Due Monday March 23 in class.
Problems with $(*)$ are required but no need to hand in.
Provide your solutions in a simple and clear manner. In particular, you should be able to read them out aloud without any modification.

1. (*) Read Chapter 2.3, 2.4.
2. Exercises 2.1.12 (redo), 2.3.1, 2.3.3, 2.3.10 (*), 2.3.13, 2.3.14 (*), 2.3.15 (i), (iii), 2.3.17.

For 2.3.3, to make the problem easier, assume in addition $\lambda_{n} \leq 1$ for all $n \in \mathbb{N}$.
3. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a collection of random variables such that $X_{n} \rightarrow X$ as $n \rightarrow \infty$ in probability. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a collection of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=a \in \mathbb{R}$. Show that

$$
X_{n}+a_{n} \rightarrow X+a \text { as } n \rightarrow \infty \text { in probability. }
$$

