Due Wed Feb. 11 in class.
Problems with $(*)$ are required but no need to hand in.
Solution to Exercise 1.3.1 is on page 2.

1. (*) Read Chapter 1.4, 1.5.
2. Exercises 1.4.1, 1.4.2 (*).
3. In step 3 of the definition of Lebesgue integral, we introduce, for measurable function f such that $f \geq 0 \mu$-almost everywhere,

$$
\begin{aligned}
\int f d \mu:=\sup & \left\{\int h d \mu: 0 \leq h \leq f, \mu \text {-a.e. },\right. \\
& h \text { measurable and bounded, } \mu\{\omega: h(\omega)>0\}<\infty\} .
\end{aligned}
$$

Provide an example of $f \geq 0$ and $\int f d \mu=\infty$, using this definition.
4. Lebesgue integral and Riemann integral. We compare the two definitions of integrals. We have seen Lebesgue integrals in class, in form of $\int f(x) \mu(d x)$, and here we focus on the case that the measure space with respect to which the Lebesgue integral is defined is $((0,1), \mathcal{B}((0,1)), \mu=\mathrm{Leb})$. In this way, we write $\int f(x) \mu(d x)=$ $\int_{[0,1]} f(x) d x$.
(a) Recall the definition of Riemann integral for $\int_{0}^{1} f(x) d x$, for continuous function f.
(b) (*) Show that for all non-negative continuous functions $f(x)$ on $[0,1]$, the two integrals have the same value.
5. (a) Construct a sequence of measurable functions $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ on $[0,1]$ that converge to 0 in measure (w.r.t. the Lebesgue measure). That is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Leb}\left(\left\{\omega \in(0,1):\left|f_{n}(\omega)\right|>\epsilon\right\}\right)=0 \text { for all } \epsilon>0 . \tag{1}
\end{equation*}
$$

Draw a picture of $f_{n}(x)$.
(b) Prove that (1) is implied by the following condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}(x)=0, \text { for almost all } x \in[0,1] . \tag{2}
\end{equation*}
$$

(c) Does your example satisfy (2)? If yes, can you construct an example that satisfies (1) but not (2)? Draw a picture if you can.
(d) Do you have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int\left|f_{n}(x)\right| d x=0 \tag{3}
\end{equation*}
$$

for your example(s)? Are conditions (3) and (1) equivalent? Justify your answer.
(e) (*) When viewing all the f_{n} 's as random variables, what can you say about their distributions?
6. In Theorem 1.5.4, it is assumed that $f_{n} \geq 0$. Show that this condition cannot be removed by constructing a counterexample.

Solution to Exercise 1.3.1. Proof: The goal is to show

$$
\sigma\left(X^{-1}(\mathcal{A})\right)=\sigma(X) .
$$

It is easy to show $\sigma(X)$ is a σ-algebra. (The proof is omitted.)
We first show $\sigma\left(X^{-1}(\mathcal{A})\right) \subset \sigma(X)$. To see this, it suffices to observe that $\sigma(X)=\{\{X \in B\}: B \in \mathcal{S}\}$, which contains $X^{-1}(\mathcal{A})$ by definition, and recall the definition that $\sigma\left(X^{-1}(\mathcal{A})\right)$ is the smallest σ-algebra containing $X^{-1}(\mathcal{A})$.

Now, since we know $\sigma\left(X^{-1}(\mathcal{A})\right) \subset \sigma(X)$, there exists a collection of sets $\mathcal{F} \subset \mathcal{S}$ such that

$$
\sigma\left(X^{-1}(\mathcal{A})\right)=\{\{X \in B\}: B \in \mathcal{F}\} .
$$

Since $\sigma\left(X^{-1}(\mathcal{A})\right)$ is a σ-algebra, one can show that \mathcal{F} is also a σ-algebra. (The proof is omitted.) But \mathcal{S} is the smallest σ-algebra containing \mathcal{A}. Therefore it follows that $\mathcal{F}=\mathcal{S}$. We have thus proved the desired result.

