Name:

Instructions:

- This will be a 55 -minute exam with 3 problems. Closed-book. No notes/homework.
- Provide your solutions in a simple and clear manner. In particular, you should be able to read them out aloud without any modification.

1. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be independent random variables such that

$$
\mathbb{P}\left(X_{n}=-2^{n}\right)=2^{-n} \text { and } \mathbb{P}\left(X_{n}=2^{-n}\right)=\mathbb{P}\left(X_{n}=0\right)=\frac{1}{2}\left(1-2^{-n}\right)
$$

Does $S_{n}:=X_{1}+\cdots+X_{n}$ converge almost surely to a finite random variable? Justify your answers.
Hint: you may use the fact that for a sequence of non-negative real numbers $\left\{a_{n}\right\}_{n \in \mathbb{N}}, \lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}$ exists as either a finite positive constant or infinite.
2. Let X_{1}, X_{2}, \ldots be i.i.d. random variables with $\mathbb{P}\left(X_{1}=0\right)=\mathbb{P}\left(X_{1}=\right.$ $1)=1 / 2$. Consider $Y_{n}:=X_{n}+X_{2 n}$ and $T_{n}:=Y_{1}+\cdots+Y_{n}, n \in \mathbb{N}$.
Find a sequence of real numbers $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and prove

$$
\frac{T_{n}}{a_{n}} \rightarrow 1 \text { in probability. }
$$

3. Let X_{1}, X_{2}, \ldots be i.i.d. standard normal random variables. That is,

$$
\mathbb{P}\left(X_{1} \leq x\right)=\int_{-\infty}^{x} \phi(y) d y \quad \text { with } \quad \phi(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) .
$$

It is known that

$$
\frac{x}{1+x^{2}} \phi(x)<\mathbb{P}\left(X_{1}>x\right)<\frac{1}{x} \phi(x) \text { for all } x>0 .
$$

Show that

$$
\limsup _{n \rightarrow \infty} \frac{X_{n}}{\sqrt{2 \log n}}=1 \text { a.s. }
$$

4. Let $\left\{Z_{n}\right\}_{n \in \mathbb{N}}$ be independent random variables, such that for each $n \in \mathbb{N}, Z_{n}$ is a Gaussian random variable with zero mean and variance n^{2}. Consider $X_{n}:=\exp Z_{n}, n \in \mathbb{N}$. The so-defined X_{n} is said to have log-normal distribution. Consider

$$
W_{n}:=X_{1} X_{2}^{1 / 2} \cdots X_{n}^{1 / n}
$$

Find the limit of $\left(\log W_{n}\right) / n$.

Solution to problem 3. It suffices to show, for all $\epsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left(\frac{X_{n}}{\sqrt{2 \log n}}>1+\epsilon \text { i.o. }\right)=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}\left(\frac{X_{n}}{\sqrt{2 \log n}}>1-\epsilon \text { i.o. }\right)=1 . \tag{2}
\end{equation*}
$$

We first prove (1). By the inequality given,

$$
\begin{aligned}
\mathbb{P}\left(\frac{X_{n}}{\sqrt{2 \log n}}>1\right. & +\epsilon)=\mathbb{P}\left(X_{n}>(1+\epsilon) \sqrt{2 \log n}\right) \\
& \leq \frac{1}{(1+\epsilon) \sqrt{2 \log n}} \frac{1}{\sqrt{2 \pi}} \exp \left(-(1+\epsilon)^{2} \log n\right)<\frac{1}{n^{(1+\epsilon)^{2}}}
\end{aligned}
$$

for $n \geq 2$. The upper bound is therefore summable over n. That is,

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(\frac{X_{n}}{\sqrt{2 \log n}}>1+\epsilon\right)<1+\sum_{n=2}^{\infty} \frac{1}{n^{(1+\epsilon)^{2}}}<\infty
$$

The first Borel-Cantelli lemma implies (1).
Now to prove (2), similarly, we have

$$
\begin{aligned}
\mathbb{P}\left(\frac{X_{n}}{\sqrt{2 \log n}}\right. & >1-\epsilon)=\mathbb{P}\left(X_{n}>(1-\epsilon) \sqrt{2 \log n}\right) \\
& >\frac{(1-\epsilon) \sqrt{2 \log n}}{1+(1-\epsilon)^{2} 2 \log n} \exp \left(-(1-\epsilon)^{2} \log n\right)>\frac{(1-\epsilon)}{4 \log n} \frac{1}{n^{(1-\epsilon)^{2}}}
\end{aligned}
$$

for all $n \geq 2, \epsilon>0$. Therefore,

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(\frac{X_{n}}{\sqrt{2 \log n}}>1-\epsilon\right)>\frac{1-\epsilon}{4} \sum_{n=2}^{\infty} \frac{1}{n^{(1-\epsilon)^{2}} \log n}=\infty
$$

Since $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ are independent, (2) now follows from the second BorelCantelli lemma.

