Name:

Due Wed Jan. 27 in class.
Problems with $(*)$ are required but no need to hand in.

1. Exercise 1.1.17 from lecture notes.
2. (*) Read lecture notes Sections 1.1, or corresponding materials in textbook.
3. Let $p \in(0,1)$ be arbitrary. Construct 3 Bernoulli random variables X with parameter p, (that is, $\mathbb{P}(X=1)=p=1-\mathbb{P}(X=0))$ in three different probability spaces:
(1) $((0,1), \mathcal{B}((0,1))$, Leb $)$,
(2) $\left(\{0,1\}, 2^{\{0,1\}}, \mathbb{P}\right)$ for some \mathbb{P} to choose,
(3) $([0, \infty), \mathcal{B}([0, \infty)), \mathbb{P})$ where \mathbb{P} is determined by

$$
\mathbb{P}((a, b))=\int_{a}^{b} e^{-x} d x, 0 \leq a<b<\infty
$$

Here, $([0, \infty), \mathcal{B}([0, \infty)))$ is defined similarly as $((0,1), \mathcal{B}((0,1)))$, and \mathbb{P} corresponds to the standard exponential distribution.

Express each random variable as a function explicitly.
4. Construct two different random variables in a common probability space, so that they have the same Bernoulli distribution with parameter $p \in(0,1)$. Namely, provide explicitly a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and two measurable functions $X:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, such that the two random variables have the same Bernoulli distribution with parameter p, and $\mathbb{P}(\omega: X(\omega) \neq$ $Y(\omega))>0$.
5. Consider the measurable space $((0,1), \mathcal{B}((0,1)))$, and two probability measures $\mathbb{P}_{1}:=$ Leb and

$$
\mathbb{P}_{2}(A):=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \mathbf{1}_{\left\{\frac{1}{n+1} \in A\right\}}, A \in \mathcal{B}((0,1)) .
$$

Consider $X(\omega):=\omega, \omega \in(0,1)$.
(a) $\left({ }^{*}\right)$ Why \mathbb{P}_{2} is a probability measure? How would you describe it in words?
(b) Compute $\mathbb{P}_{1}(X \geq 1 / 4)$ and $\mathbb{P}_{2}(X \geq 1 / 4)$.
(c) Write the cumulative distribution functions of X in two probability spaces $\left((0,1), \mathcal{B}((0,1)), \mathbb{P}_{1}\right)$ and $\left((0,1), \mathcal{B}((0,1)), \mathbb{P}_{2}\right)$ respectively. Hint: for the second case, you may want to take a look at Example 1.2.6 in textbook.
6. Let X be a random variable with uniform $(0,1)$ distribution, defined in certain probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let Y be another random variable defined in the same probability space by $Y(\omega)=\max \{X(\omega), 1 / 3\}$. Describe the distribution μ_{Y} of Y in the form of

$$
\mu_{Y}=\mu_{1}+\mu_{2}
$$

where μ_{1} and μ_{2} are discrete and continuous measures, respectively.

