Name:

Due Wed Jan. 20 in class. Problems with (*) are required but no need to hand in.

- 1. (*) Read lecture notes Sections 1.1, or corresponding materials in textbook.
- 2. Provide an example of a measure space $(\Omega, \mathcal{F}, \mu)$ with a family of measurable sets $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{F}$ such that $A_n \downarrow A \in \mathcal{F}$ as $n \to \infty$ but $\lim_{n \to \infty} \mu(A_n) \neq \mu(A)$.
- 3. Let $\Omega = \mathbb{N}$, and \mathcal{F} be the collection of all subsets A of \mathbb{N} such that either A or A^c is finite. For all $A \in \mathcal{F}$, set P(A) = 0 if A is finite, and P(A) = 1 if A^c is finite.
 - (i) Show that \mathcal{F} is *not* a σ -algebra.
 - (ii) Does there exist a probability space $(\mathbb{N}, \mathcal{G}, \mathbb{P})$ such that: $\mathcal{F} \subset \mathcal{G}$, and $\mathbb{P}(A) = P(A)$ for all $A \in \mathcal{F}$? Justify your answer.
- 4. Consider $\Omega = \{a, b, c, d\}$. Find a strictly increasing sequence of σ -algebras $\mathcal{F}_1 \subsetneq \mathcal{F}_2 \subsetneq \cdots \subsetneq \mathcal{F}_n \ (\mathcal{A} \subsetneq \mathcal{B} \text{ means } \mathcal{A} \subset \mathcal{B} \text{ and } \mathcal{A} \neq \mathcal{B})$ of Ω . What is the largest *n* that you can get?
- 5. Prove that in \mathbb{R}^d for arbitrary $d \in \mathbb{N}$, $\sigma(\{(\mathbf{a}, \mathbf{b}] : \mathbf{a} < \mathbf{b}\}) = \sigma(\{[\mathbf{a}, \mathbf{b}] : \mathbf{a} < \mathbf{b}\})$. Provide all details.