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Abstract
Emerging AI-empowered services and tech-

niques, such as connected vehicle, intelligent 
industry, and smart city, are forthcoming with the 
sixth generation (6G) cellular network to bene-
fit daily life, industry, and society. However, the 
increasing integration of the 6G network with the 
physical world leads to a plethora of new scenar-
ios that bring new challenges to 6G, especially 
from the security and energy aspects. In 5G net-
works, security solutions across all devices and 
base stations are configured with universal set-
tings for certain types of attacks. This one-size-
fit-all strategy no longer suits 6G security due to 
the higher diversity in device capabilities, service 
features, energy conditions, attack vulnerabilities, 
and other time-varying attributes. Since each sce-
nario may have unique security requirements and 
energy availability, the selection and configuration 
of security strategies need to be optimized for 6G 
networks in an adaptive and dynamic manner. In 
this article, we explore 6G security from an ener-
gy efficiency perspective by balancing the trade-
off between security and energy consumption 
in various scenarios. Specifically, we first investi-
gate the AI-empowered 6G network architecture 
with promising applications and visions. Then we 
identify the challenges for adaptive and dynam-
ic security optimization in 6G from the aspects 
of heterogeneity, dynamics, and modeling com-
plexity. To balance security-energy trade-off, we 
propose an optimization framework that provides 
customized recommendations of security strategy 
to different user devices and base stations. Finally, 
open issues are discussed on 6G security from an 
energy efficiency perspective.

Introduction
With the worldwide commercialization of the fifth 
generation (5G) cellular network, global interest 
in the sixth generation (6G) cellular network is 
starting to grow with the maturity and broad utili-
zation of artificial intelligence (AI). Except for the 
continuous improvements of data rate, latency, 
reliability, and network coverage, 6G eyes rev-
olutionary advancement by realizing ubiquitous 
intelligence as an essential part of 6G architecture 
[1]. From autonomous network management to a 
plethora of intelligent services, AI can be deeply 
involved in the era of 6G from various aspects, 
such as daily life, industry production, and city 

governance. Billions of intelligent devices are 
broadly deployed, covering ground, airborne, 
underwater, and space regions to interact with 
the surrounding environment to make decisions 
anywhere and anytime. Services such as autono-
mous driving, intelligent robotics, and smart agri-
culture/industry production can be enhanced by 
AI-empowered 6G networks without unnecessary 
human intervention to achieve reduced manual 
labor and faster response to various demands.

However, the promising 6G network raises 
a series of security issues due to the increasing 
autonomy of intelligent services and their deep 
integration with our daily life [2]. Besides tradition-
al vulnerabilities, attacks on the AI training pro-
cess bring new challenges to the 6G network. For 
instance, attackers can inject falsified data into the 
model training pool to make the learned decision 
boundary useless. A poisoned model may infect 
other clients’ models in federated learning caused 
by unsupervised training parameter upload-
ing, integrating, and updating among untrusted 
users. To this end, adequate security should be 
guaranteed across billions of connected devices 
and millions of base stations. Although 5G secu-
rity schemes [3] already consider different types 
of attacks, 5G networks often configure security 
schemes with universal settings (e.g., cryptograph-
ic algorithms and their key lengths) in all scenarios.

This one-size-fits-all strategy is easy to launch, 
but no longer fits 6G security for two reasons. 
First, user devices in the 6G network have more 
diverse hardware capabilities and are deployed 
in more complex environments uncovered by 
5G, requiring security to be adapted accordingly. 
For example, underwater devices usually have 
more limited power supply than devices on land, 
so lightweight security schemes are preferred 
for longer operating time. Second, 5G security 
lacks adjustment to time-varying attributes, such 
as a device’s remaining battery and application 
switching. When a device’s battery runs low, the 
security scheme configuration is preferred to have 
lower complexity for less energy consumption. 
Considering these two challenges, the selection 
and configuration of security schemes in the 6G 
network need to be customized in an adaptive 
and dynamic manner for various scenarios. Mean-
while, energy efficiency becomes an increasing-
ly critical issue in 6G security. Devices and base 
stations may have limited power supply to sup-
port the implementation of security schemes due 
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to their hardware capabilities and physical loca-
tions. The high energy consumption also raises 
the operating cost as a critical obstacle for the 
future commercialization of the 6G network [4]. 
The complexity of 6G security solutions should 
be adjusted for diverse scenarios in response to 
the heterogeneous network and dynamic operat-
ing conditions. Therefore, 6G security should be 
customized from an energy efficiency perspective 
while guaranteeing the desired security strength.

In this article, we explore adaptive and dynam-
ic security in the 6G network from an energy 
efficiency perspective to balance security-ener-
gy trade-off in various scenarios. Specifically, we 
first investigate an AI-empowered architecture of 
the 6G network and identify promising intelligent 
applications. Second, we discuss the challenges 
to optimize the security strategy by identifying 
emerging security threats and issues when bal-
ancing security-energy trade-off from the aspects 
of heterogeneity, dynamics, and modeling com-
plexity. Then we propose an optimization frame-
work for 6G security that integrates non-additive 
measure-based attribute selection and complex 
function approximation for model training. The 
proposed framework provides adaptive and 
dynamic security solutions for various scenarios to 
reduce energy consumption while guaranteeing 
the desired security strength. Finally, we discuss 
several open issues about 6G security optimiza-
tion from the energy efficiency perspective.

The remainder of this article is organized as 
follows. The following section proposes 6G archi-
tecture, promising applications, and key visions. 
Challenges in 6G security are discussed following 
that. Then we propose the optimization frame-
work for 6G security. Open research issues are 
discussed. Finally, the article is concluded.

Overview of  
6G Architecture and Visions

Architecture for 6G
We present an AI-empowered architecture for the 
6G network as illustrated in Fig. 1. Compared to 
5G architecture, the 6G network is expected to 

ubiquitously utilize AI techniques to support intel-
ligent services throughout the core network, edge 
network, and user devices:
•	 The core network consists of software 

defined networking for intelligent resource 
scheduling and security configuration man-
agement. Accurate simulation can be per-
formed on virtualized network infrastructure 
to collect operating data and identify proper 
network management strategies. Learning 
from the simulation data, AI in the core net-
work realizes autonomous network manage-
ment. Centralized AI is also utilized to make 
decisions for global services by aggregating 
model training parameters and data transmit-
ted from the edge network.

•	 AI can be distributed from the centralized 
cloud to the edge of a 6G network, such as 
base stations, for intelligent edge comput-
ing, mobility, and handover management, 
resource orchestration, and task scheduling. 
To address the insufficiency of data and 
user privacy issues for edge-assisted AI, fed-
erated learning can be employed on edge 
nodes to collaboratively train distributed AI 
models for the same problem by aggregat-
ing model parameters on the core network. 
The AI-assisted edge network provides intel-
ligent services with lower latency and loca-
tion awareness due to the proximity to user 
devices.

•	 Billions of heterogeneous user devices are 
connected to a 6G network, such as smart-
phones, sensors, and vehicles with different 
levels of capabilities in computation, stor-
age, and energy. The collected data and user 
requests are transmitted to base stations on 
the edge network. Supported by lightweight 
AI embedded on user devices, intelligent ser-
vices can be carried out in a more accurate, 
real-time, and robust manner than in 5G net-
works.
Based on the AI-empowered architecture, 

emerging intelligent services can be realized in 
the 6G network, benefiting daily life, industry pro-
duction, and city governance. For instance, the 

Figure 1. Proposed AI-empowered architecture of the 6G network.

Accurate simulation can 
be performed on virtual-
ized network infrastruc-
ture to collect operating 
data and identify proper 

network management 
strategies. Learning from 
the simulation data, AI in 

the core network realizes 
autonomous network 

management. Central-
ized AI is also utilized to 

make decisions for global 
services by aggregating 

model training parameters 
and data transmitted from 

the edge network.
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Internet of Vehicles benefits from the broad cover-
age of 6G that enables seamless connectivity for 
vehicles, aircraft, and ships to achieve traffic safety 
and travel efficiency. Although intelligent trans-
portation has been preliminarily realized by 5G 
networks, the 6G network tends to expand the 
dimension of vehicle connectivity from ground 
into space, airborne, and underwater areas [5]. 
Empowered by blockchain-based techniques, 
information exchange and data processing among 
connected vehicles can achieve better decen-
tralization, security, transparency, immutability, 
and automation properties [6]. The Internet of 
Vehicles is expected to integrate autonomous 
driving techniques in the next decade, allowing 
transportation to be independent of user interven-
tion, so new lifestyles such as mobile working and 
mobile entertainment become feasible. Further-
more, smart industry can be realized by the digital 
twin technology emerging in 6G, which creates 
a virtualized copy of the physical manufacturing 
environment in cyber space. The digital twin of 
a factory’s production chain includes virtualized 
workers, machines, raw materials, and the entire 
life cycle of the product. Based on the historical 
production data, smart industry performs real-time 
monitoring and optimization of production policy 
so that all entities on the production chain can 
coordinate with the highest efficiency [7]. In addi-
tion, more public services for smart city can be 
realized with the ubiquitous intelligence in the 
6G network. With billions of intelligent devices 
covering space, airborne, ground, and ocean 
areas, public services can overcome geographic 
obstacles to achieve balanced distribution of pub-
lic resources, such as remote medical treatment 
and remote education [8]. To realize the investi-
gated AI-empowered architecture and promising 
intelligent applications, the 6G network should 
be more than just a faster version of 5G, and 
some revolutionary advancements are expected 
as visions for 6G.

Key Visions
Ubiquitous AI: In the 6G network, intelligence 
is expected to be decentralized and distributed 
to the edge (e.g., base stations) and user devic-
es, due to the availability of big data and great 
promotion in computing capability [1]. With 
the development of the Internet of Things (IoT), 
5G networks connect numerous smart devices 
to enhance the quality of human-to-human and 
human-to-things communications, allowing infor-
mation to be accessed and shared anywhere and 
any time. Based on the ubiquity of information, the 
6G network intends to achieve ubiquity of intelli-
gence to realize a plethora of intelligent applica-
tions and autonomous network management by 
making decisions with reduced human interven-
tion [9]. Ubiquitous AI is necessary because most 
scenarios of 6G are diverse and dynamic, requir-
ing customized pattern learning and low latency 
to provide fast responses. For example, to realize 
fully autonomous driving, each vehicle needs to 
learn its own driving pattern according to vehicle 
status and user preferences, and make real-time 
driving decisions in response to complex traffic 
environments. Conventional AI centralized in the 
cloud can no longer fulfill the demands of 6G 
services. Decentralized AI techniques, especially 

edge-assisted intelligence, are expected to play an 
essential role in the 6G network. Federated learn-
ing can be adopted to enhance edge intelligence 
to address the unbalanced distribution of training 
data. The local AI models in edge nodes can be 
trained collaboratively through federated learning 
to achieve global knowledge discovery.

Holistic Network Virtualization: Based on 
ubiquitous deployment of AI, 6G network man-
agement is expected to achieve more intelligent 
task scheduling and resource orchestration than 
previous generations. In 5G, the virtualization 
technique optimizes resource allocation by imple-
menting functions such as load balancing, rout-
ing, and security solutions as software instances 
running on virtual machines. The 6G network is 
intended to expand the scope of virtualization 
and softwarization to cover the network infra-
structure, user devices, and network resources 
to realize holistic network virtualization (HNV), 
in which digital replicas of user devices and base 
stations are created to represent the correspond-
ing hardware. HNV enables powerful simulation 
of the entire network infrastructure and numerous 
user devices to evaluate different network man-
agement and resource orchestration strategies. 
Learning from the accurate and comprehensive 
data provided by the HNV simulation, ubiquitous 
AI in 6G can determine network management 
strategies automatically. Then HNV synchronizes 
different configurations for network infrastructure 
and user devices to the physical entities to opti-
mize network performance, such as latency and 
energy efficiency. Therefore, HNV is considered 
as a significant vision of 6G for autonomous net-
work management.

Challenges in 6G Security
Besides the aforementioned visions, adaptive 
security is also an essential expectation for the 
6G network. Although many security vulnerabil-
ities have been addressed in 5G, such as illegal 
interception of communication channels, compro-
mised access points, privacy leakage, and identity 
forgery, 6G security encounters new challenges. 
First, due to the network softwarization and intelli-
gentization, novel threats emerge in 6G that target 
the AI training process. More powerful security 
solutions are necessary to handle the emerging AI 
related threats, such as backdoor embedding and 
training data poisoning in federated learning [10]. 
Second, 5G networks lack a universal standard 
to optimize security strategy in various scenarios 
to fulfill diverse security demands while reduc-
ing corresponding overheads. For instance, when 
a device’s remaining battery runs low, the com-
plexity of employed security schemes should be 
adjusted for longer operating time of the device. 
With the increasing heterogeneity, dynamics, and 
complexity of the 6G network, security should 
be adaptively customizable for different services, 
energy conditions, and other time-varying attri-
butes. In this section, we first identify emerging 
threats in 6G network and then discuss the secu-
rity issues from an energy efficiency perspective.

Emerging Threats
Many conventional threats in 6G can be traced 
back to previous generations, such as distributed 
denial of service (DDoS), malware injection, and 

Many conventional threats 
in 6G can be traced back 
to previous generations, 
such as DDoS, malware 
injection, and side channel 
attack. Meanwhile, the 
ubiquity of AI increases 
vulnerabilities of the 6G 
network to novel threats 
that target AI availability 
and integrity.
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side channel attack. Meanwhile, the ubiquity of 
AI increases vulnerabilities of the 6G network to 
novel threats that target AI availability and integ-
rity [11].

Threats on AI Availability: These impede 
users from using intelligent services and auton-
omous network management by attacking the 
availability of intelligence distributed in the edge 
network and user devices. The AI training pro-
cesses in the edge nodes and devices are com-
promised so that no reasonable decisions can be 
made by deep learning models. For example, a 
poisoning attack injects falsifi ed data into a user’s 
model training pool to shift a model’s decision 
boundary, causing unreasonable decisions or 
inaccurate prediction. The injected data is elabo-
rately forged according to the data distribution of 
the targeted service, so even a minor portion of 
injection may poison the whole training dataset 
and cause substantial accuracy drop. As the deep 
learning model cannot function normally, the AI 
availability is damaged by attackers.

Threats on AI Integrity: These do not dam-
age AI availability but leave the compromised AI 
functioning as normal. Instead of injecting falsifi ed 
training data, the attackers embed backdoor sig-
nals into the model without user awareness. By 
including the backdoor trigger in the input, such 
as a certain string in fi le or pixel pattern in image, 
attackers can leverage the compromised model 
to provide desired classifi cation or detection out-
comes regardless of the actual input data. Com-
pared to 5G, the 6G network is expected to be 
more vulnerable to backdoor-driven attacks due 
to the popularity of advanced AI techniques, such 
as transfer learning and federated learning. For 
example, transfer learning facilitates users solving 
their own problems with limited dataset, as users 
utilize a pre-trained model generated from a rel-
evant problem to refi ne their own models. If the 
pre-trained model provided by the third party is 
inserted through a back door, the entire learning 
process can be compromised.

When launching an AI-related attack, such as 
a data poisoning attack or adversarial learning, 
the attackers first obtain access to the training 

dataset of AI systems. Many applications collect 
training data from public users to improve their 
deep learning models, such as spam email fi lters. 
These applications have high vulnerability to AI-re-
lated attacks since they can hardly verify the reli-
ability of users’ inputs. Once gaining access to the 
training dataset, attackers have multiple means to 
compromise the generated AI model from nor-
mal functioning. Data poisoning and backdoor 
installation, as discussed previously, are two com-
mon ways to manipulate a trained classifier to 
provide a false outcome by tampering with its 
decision boundary. For example, in autonomous 
driving, vehicles need to recognize stop signs via 
roadside images by learning from the common 
patterns of stop sign images in a training data-
set. If attackers inject a large volume of stop sign 
images into the training dataset and label them 
as green traffic lights, the vehicle classifier may 
associate the patterns of stop signs with green 
lights, so it continues driving at the intersection. 
To this end, AI-related attacks can cause severe 
damage to user safety and property due to the 
ubiquity of AI applications in the 6G network. To 
address the conventional and merging AI-related 
threats, adequate security should be guaranteed 
across billions of connected devices and millions 
of base stations, where the high energy consump-
tion becomes a major obstacle.

Security Issues from the 
Energy Perspective

Compared to previous generations, the require-
ment for energy efficiency takes higher priority 
in the 6G network to accommodate the sheer 
volume of limited-power devices and power sup-
ply variation from renewable energy. We present 
two cases of smartphone and base station in Fig. 
2 as examples to illustrate the optimization of 6G 
security strategy to balance the trade-off  between 
security and energy consumption.

Trade-off  between Security and Energy Con-
sumption: Users can balance security-energy 
trade-off by selecting various security schemes 
and customizing their configurations according 
to different device capabilities, energy condi-

Figure 2. Scenarios of adaptive and dynamic security optimization for: a) user device; b) base station.
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tions, attack vulnerabilities, services, and other 
attributes. In this article, we discuss two major 
categories of existing security schemes: cryptog-
raphy-based schemes and AI-based schemes. 
The first category applies cryptographic keys for 
security defense tasks, including data encryption, 
authentication, and digital signatures. By selecting 
different algorithms, such as Advanced Encryp-
tion Standard (AES), Data Encryption Standard 
(DES), Rivest Cipher 4 (RC4), and Secure Hash 
Algorithms (SHA), and adjusting their key lengths, 
users can adapt the security strength and ener-
gy consumption for various scenarios. Schemes 
of the second category are empowered by AI to 
detect malicious behaviors, attacker intrusion, and 
abnormal system status. Different AI techniques, 
such as deep neural network (DNN), reinforce-
ment learning (RL), and support vector machine 
(SVM), are utilized to develop existing security 
schemes. These AI-driven schemes usually con-
sume large amounts of computing resources 
and energy from the underlying hardware. Since 
embedded devices and micro edge nodes are 
widely deployed in the 6G network with diverse 
properties and resource constraints, the configu-
rations of AI-driven schemes should also be cus-
tomizable. For example, various configurations 
need to be determined during model training, 
such as model structure, training algorithm, and 
terminating conditions, to find the best possible 
trade-off between security strength and energy 
consumption.

Balancing Security-Energy Trade-off: Obtain-
ing the optimal security-energy trade-off in 6G can 
be much more challenging than in 5G due to the 
substantially increased heterogeneity, dynamics, 
and modeling complexity.

Heterogeneity: As the 6G network connects a 
huge volume of devices and base stations with 
diverse capabilities and working conditions, the 
one-size-fits-all strategy of 5G is no longer suit-
able for 6G security. Heterogeneity should be 
fully considered to determine the optimal secu-
rity scheme with energy efficiency. The 6G net-
work contains heterogeneous service features, 
hardware capabilities, communication conditions, 
power supply, and attack types, leading to highly 

diverse security demands and energy availability. 
The balancing of security-energy trade-off should 
be adaptive to the heterogeneous 6G network.

Dynamics: The time-varying nature of the 6G 
network brings more difficulties to security-en-
ergy trade-off balancing due to the variations in 
security demands and energy availability. Net-
work status variations, such as substantial changes 
in transmission traffic or latency, and attacking 
alerts raised by neighbor base stations or devices, 
may occur from time to time. The power supply 
condition is also time-varying: for devices such 
as smartphones, battery can have low capacity, 
so powerful security schemes may be restrict-
ed for longer operating time; for base stations, 
renewable energy such as wind and solar power 
also have supply fluctuation. Thus, the selection 
and configuration of security schemes should be 
updated iteratively to address the dynamics in the 
6G network.

Modeling Complexity: A large number of attri-
butes, as presented in Fig. 2, can be derived from 
the aspects of service features, hardware capabil-
ities, network operating conditions, energy status, 
and attack vulnerabilities. Modeling the relation 
between numerous attributes and desired security 
strategy can be quite complex in balancing the 
security-energy trade-off. The modeling process 
for security optimization should be lightweight so 
that the additional overhead does not counteract 
the advantages in energy efficiency achieved by 
the proposed framework for 6G security. There-
fore, reducing modeling complexity is a critical 
challenge for 6G security optimization.

To address these challenges in balancing secu-
rity-energy trade-off, we propose a dynamic and 
lightweight optimization framework for adaptive 
security in the 6G network.

Optimization Framework for 
Security-Energy Trade-off

Overview of the Proposed Framework
The proposed optimization framework has three 
design principles. First, the generated optimi-
zation model should be adaptive to various 
scenarios in edge network and user devices to 

Figure 3. Proposed optimization framework for security scheme configuration with balanced security-energy trade-off.
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customize a security scheme for a specific base 
station or device from the energy efficiency per-
spective. Second, the framework should address 
the dynamics of the 6G network by iteratively 
updating the optimization model and providing 
real-time recommendations for security scheme 
selection and configuration. Third, the framework 
should be lightweight so that it does not cause 
excessive overhead and energy consumption 
to 6G security. The overview of the proposed 
framework is presented in Fig. 3. Attributes are 
collected from the edge network, user devices, 
and security threats to indicate network condi-
tions, device/base station status, energy status, 
and other information. HNV can provide suffi-
cient training data to the proposed framework 
through accurate simulation of various network 
scenarios. By proactively introducing attacks to 
the simulated network, different security schemes 
and their configurations can be evaluated in met-
rics such as encryption strength, detection rate, 
and energy consumption. Then an optimal secu-
rity scheme can be determined to balance securi-
ty-energy trade-off given the pre-determined user 
demands on energy efficiency. For instance, a 
user can require CPU usage of a security scheme 
to be less than a percentage if remaining energy 
capacity is between b and c percentage so that 
user demands can be formulated as piece-wise 
functions. Table 1 shows an example of a train-
ing sample including the collected attributes and 
corresponding security strategies that are derived 
from network simulation for the subsequent mod-
eling process.

Empowered by AI, the proposed framework 
involves all the related attributes as training data 

and learn their relations with recommended 
scheme selection and configurations, leading to 
high modeling complexity. Since 6G security opti-
mization aims to achieve energy-efficient securi-
ty, the additional energy consumption caused by 
the modeling process needs to be restricted. A 
non-additive measure-based modeling approach 
is proposed to reduce the computational com-
plexity while guaranteeing the accuracy of the 
generated optimization model. By characterizing 
the interactions among attributes on determining 
the optimization outcome, the proposed mod-
eling approach selects significant attributes for 
subsequent supervised learning to generate the 
optimization model. More details on the non-ad-
ditive measure-based modeling and attribute 
selection can be found in our prior work [12]. As 
illustrated in Fig. 4, attributes collected from the 
simulation are expanded into the power set of 
the original attribute set. The interaction of each 
attribute subset is measured to indicate the aggre-
gated impacts of subset elements on optimization 
outcomes. The larger interaction implies a greater 
contribution made by the subset to security-en-
ergy trade-off balancing. Only attributes belong-
ing to the subset with the largest interaction are 
selected for AI-driven optimization model training 
so that the model complexity can be substantially 
reduced. After generating the optimization model 
with the training data provided by HNV-based 
simulation, the proposed framework iteratively 
provides real-time recommendation of security 
scheme selection and configuration. To this end, 
different devices and base stations in the 6G net-
work can customize their security schemes to 
reach optimal security-energy trade-off according 
to users’ demands.

Security Optimization in  
Various Scenarios

The AI-empowered optimization framework mod-
els the relation between collected attributes and 
recommended selection and configurations for 
security schemes. The security-energy trade-offs 
for various scenarios are balanced in an adaptive 
and dynamic manner. For instance, the hardware 
capabilities in computation and communication 
may also affect security optimization, since the 
additional overhead and latency caused by the 
security scheme should be constrained. Various 
power supply types, such as wired charging, wire-

Figure 4. Non-additive measure-based modeling process for the optimization 
model.

Table 1. Example of collected attributes and 
security strategy applied as training data in the 
optimization framework.

Collected attributes Value

Application Online banking

AI utilization Biometric identification

Battery capacity 6400 mAh

Remaining capacity (%) 80%

Charging speed 65 W

Charged or not No

No. of threads 6

Location Urban

Attack type DDoS

No. of neighbor attack detections 3

Network latency 700 ms

Network traffic 1000 Mb/s

 … … 

Security strategy Configuration

Cryptography-based scheme AES 

Cryptographic key length 1024 bits 

… … 
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less charging, and renewable energy, provide 
different energy capacities and charging speeds 
for user devices and base stations. Under differ-
ent energy conditions, the complexity of security 
schemes should be customized adaptively. The 
vulnerability to different attacks can affect secu-
rity scheme optimization due to heterogeneity 
in attack characteristics. Recognizing a compro-
mised edge node requires more complex AI-driv-
en schemes than detecting DDoS attacks. In 
addition, not only the 6G network but also attack-
ers are empowered by AI techniques to evolve 
themselves by learning from previous malicious 
activities. Security schemes should be continu-
ously improved against the evolving attackers, 
changing the trade-off between security strength 
and energy consumption.

To illustrate the proposed framework in detail, 
we present two cases of smartphone and base 
station. In Fig. 2a, the smartphone collects attri-
butes from security threats, energy condition, 
device status, service features, and information 
from base stations in neighboring regions. The 
attributes are transmitted to the proposed optimi-
zation framework and selected based on attribute 
interaction characterization to reduce model train-
ing complexity. The solution is selected from avail-
able security schemes and configured to achieve 
optimal security-energy trade-off for the smart-
phone. For instance, when the smartphone has 
high energy capacity, the length of cryptographic 
key for data encryption can be long (e.g., 1024-
bit) for high encryption strength. When energy 
capacity becomes low, the key length may be 
shortened (e.g., 512-bit) as a compromise for 
lower computational overhead and longer oper-
ating time. In Fig. 2b, the case switches to a base 
station, which has more adequate power supply 
and higher priority for security than a smartphone, 
and it may select a more sophisticated scheme 
and complex configuration. Security schemes on 
base stations are optimized with different sets of 
attributes, including services, attack vulnerabili-
ties, hardware capabilities, user demands, network 
environments, and other time-varying attributes. 
Since base stations utilize renewable energy as 

partial power source, the variation in renewable 
energy supply is also involved as a significant indi-
cator for energy condition. Moreover, additional 
attributes, such as attacking alert from neighbor 
nodes, metrics on network communication, and 
status of connected devices, may also impact 
security-energy trade-off. In this case, the attribute 
collection for base station tends to be higher-di-
mensional than user devices. To facilitate inter-
action characterization with a large number of 
attributes, function approximation is integrated 
with the proposed modeling approach. By for-
mulating the optimal solution of security schemes 
as a function of attributes, we approximate the 
complex relation into a series of simpler Fouri-
er basis functions. By minimizing the number of 
basis functions for approximation, the attributes 
involved in the remaining basis functions can be 
selected for the first round. Then the modeling 
approach processes the attributes with reduced 
dimension with interaction characterization to 
select attributes for the second round. The opti-
mization model is updated iteratively to provide 
an optimal security scheme solution to the base 
station in real time.

Simulation Results
We conduct extensive simulations on security 
scheme optimization to validate the effectiveness 
of our proposed framework for balancing the 
security-energy trade-off in the scenarios of smart-
phone and base station, respectively. In both sce-
narios, security strength and energy consumption 
are compared with and without the proposed opti-
mization framework under various services and 
energy conditions. The applied services include 
online banking and video streaming, represent-
ing different demands on security strength. The 
battery conditions include cases of high and low 
capacity. Both the cryptography-based scheme 
[13] and AI-driven scheme [14] are evaluated 
in the simulation. We use key size to reflect the 
strength of cryptography-based schemes and 
detection rate to evaluate the performance of 
AI-driven schemes. The energy consumption is 
estimated with the number of CPU operations 

Figure 5. Simulation results of security-energy trade-off balancing in various scenarios for different 
intelligent services and energy capacities in 5G and 6G networks for: a) cryptography-based scheme; b) 
AI-driven scheme. The 9 cases represent: (1) 5G network; (2) smartphone for online banking;  
(3) smartphone with high battery capacity; (4) base station for online banking; (5) base station with 
high battery capacity; (6) smartphone for video streaming; (7) smartphone with low battery capacity; 
(8) base station for video streaming; (9) base station with low battery capacity. 

(a) (b)

By minimizing the num-
ber of basis functions 
for approximation, the 
attributes involved in the 
remaining basis functions 
can be selected for the 
first round. Then the 
modeling approach pro-
cesses the attributes with 
reduced dimension with 
interaction characteriza-
tion to select attributes 
for the second round. 
The optimization model is 
updated iteratively to pro-
vide the optimal security 
scheme solution to the 
base station in real time.
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required by the security scheme. As shown in Fig. 
5a, the energy consumption and security strength 
of the cryptography-based scheme are presented 
as coordinates and can be clustered into groups 1, 
2, and 3, shown as circles, triangles, and squares, 
respectively. Group 2 represents the cases with 
high security demands and high energy capacity 
in the 6G network. The corresponding schemes 
of group 2 utilize longer keys and consume more 
CPU operations than group 3, as group 3 has low 
security demands and low energy capacities. In 
comparison, group 1 represents the 5G security 
and has no other points for different cases due to 
its universal configurations. Since we utilize key 
size as the metric of security strength for cryptog-
raphy-based schemes, the selected key sizes are 
1024-bit and 512-bit in the simulation results. To 
this end, the 5G security scheme has the highest 
energy consumption in all cases, even though the 
security demands and energy capacities are low. 
Similarly, as shown in Fig. 5b, the coordinates of 
security scheme metrics in different cases can also 
be clustered into the same three groups as in Fig. 
5a. As detection rate is used as the metric of secu-
rity strength for AI-driven schemes, the increment 
of security strength is more obvious in Fig. 5b than 
in Fig. 5a. Higher CPU operations lead to better 
security strength, which can be adjusted for 6G 
security schemes according to different security 
demands and energy capacities. The group for 5G 
security is in the middle with only one point, since 
it adopts only one universal configuration. The sim-
ulation results validate that for both smartphones 
and base stations, and both categories of security 
schemes, the proposed framework can customize 
6G network security to balance the security-en-
ergy trade-off. Compared to 5G security, which 
applies universal configurations for all scenarios, 
6G security is adaptive to different services and 
energy conditions. Therefore, the proposed frame-
work can effectively optimize security in the 6G 
network from an energy efficiency perspective.

Open Issues for 6G Security
As the 6G network is still in its infancy, many 
open issues remain to be resolved in the future 
research for 6G security:
•	 First, a promising direction is to optimize 

security strategy with the awareness of the 
holistic network situation. In the proposed 
framework, security is customized based on 
operating data collected from devices and 
neighbor edge nodes. In the future, the situa-
tion awareness can be expanded to a holistic 
network so that security-related information 
can be shared among devices and base sta-
tions throughout the network infrastructure 
to predict, analyze, and respond to attacks in 
a real-time and cooperative manner. A glob-
al platform needs to be established for infor-
mation sharing among various devices and 
edge nodes. More subsequent concerns will 
emerge: what information should be shared 
and analyzed to reduce transmission over-
head and learning complexity, and how to 
protect user privacy during information shar-
ing.

•	 Second, the attack vulnerabilities in the 6G 
network should be quantitatively measured 
so that the demands for security strength can 

be determined more accurately for optimiz-
ing security strategy. The evolution and vari-
ation of attacks should also be considered, 
since attackers may be empowered by AI to 
learn from the previous activities to bypass 
the detection of current security solutions. 
The vulnerability assessment for false data 
injection attack has been explored in 6G-en-
abled smart grid based on deep learning 
techniques [15]. In the future, more research 
efforts are needed to establish a universal 
standard of vulnerability measurement for 
various attacks to different devices, edge 
nodes, and services.

•	 Finally, the relation between security 
schemes and energy consumption needs 
to be further investigated. Currently, the 
energy consumption of security schemes 
are estimated through CPU usage informa-
tion. In the future, the estimation should be 
extended from system level to physical level 
so that energy status can be collected from 
hardware directly. By monitoring the actual 
energy capacity changes, we may infer the 
corresponding operations executed by secu-
rity schemes, such as homomorphic encryp-
tion and secure multi-party computation. If 
a more accurate and direct security-energy 
relation can be established, we may obtain a 
deeper insight on 6G security from the ener-
gy efficiency perspective.

Conclusion
In this article, we have explored adaptive and 
dynamic security in the 6G network from an 
energy efficiency perspective. We have first inves-
tigated an AI-empowered 6G architecture with 
promising applications and visions. Then we have 
discussed emerging security threats for 6G and 
the challenges in optimizing security strategy from 
the aspects of heterogeneity, dynamics, and mod-
eling complexity. In addition, we have proposed 
an optimization framework to address the identi-
fied challenges. The proposed framework optimiz-
es security scheme selection and configurations 
to balance the security-energy trade-off in vari-
ous scenarios. Finally, open issues for 6G security 
have been discussed.
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