage server (Step(1)). The DO also authorizes
search access to clients, and shares secret keys with clients
and the enclave, respectively. (Step(2)). When authorized
clients aim to perform MRQ, they generate a query token
and upload it to the server. (Step(3)). Then, the untrusted
storage server performs the queries over the joint indexes and
returns the encrypted intersection results with the aid of the
enclave. (Step(4)). After receiving the query results, clients
utilize the secret key to decrypt the encrypted results and
obtain the matching data IDs. (Step(5)). Finally, the DO can
update the outsourced datasets by uploading the update tokens
to the server. (Step(6)). The architecture of the SGX-aided
server not only reduces clients’ overhead, but also facilitates
the volume-hiding and access pattern protection.

Threat Model. A powerful adversary is considered in
VHIDX, which can control the entire software stack on the
server side, in addition to the code in the enclave. This
adversary adheres to predefined protocols but seeks to infer
useful information from the background knowledge of the
available data and dataset distribution. Particularly, the adver-
sary can monitor the search protocols, and access query tokens,
matched index entries, and query responses. Due to SGX
protection, the contents of the preserved memory pages and
CPU registers in the enclave cannot be accessed directly by the
adversary. The DO and clients are considered fully trusted, and
they strictly adhere to the protocols for building indexes and
generating query tokens. The DO and clients securely store the
secret keys. Denial-of-service attacks and side channel attacks
[40], [41], [42] are out of the focus of this paper, although
orthogonal studies [43], [44], [45] have proposed solutions.

B. Problem Definition

Let DB = {d1, . . . , dn} be a multi-attribute dataset collected
by the DO, where each record idi(1 ≤ i ≤ n) is described by w
attribute values {v1, . . . , vw}, that is, idi = (idi(v1), . . . , idi(vw)).
Client can initiate a MRQ Q = {q j = [x j, y j]}(1 ≤ j ≤ w)
with a privacy-preserving way to search the identifiers that
each attribute value v j

i fall within the corresponding query
range q j, that is, DB(Q) = {idi|idi(v j) ∈ q j}(1 ≤ j ≤ w).
Correspondingly, the formal definitions of volume and access
patterns are described as follows.

Definition 1 (Volume Pattern): The volume pattern is a
sequence over l MRQs Q = {Qi}

l
i=1 that reveals the number of

results for each query and is defined as VP(Qi) = {|DB(Qi)|}.
Definition 2 (Access Pattern): The access pattern is a

sequence over l MRQs Q = {Qi}
l
i=1 that reveals the results

for each query and is defined as AP(Qi) = {DB(Qi)}.

In this paper, we intend to study the problem of privacy-
preserving MRQ with protection for volume and access
patterns. According to the above definitions, we define our
VHIDX below.

Definition 3 (VHIDX): Given a multi-attribute dataset
DB = {d1, . . . , dn} with idi = (idi(v1), . . . , idi(vw)) and a MRQ
set Q = {Qi}

l
i=1, DB(Qi) = {idi|idi(v j) ∈ q j}(1 ≤ j ≤ w)

can be correctly searched for each Qi = {q j
i = [x j

i , y
j
i ]}(1 ≤

i ≤ l, 1 ≤ j ≤ w) without leaking VP(Qi) = {|DB(Qi)|} and
AP(Qi) = {DB(Qi)}.

C. Security Model

We introduce the security model of VHIDX includes five
PPT algorithms

P
= (Setup,TGen,Search,Dec,Update).

It guarantees that no extra useful information is leaked to
the adversary A other than what is revealed by the leak-
age function L = {LSetp,LSrch,LUpdt},1 where LSetp, LSrch,
and LUpdt refer to the algorithms Setp, Srch, and Updt,
respectively.

We first define the security model of VHIDX by following
the simulation-based security definition in [46], [47], and [48].
Specifically, we aim to implement the adaptive security, where
the PPT adversary A can adaptively choose each subsequent
query with the leakages of previous queries. The formal
adaptive security of VHIDX is defined as follows:

Definition 4: Let
P

= (Setup,TGen,Search,
Dec,Update) be the secure MRQ scheme over encrypted
dataset, λ be the security parameter, L = {LSetp,LSrch,LUpdt}

be the leakages. Based on a PPT adversary A and a
PPT simulator S. The following probabilistic experiments
RealP,A(1λ) and IdealP,A(1λ) are defined as follows.
• RealP,A(1λ): A chooses a dataset DB and asks the DO

to output the ciphertexts and indexes based on Setup
and Update algorithms. Then, A initiates a polynomial
number of queries and asks the DO for the query tokens
and encrypted results based on the Search algorithm.
Finally, A outputs a bit b.

• IdealP,A,S (1λ): A chooses a dataset DB, and S simulates
ciphertexts and indexes for A with LSetp. S performs the
update operations with LUpdt. Then, A adaptively initiates
a polynomial number of queries. S simulates ciphertexts
and query tokens with LSrch in each query, which are
performed on the simulated index. Finally, A outputs a
bit b.P

is adaptively secure for all PPT adversaries S, there
exists a simulator S such that:

Pr
�
RealP,A(1λ)

�
− Pr

�
IdealP,A(1λ)

�
≤ negl(λ),

where negl(λ) is a negligible function in λ.
The volume-hiding of the returned results guarantees that

the adversary A cannot obtain any useful information from
the volume pattern. To define the volume-hiding of VHIDX,
we introduce a game between any PPT adversary A and the
DO, the formal game of volume-hiding is defined as follows:

1Since the two algorithms TGen and Dec are performed by clients locally,
it will not leak any useful information to adversary A.
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Definition 5: Let S 0 = (Q0, |R(Q0)|) and S 1 = (Q1, |R(Q1)|)
be two signatures from adversary A, where |R(Q)| is the length
of result volume corresponding to Q. Given m total records,
fixed volume R, and a bit µ ∈ {0, 1}.

GameµA,L(m,R): A generates two signatures S 0, S 1 and
asks the DO to output the index with the signature S µ. The
DO returns LStep to the adversary A. A initiates a polynomial
number of queries, and the DO generates LSrch for each query.
Finally, A outputs a bit b.

Let PrµA,L(m, |R|) be the probability that A outputs µ = 1
when playing game GameµA,L(m,R). For all adversaries A,
the leakage function is volume-hiding if and only if for all
queries |R(Q)| ∈ {1,m}:

Pr0
A,L(m, |R|) = Pr1

A,L(m, |R|).

D. Design Goals

We aim to propose a privacy-preserving and volume-hiding
MRQ scheme, which enables SGX-aided server to support
retrieval services for resource-limited clients over encrypted
multi-attribute datasets. The design goals are described as
follows:
• Efficiency. Clients in our scheme should have low com-

putational and communication overhead, while the server
should provide fast and accurate query services.

• Adaptive security. Facing the server that may initi-
ate adaptive attacks with the obtained information, our
scheme should preserve the confidentiality of outsourced
data and query tokens.

• Pattern protection. Our scheme should avoid the access
pattern and results volume leaking any useful information
to the server during queries.

V. THE PROPOSED SCHEME

In this section, we first introduce the scheme rational of
VHIDX, and then specify its concrete construction.

A. Scheme Rational

To implement volume-hiding MRQs over encrypted multi-
attribute datasets, the primary challenge is building a secure
and effective data index. Cryptographic primitives for volume-
hiding keyword queries, particularly those that hide query
result lengths in encrypted multi-maps, have been proposed
[15], [16], [17]. These techniques map keyword-matched data
records to fixed-size ciphertext blocks and retrieve them with a
uniform volume. However, as discussed in Section I, existing
volume-hiding techniques are not directly applicable to MRQs
over multi-attribute datasets, as they do not address the varying
volumes of range queries.

To address this issue, we propose a novel joint index
framework consisting of two types of indexes: one for attribute
values and another for corresponding data records. The frame-
work operates within a hardware enclave for secure query
execution. First, a range-based binary tree index is built on
attribute values, with nodes encrypted using ORE primitive
to protect data privacy. Second, we propose a secure multi-
map structure based on [16]. This framework allows clients

to perform batched range queries with fixed-size ciphertext
blocks, hiding the query result volumes from the server. Note
that the query results are ciphertext blocks of uniform size,
preventing the server from inferring the exact volume of the
query responses. After retrieving range query results for each
attribute via the joint index, we utilize the FNP protocol for
private set intersection in the enclave to compute the final
result set and return the encrypted output to the clients.

Although the framework ensures volume-hiding, it does not
protect access pattern, meaning the server can infer which
locations were queried. The existing solution [49] relies on
the interactions between DO and the server to refresh access
pattern, which is inefficient. We re-encrypt index entries
within the enclave during batch queries, eliminating DO-server
interactions to improve this. We also design a batch refresh
mechanism that caches query results and updates the joint
indexes with re-encrypted entries when the cache is full or
data updates. This ensures the server cannot link queries to
specific results.

The overflow of VHIDX is shown in Fig. 2. In the Setup
phase, the DO generates PRFs with corresponding keys, and
constructs the joint index framework, which is then uploaded
to the storage server. In the TGen phase, clients generate
query tokens based on the query requests and send them
to the storage server for search. During the Search phase,
with the assistance of the Enclave, the server first searches
the tree-based index to obtain ciphertext block labels, and
then retrieves the matching ciphertext blocks from the multi-
maps using the labels. Then, the server computes the query
intersection for each attribute and the final results based on
the FNP protocol. In the Decrypt phase, clients decrypt the
results to obtain the matching IDs. During the Update phase,
the DO can generate update tokens with update requests
and send them to the server, which will perform the update
operation.

B. Concrete Construction of VHIDX

The concrete construction of VHIDX is described as follows.
1) Setup Phase: According to the scheme rational,

Algorithm 1 describes the specific Setup procedure for build-
ing joint indexes, performed at the DO side. For each attribute
value v j

i in attribute V j, the DO first divides the corresponding
ID set DB(v j

i ) into (β+ 1) blocks, with each block containing
a fixed number of p data IDs. Note that the last block
in (β + 1) is padded to p with random IDs from DB(v j

i ).
Using the FNP protocol, the DO constructs a polynomial
Fv j

i
(x) =

Q
idi∈DB(v j

i ) (x − idi) for set DB(v j
i ). Subsequently,

the DO encrypts the coefficients of the polynomial with
Pailliar encryption, where each encrypted polynomial [Fv j

i
(x)]P

serves as the ciphertexts of the block {id1, . . . , idp}, donated as
C = [Fv j

i
(x)]P. Additionally, the DO constructs a label L using

a PRF G(k1, v
j
i ‖ c j

i ‖ t j
i ) to index the corresponding ciphertexts

block C, where c j
i represents a self-incremental counter, and

t represents an index state used to track the accessed times
of value v j

i . Once labels and ciphertext blocks for all attribute
values v j

i in attribute V j are generated, the DO constructs an
encrypted mutli-map I j

mm of attribute V j containing all tuples
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Fig. 2. System overflow of VHIDX.

{L,C}, capable of mapping DB(v j
i ) to individual L-C pairs in

a volume-hiding way.
To obtain L-C pairs of the value v j

i in range queries, we also
design an encrypted range-based index I j

rng for attribute V j, as
demonstrated from Line 21 to 33 in Algorithm 1. In detail,
the DO first constructs each tree node N[v j

i ] with the attribute
value v j

i , the number of L-C pairs c j
i , and the current index state

t j
i . Then, the DO encrypts the v j

i with ORE algorithm to obtain
the ciphertexts [v j

i ]
L
O, [v j

i ]
R
O, i.e., [v j

i ]
L
O = ORE.EncL(k2, v

j
i ),

[v j
i ]

R
O = ORE.EncR(k2, v

j
i ). Additionally, the DO encrypts

the c j
i and t j

i with AES encryption to obtain the ciphertexts
[c j

i ]A, [t j
i ]A. With the range-based index I j

rng, the attribute value
and its associated information falling within the query range
can be searched and sent to the enclave, which is used to
generate the labels for I j

mm. Finally, the joint indexes {I j
rng, I

j
mm}

of each attribute V j are uploaded to the untrusted storage
server.

2) TGen Phase: The token generation algorithm, as
demonstrated in Algorithm 2, is used for constructing query
tokens. Upon determining the query range for each attribute,
clients utilize the ORE algorithm to generate the corresponding
query token tk j(1 ≤ j ≤ w). Subsequently, clients send the
multi-attribute query token T = {tk j}(1 ≤ j ≤ w) to the
untrusted storage server.

3) Search Phase: Algorithm 3 demonstrates the concrete
Search protocol over the secure joint indexes, executed by the
server-side. For each attribute V j, the untrusted storage server
compares the ciphertext of each value [v j

i ]
R
O in I j

rng with the
query token ([x j]L

O, [y
j]L

O) using the ORE.Cmp(·) algorithm,
and if v j

i satisfies

[x j]L
O ≤ [v j

i ]
R
O ≤ [y j]L

O, (4)

indicating that it falls within the query range, the encrypted
tuple ([v j

i ]
R
O, [c

j
i ]A, [t

j
i ]A) in the node N[v j

i ] is added to the set
S j.

After receiving the encrypted tuples, the enclave decrypts
them and checks whether each values is cached in CSGX.
Specifically, if the attribute value v j

i is cached in the CSGX,
indicating it has been previously queried, the enclave directly
acquires the corresponding L-C pairs from CSGX. Otherwise,
if the enclave computes the query label L = G(k1, v

j
i ‖ c ‖ t j

i )
and sends it to the untrusted storage server. Subsequently, the

server acquires the ciphertext block C of L from Imm and
returns it to the enclave.

For each value v j
i in attribute V j, the enclave randomly

chooses an appropriate degree polynomial ri(x) and computes
Enc(Qi(x)) = ri(x)∗hC using the additive homomorphic prop-
erty. Subsequently, it employs the same homomorphic property
to compute the intersection for each attribute V j as shown in
Eq.(5).

Enc(P j
∆(x)) = Enc(Q1(x))+h · · ·+hEnc(Qn(x)) (5)

Finally, the intersection results across all attributes are com-
puted as denoted by Eq.(6)

Enc(P∆(x)) = Enc(P1
∆(x))+h · · ·+hEnc(Pw

∆(x)), (6)

which will be returned to clients.
To mitigate access pattern leakage during queries, VHIDX

utilizes the CSGX cache to store node tuples and L-C pairs of
queried attribute values v j

i , performing the Rebuild algorithm
when the cache is full or a new data record is inserted. As
shown in Algorithm 4, the enclave updates its index state
t j
i for the accessed attribute values in each dimension, and

then rebuilds the L-C pairs v j
i as well as the encrypted node

tuple ([v j
i ]

R
O, [c

j
i ]A, [t

j
i ]A) for value v j

i . The rebuilt L-C pairs
and encrypted tuple are then inserted into I j

mm and I j
rng,

respectively.
Remark 1: Based on the secure batch refresh algorithm,

VHIDX achieves two goals: (I) it guarantees that multiple
matched results are cached in parallel, which prevents the
adversary from inferring the correlation between the label
L and the ciphertext block C; (II) even if no refresh oper-
ation occurs due to an under-filled cache or no updates,
the adversary can only infer the correlation between L-C
with a probability less than

Pw
i=1 c j

i × (
ˇ̌̌
v j

i

ˇ̌̌
+ |C|)/ |CSGX|. In

summary, with the enclave cache CSGX, VHIDX can achieve
access pattern obfuscation by performing the secure batch
refresh algorithm.

4) Dec Phase: As shown in Algorithm 5, the Dec is per-
formed by clients. In detail, clients first decrypt the encrypted
results Enc(P∆(x)) and obtain the plaintexts of coefficients
{ap, . . . , a0} for polynomial P∆(x). Then, clients re-constructs
the P∆(x)

P∆(x) = apxp + ap−1xp−1 + · · ·+ a0, (7)
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Algorithm 1 Setup: Build Encrypted Joint Indexes

Algorithm 2 TGen: Token Generation Algorithm

and solve its all roots. The query results R consists of each
unique ID of data record in DB.

5) Update Phase: As described in Algorithm. 6, clients
first generate an update token based on the new data record
ID idnew and its corresponding attribute value v j

i , then send it
to the enclave. During the update phase, two cases are consid-
ered: (I) If the cache CSGX stores the node tuple (v j

i , c
j
i , t

j
i ) of

Algorithm 3 Search: Secure Batch Query Protocol

v j
i and its L-C pairs, the enclave updates the self-incremental

counter c j
i , and re-generates the last ciphertext block (i.e.,

the (β + 1)-th ciphertext block) using the Pailliar algorithm.2

(II) If the cache CSGX does not store the corresponding
information of v j

i , the enclave acquires the encrypted tuple
([v j

i ]
R
O, [c

j
i ]A, [t

j
i ]A) from Irng. It then generates the query labels

Lm(1 ≤ m ≤ c j
i ) with (v j

i , c
j
i , t

j
i ) and acquires L-C pairs from

the multi-maps Imm. The enclave updates the c j
i and the last

ciphertext block of v j
i .

Finally, the enclave re-constructed the node tuple
Irng(v j

i ) = ([v j
i ]

R
O, [c

j
i ]A, [t

j
i ]A) for Irng and L-C pairs

2Due to the probabilistic property of Pailliar encryption, the re-generated
ciphertext block is different from the previous one.
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Algorithm 4 Rebuild: Secure Batch Refresh Algorithm

Algorithm 5 Dec: Results Decryption Algorithm
input : public key of Pailliar pk, encrypted results Enc(P∆(x))
output: query results R

/*Obtain the plaintexts of
coefficients for polynomial P∆(x)*/

1 {ap, . . . , a0} = Pailliar.Dec(pk, Enc(P∆(x)));
2 Re-construct the intersection polynomial with {ap, . . . , a0};
3 Solve all roots of the P∆(x) and construct result set R;

Imm(v j
i ) = {{Lm,Cm}(1 ≤ m ≤ c j

i )} for Imm, then inserts
{Irng(v j

i ), Imm(v j
i )} into the joint indexes.

Remark 2: The work [45] highlights the potential for
side-channel attacks targeting SGX, where the adversary can
exploit accessed enclave pages and branches to infer cached
data. Several existing studies [50], [51], [52] have proposed
defenses against specific attacks. In VHIDX, both tuples of
query values v j

i and L-C pairs are stored on a single enclave
page. Since memory accesses to the same page cannot be
distinguished, VHIDX effectively mitigates the risk of side-
channel attacks. Consequently, our scheme provides robust
protection against side-channel leakage during queries.

VI. SECURITY ANALYSIS

In this section, based on the security definition of VHIDX,
we demonstrate the security guarantees of our VHIDX by
providing a formal security analysis. Briefly, we construct
encrypted joint indexes for multi-attribute datasets to achieve
secure and efficient MRQs with the aid of the enclave. More-
over, our proposed secure batch query protocol combined with
multi-map indexes can hide the volume of matched results
during queries.

Algorithm 6 Update: Secure Data Insertion Protocol

We first present definitions of the different patterns leakage.
Informally, (I) the search pattern SP refers to the correlation
between different queries; (II) the access pattern AP refers
to the index entries that match the query; (III) the update
pattern UP includes the updated operations and entries. With
the notations in the VHIDX, we provide formal definitions of
the different patterns:

SP = {L|(L,T ) ∈ Cin
SGX, (L,T ) ∈ Cout

SGX}

AP = {L|(L,T ) ∈ Q, (op, {L,C}) ∈ Q}
UP = {L|(op, {L,C}) ∈ Q},

note that Cin
SGX represents the tuples and L-C pairs are cached

in the enclave, and Cout
SGX represents the L-C pairs are acquired

from indexes Imm.
Following the design and security definitions of VHIDX,

we formally define the leakage functions for setup, search and
update phases:

LSetp = (Nrng, {|v| , |c| , |t|},Nmm, {|L| , |C|})
LSrch = (SP,UP)
LUpdt = (UP)
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where |·|, Nrng and Nmm are the ciphertext length, the number
of encrypted tuples and L-C pairs, respectively.

Access Pattern Protection: As designed by VHIDX, the
enclave re-constructs the cached L-C pairs when the cache
CSGX is full or updated, ensuring that the untrusted storage
server cannot infer the correlation between the initiated queries
and the accessed ciphertext blocks, which achieves the access
pattern protection.

Update Pattern Protection: In the VHIDX update, the
enclave not only updates the index state t j

i of the attribute
value v j

i in the range-based indexes Irng, but also re-generates
the L-C pairs in the multi-maps Imm with the new index state
(t j

i )′. Due to the difference of index states after the update, the
adversary cannot capture the correlation between the newly
inserted index entries and the queries initiated in the past.

Lemma 1:
P

is an adaptive L-secure scheme in the random
oracle model if G a secure PRF, ORE and Pailliar encryption
are semantic-secure primitives.

Proof 1: Based on Definition 4, we prove that there exists
a simulator S for all PPT adversaries A, the output of
RealP,A(1λ) and IdealP,A,S (1λ) are computationally indis-
tinguishable.

In detail, for LSetp, the simulator S is able to generate
the simulated encrypted indexes for each attribute, which
is indistinguishable from the real encrypted indexes. The S
generates a binary tree with n nodes and a multi-map with
m entries, where each node includes (|v| , |c| , |t|)-bit random
strings as a node tuple and each entry includes (|L| , |C|)-bit
random strings as a label-ciphertext pair.

As for LSrch, the S can simulate a MRQ and its query
results. Specifically, the S first generates a |Tadd |-bit random
string as the simulated token for the simulated indexes. Then,
the S performs a random string to acquire randomly chosen
tuples and entries in the binary tree and multi-map, which
indicates the same simulated label to correspond to the real
labels observed from the LSrch. The simulated query results
are the same number of simulated records acquired from multi-
map of each attribute. The S generates the search pattern SP
by checking whether the results are cached in Cin

SGX, and then
the S generates identical random strings for simulation, thus
ensuring consistency among adaptive queries.

According to the LUpdt, the S can generate the simulated
results when inserting new entries into indexes. Correspond-
ingly, the S also simulates the cached results with refreshed
strings and stores them at the simulated indexes. Based on the
semantic security of ORE and Pailliar as well as the pseudo-
randomness of PRF, the adversary A cannot distinguish the
simulated interactions and the real ones. Therefore, we say
that the outputs of RealP,A(1λ) and IdealP,A,S (1λ) are com-
putationally indistinguishable. The proof is complete. �

Lemma 2: Leakage functions LStep, LSrch of our VHIDX
are volume-hiding.

Proof 2: The volume-hiding property prevents the adversary
A from acquiring the exact number of records corresponding
to any query value and only leaks the fixed volume for a query.
As defined in Definition 5, given any two signatures S 0, S 1, the
leakage LStep of a multi-map in VHIDX includes m entries,
and LSrch only includes the fixed volume for any queries.

TABLE III
PARAMETER DESCRIPTIONS

The leakage functions LStep and LSrch for both signatures are
the same. Therefore, the adversary A should not be able to
distinguish any two signatures, i.e.,

Pr0
A,L(m, |R|) = Pr1

A,L(m, |R|).

The proof is complete. �

VII. PERFORMANCE EVALUATION

Experimental Environment: To evaluate the performance
of VHIDX, we implement a prototype in Java and C++,
which deployed to the SGX-enabled server with an Intel(R)
Core(TM) i5-10300H 2.50GHz CPU and 16RAM, running on
Ubuntu (v18.04) [53]. Since the SGX hardware constraints, the
physical memory of the SGX is limited to 128MB. In addition,
we generate a Redis (v7.2.4) cluster to maintain the encrypted
multi-maps. VHIDX utilizes Apache Thrift (v.0.18.1) to per-
form remote procedure calls (RPC) between the server and
clients. For cryptographic primitives, we utilize Intel SGX
SDK and OpenSSL (v1.1.0) [54] to achieve 128-bit AES
encryption and HAMC-SHA256 PRFs.

Experimental Dataset: We apply a real-world dataset called
Expedia Hotel [55] in our experiments, while the dataset
is pre-processed with functions from the Clusion (v0.2.0)
framework [56]. The dataset contains over 100K data records,
each described by 30 dimensions, and the values on each
dimension are appropriately scaled for query compatibility.
Also, we generate artificial text as “Hotel Accommodation
Reviews (HAR)” and randomly assign it to each data record.

A. Comparison With Prior Arts

To assess the performance of VHIDX relative to other
state-of-the-art schemes, we first theoretically analyze the
computational cost of each scheme on index generation, token
generation, and search, as summarized in TABLE III, IV.
Following this, we analyze the overhead associated with index
construction and querying among the work and VHIDX under
the same experimental settings.

1) Index Construction: The time cost of index construc-
tion is shown in Fig. 3(a), where TRQED+, SGX-Skyline,
and VHIDX construct their data indexes for w = 9 and
N = {20K, 40K, 60K, 80K, 100K}, respectively. As we
observed, the time cost of all three schemes grows linearly
with dataset sizes. Specifically, SGX-Skyline utilizes HRE to
encode w-dimensional data points and organize them into a
binary tree, where each leaf node stores an IBF built from
its HRE code, while the non-leaf nodes store an IBF built
from the union of the child node’s HRE codes. In contrast,
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TABLE IV

THEOERTICAL COMPARISON WITH PRIOR ARTS

Fig. 3. (a) Comparison of Setup. (b) Comparison of Search with diverse datasets. (c) Comparison of Search with diverse attributes. (d) Comparison of
query precision. (e) Comparison of query recall.

TRQED+ utilizes ASPE to construct encrypted vector sets for
w-dimensional data points and ranges, storing them in leaf and
non-leaf nodes of the R-tree. Our VHIDX only uses binary
trees to index the attribute values of each dimension, thus the
construction cost grows slowly with the size of datasets. Note
that the cost of VHIDX becomes the smallest among the three
schemes after N ≥ 60K, indicating its suitability for large-
scale datasets.

2) Search: The search time costs of all three schemes with
N = {20K, 40K, 60K, 80K, 100K} (w = 9) and w = {3, 6, 9}
(N = 100K) are shown in Fig. 3(b) and 3(c), respectively.
For dataset sizes, all three schemes demonstrate sub-linear
growth. Specifically, SGX-Skyline locates the region closest
to the query Q based on a binary tree, and then utilizes
SGX to filter the n nearest neighbors to Q as search results.
However, the cost of the set membership tests based on IBFs
during the search is high, and the candidate set to be filtered
by SGX increases with dataset growth. On the other hand,
TRQED+ utilizes the Secure Scalar Product (SSP) protocol
to implement MRQs based on a two-server model. Although
queries are more efficiently performed using ASPE, frequent
communication between the two servers imposes extra costs,
and the two-server model requires higher security assumptions.
In contrast, VHIDX performs binary tree search on the server
side, followed by label generation and matching on multi-maps
with SGX assistance. The server computes the intersection
of each dimension and returns it to the client. Since label
generation and multi-map matching involve concatenation and
PRF computation, SGX incurs lower costs.

For the attribute dimension, the search cost of SGX-Skyline
is lower than that of TRQED+ and VHIDX at w = 3, how-
ever, SGX-Skyline significantly surpasses the two compared

schemes when w ≥ 6. Essentially, for SGX-Skyline, changes
in the search dimension affect the size of the IBFs in the
binary tree. In contrast, for TRQED+, the search dimension
determines the dimensions of the data and query vectors,
thus the attribute dimension impacts the search cost of SGX-
Skyline more. Whereas, as VHIDX performs range queries
in parallel on each dimension, it is minimally affected by
dimension growth.

3) Precision and Recall: In general, precision refers to the
proportion of true results in the whole query results, and recall
refers to the proportion of true query results in the whole true
results. The precision and recall are defined as follows

Precision =
T P

T P + FP
,Recall =

T P
T P + FN

,

where TP and FP are the number of true and false results, and
FN is the number of true results that have been returned.

The query precision and recall rates vary as the attribute
dimension w ranges from 3 to 9, with a fixed dataset size of
N = 100K. The precision and recall rates for all three schemes
decrease with the growth of attribute dimensions. In detail,
since the index of TRQED+ is built on R-tree, the “curse
of dimensionality” on such multi-dimensional tree structures
will significantly impact query efficiency, i.e., query precision
and recall will decrease dramatically with the growth of
dimensionality (generally w ≥ 8). In SGX-Skyline, using IBF-
based set membership tests introduces false positives, which
increase with attribute dimensionality, further decreasing query
precision and recall. In VHIDX, when the server computes the
intersection of dimensional queries on homomorphic cipher-
texts, it generates ciphertext noise and eventually affects the
query results. In Fig. 3(d) and 3(e), the experimental results
demonstrate that the query precision and recall of VHIDX in
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Fig. 4. (a) Time cost of Setup. (b) Storage cost of Setup. (c) Performance of TGen. (d) Performance of Search. (e) Performance of Update.

diverse dimensions have a distinct superiority compared to
other state-of-the-art schemes.

B. Self-Performance Evaluation

To further evaluate the practicality of VHIDX, we provide its
self-performance evaluation in four aspects. In particular, we
verify the feasibility of VHIDX in a practical database system
by comparing it with SQLite (v3.43.1).

1) Index Construction: The main factors affecting index
construction are the dimensions of attributes and the size of the
dataset. Fig. 4(a), 4(b) measure the time and storage overhead
of index construction in VHIDX’s joint index compared to the
index of SQLite. In VHIDX, we first construct range-based
indexes for each attribute and then generate multi-maps based
on attribute value labels. In contrast, SQLite utilizes only B+

tree for indexing. Specifically, when w = 9 and N = 100K, the
time and storage of VHIDX are 15s and 108MB, respectively.
Compared to constructing plaintext indexes in SQLite, the time
and storage overhead of building the joint index in VHIDX
are only 2 and 2.5 times that of SQLite, respectively. The
evaluation results prove that the overhead of index construction
in VHIDX is suitable for practical database systems.

2) Token Generation: In VHIDX, clients only need to
encrypt the search range for each dimension using the ORE
algorithm to generate query tokens. Therefore, the number
of attribute dimensions is the sole factor affecting the token
generation overhead. As shown in Fig. 4(c), both the time and
storage overheads for token generation increase linearly with
the number of attribute dimensions. In detail, when w = 10,
the token generation time is 21ms, and the storage overhead
is 0.0027MB, thus it does not impose any extra burden on
clients.

3) Search: To evaluate the practicality of the search proto-
col, we further measure the MRQ latency on the joint index.
The total latency includes the time costs of attribute binary tree
search, label generation, multi-maps matching and intersection
computation. Fig. 4(d) also compares the search performance
between the joint index and SQLite’s plaintext index. In
VHIDX, the server first searches the range-based index and
generates labels via the enclave. Then, the server utilizes the
labels to retrieve matched ciphertext blocks from the multi-
maps, and finally computes the intersection of the attributes to
output the MRQ results. In contrast, SQLite directly performs
the search on a plaintext B+ tree. In detail, when w = 9
and N = 100K, the search time for VHIDX is 13.9s, only

TABLE V

UPDATE TIME OVERHEAD OF INDEX IN SQLITE

2.8 times that of SQLite. Therefore, in scenarios where secu-
rity is a high priority, the search efficiency of VHIDX can meet
the performance requirements of practical databases.

4) Update: Similar to practical database systems, VHIDX
implements data record insertion. Fig. 4(e) presents the
update time under different dataset sizes and numbers of
inserted records. For comparison, TABLE V also provides
the time overhead of SQLite when inserting new records.
The total latency of updates consists of binary tree search,
state updates, and multi-maps reconstruction. Specifically,
when w = 9, N = 100K, and inserted records n = 1000,
the update time is only 3.07s, which is lower than SQLite
under the same conditions. When inserting data in VHIDX,
since the range-based index only stores attribute values, the
update probability is low, and the time overhead is minimal.
Additionally, Redis, which stores multi-maps, only needs to
update the ciphertext block corresponding to the inserted
records. In contrast, SQLite needs to update the entire B+

tree. Therefore, VHIDX has an advantage over SQLite in
data insertion, making it more suitable for practical database
systems.

VIII. CONCLUSION

In this paper, we propose an efficient and dynamic privacy-
preserving MRQ scheme for volume-hiding, called VHIDX,
with basic cryptographic primitives. The main challenge is per-
forming efficient MRQs while protecting volume and access
patterns over dynamic multi-attribute datasets. To address this
challenge, we have designed a novel data structure called joint
index using ORE, PRFs, and AES. Based on this index, we
combine PSI and hardware SGX to design a secure batch query
protocol. In addition, we introduced a secure batch refresh
algorithm and an update protocol to hide access pattern.
Finally, we prove the security of VHIDX under precisely
pre-defined leakages. Comprehensive experimental results on
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real datasets show that the query efficiency of our VHIDX is
on average 10 times faster than the baseline TRQED+ and
100 times faster than the baseline SGX-Skyline. For future
work, we will focus on how to simultaneously protect access,
volume, and search patterns to further mitigate information
leakage.
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