
STAT7032, Spring 2016 Homework 6

Due Mon March 28 in class.
Problems with (∗) are required but no need to hand in.

1. (∗) Read lecture notes 2.3 – 2.4, or corresponding materials from text-
book.

2. (∗) Let f certain measurable function with
∫ 1
0 |f(x)|dx < ∞. Let

{Un}n∈N be i.i.d. uniform (0, 1) random variables. Show that

lim
n→∞

f(U1) + · · ·+ f(Un)

n
=

∫ 1

0
f(x)dx, a.s.

Comment: in practice, most statistics softwares can generate i.i.d. uni-
form random variables. The result proved here can be used to compute
the value of

∫ 1
0 f(x)dx numerically.

3. Let X1, X2, . . . be i.i.d. random variables, m ∈ N and f : Rm → R a
bounded measurable function. Consider

Yn := f(Xn, . . . , Xn+m−1).

Consider Tn := Y1 + · · ·+ Yn.

(a) Random variables {Yn}n∈N have the following property: there
exists some ` ∈ N, such that for all i 6= j, |i − j| > `, Yi and
Yj are independent. In such a case, {Yn}n∈N are referred to as
`-dependent. What is the smallest value ` in this example?

(b) Compute Var(Tn) and use Markov inequality to show

lim
n→∞

Tn
n

= µ in probability

for some µ ∈ R. Express µ.
Hint: First show Cov(Yi, Yj) = ϕ(i− j) for some function ϕ. For
what values of i do we have ϕ(i) = 0?

(c) Prove that

lim
n→∞

Tn
n

= µ a.s.

Hint: consider T
(`)
n = Y` + Ym+` + · · ·+ Y(n−1)m+`, ` = 1, . . . ,m.

What can you say about T
(`)
n /n as n→∞?

Comments: here, part (c) is a strictly stronger result than part (b).
However, the method in part (c) depends crucially on the `-dependence
assumption, while the method in part (b) is more general.

4. Let X1, X2, . . . be i.i.d. random variables with exponential distribu-
tion: P(X1 > x) = e−x, x > 0. We prove

lim sup
n→∞

Xn

log n
= 1 a.s.

For this purpose, we proceed in two steps.
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(a) Show

P
(
Xn

log n
> 1 + ε i.o.

)
= 0, for all ε > 0.

(b) Show

P
(
Xn

log n
≥ 1− ε i.o.

)
= 1, for all ε > 0.

5. Suppose a light bulb in the math department lounge burns for an
amount of time X, and then remains burned out for an amount of
time Y until being replaced. Let Xi and Yi denote the corresponding
times for the i-th light bulb. All these random variables are assumed to
be independent. Let Rt denote the amount of time during the period
[0, t] such that the light bulb is working. Show that

lim
t→∞

Rt

t
=

EX1

EX1 + EY1
a.s.

(a) Consider Zn := Xn+Yn, n ∈ N, Sn := Z1+ · · ·+Zn, S0 := 0, and

Nt := sup{n ∈ N ∪ {0} : Sn ≤ t}, t > 0.

Consider Tn := X1 + · · ·+Xn, T0 := 0. Then one can write

Rt = TNt + Yt (1)

for some non-negative random variable Yt. Express Yt in terms
of random variables X,Y, S, T and N .

(b) From (1) it follows that TNt ≤ Rt < TNt+1 almost surely. Prove
the desired result. Hint: write

TNt

t
=
TNt

Nt
· Nt

t
.

6. Mr. Smith decided to investigate a total wealth of W0 = w > 0 (in
dollars) from next year. By the end of n-th year, his investment be-
comes Wn, and he reinvestigates all Wn at the beginning of the next
year, using the same strategy. His strategy at the beginning of each
year is the following: (a) a total p · 100% of his wealth is spent to buy
bonds, which yields $a for each $1 investigated by the end of the year;
(b) the rest (1− p) · 100% is spent to buy stocks, which yields Vn for
each $1 investigated by the end of the year. In short, we have

Wn := (ap+ (1− p)Vn)Wn−1, n ∈ N.

Assume a > 0, p ∈ (0, 1) and {Vn}n∈N are i.i.d. non-negative random
variables.

(a) Show that limn→∞ n
−1 logWn = c almost surely for some con-

stant c. Provide an expression of c.

(b) Suppose P(V1 = 1) = P(V1 = 4) = 1/2. The c depends only on a
and p. Determine the optimal investment strategy p as a function
of a, so that c is maximized.
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