Due Wed March 14 in class.
Problems with $(*)$ are required but no need to hand in.

1. (*) Read lecture notes $2.1-2.2$, or corresponding materials from textbook.
2. Let X and Y be two non-negative random variables defined on a common probability space. Show that

$$
\mathbb{E}\left(\frac{1}{X Y}\right)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathbb{P}(X \leq x, Y \leq y)}{x^{2} y^{2}} d x d y
$$

Hint: Fubini's theorem.
3. Recall the definition of convergence in probability: we say X_{n} converges to X, if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0, \text { for all } \epsilon>0 \tag{1}
\end{equation*}
$$

Consider another condition:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n} \neq X\right)=0 . \tag{2}
\end{equation*}
$$

Show that (2) implies (1), but the opposite is not necessarily true without further assumption.
4. Let X_{1}, X_{2}, \ldots be random variables and a function $\varphi: \mathbb{Z} \rightarrow \mathbb{R}$ such that $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\varphi(i-j)$. Write $S_{n}=X_{1}+\cdots+X_{n}$. Show that

$$
\operatorname{Var}\left(S_{n}\right)=\sum_{i=-n+1}^{n-1}(n-|i|) \varphi(i)=n \varphi(0)+2 \sum_{i=1}^{n-1}(n-i) \varphi(i) .
$$

5. Let X_{1}, X_{2}, \ldots be uncorrelated random variables such that $\mathbb{E} X_{i}=\mu_{i}$ and $\lim _{i \rightarrow \infty} \operatorname{Var}\left(X_{i}\right) / i=0$. Consider $S_{n}=X_{1}+\cdots+X_{n}$, and $\nu_{n}=$ $\mathbb{E} S_{n} / n$. Show that $S_{n} / n-\nu_{n} \rightarrow 0$ in L^{2} and in probability.
Hint: Compute $\operatorname{Var}\left(S_{n}\right)$ and find an upper bound for $\operatorname{Var}\left(S_{n}\right) / n^{2}$. You may use the fact that for any sequence of real numbers $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} a_{i}=a .
$$

6. Let X_{1}, X_{2}, \ldots be i.i.d. random variables with distribution determined by $\mathbb{P}\left(X_{1}=(-1)^{k} k\right)=C^{-1}\left(k^{2} \log k\right)^{-1}, k \geq 2$, with $C=$ $\sum_{k=2}^{\infty}\left(k^{2} \log k\right)^{-1}$.
(a) Show $\mathbb{E}\left|X_{1}\right|=\infty$.
(b) Find a sequence μ_{n} such that $S_{n} / n-\mu_{n} \rightarrow 0$ in probability.

Hint: Theorem 2.2.7 from textbook.
(c) Find a value μ such that $\lim _{n \rightarrow \infty} \mu_{n}=\mu$ and conclude that

$$
\lim _{n \rightarrow \infty} S_{n} / n=\mu \text { in probability } .
$$

You may use the fact $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(-1)^{k}(k \log k)^{-1}$ exists and is finite.
7. Let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be a collection of events, and consider the sets $\left\{A_{n}\right.$ i.o. $\}$, $\left\{A_{n}^{c}\right.$ i.o. $\},\left\{A_{n}\right.$ eventually $\}$ and $\left\{A_{n}^{c}\right.$ eventually $\}$. Which pair of sets are complements of each other? Find all the pairs.
8. (*) Read the proofs of two Borel-Cantelli lemmas.
9. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of Bernoulli random variables with parameter $\left\{p_{n}\right\}_{n \in \mathbb{N}}$, respectively.
(a) Show that $X_{n} \rightarrow 0$ in probability, if and only if $\lim _{n \rightarrow \infty} p_{n}=0$.

Hint: for the 'only if' part, prove by contradiction: if not, then there exists an increasing sequence $\left\{n_{k}\right\}_{k \in \mathbb{N}}$ and certain number $\delta>0$, such that $p_{n_{k}}>\delta$ for all $k \in \mathbb{N}$. Derive a contradiction from here.
(b) Show that $X_{n} \rightarrow 0$ almost surely, if $\sum_{n=1}^{\infty} p_{n}<\infty$.
(c) Show that if $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ are in addition independent, then $X_{n} \rightarrow 0$ almost surely only if $\sum_{n=1}^{\infty} p_{n}<\infty$.
(d) Given any sequence $\left\{p_{n}\right\}_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty} p_{n}=0$, provide a concrete example of $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ defined on an appropriate probability space, such that $X_{n} \rightarrow 0$ almost surely.

