
STAT7032, Spring 2015 Homework 3

Due Wed Feb. 11 in class.
Problems with (∗) are required but no need to hand in.
Solution to Exercise 1.3.1 is on page 2.

1. (∗) Read Chapter 1.4, 1.5.

2. Exercises 1.4.1, 1.4.2 (∗).

3. In step 3 of the definition of Lebesgue integral, we introduce, for mea-
surable function f such that f ≥ 0 µ-almost everywhere,∫

fdµ := sup
{∫

hdµ : 0 ≤ h ≤ f, µ-a.e.,

h measurable and bounded, µ{ω : h(ω) > 0} <∞
}
.

Provide an example of f ≥ 0 and
∫
fdµ =∞, using this definition.

4. Lebesgue integral and Riemann integral. We compare the two def-
initions of integrals. We have seen Lebesgue integrals in class, in
form of

∫
f(x)µ(dx), and here we focus on the case that the mea-

sure space with respect to which the Lebesgue integral is defined
is ((0, 1),B((0, 1)), µ = Leb). In this way, we write

∫
f(x)µ(dx) =∫

[0,1] f(x)dx.

(a) Recall the definition of Riemann integral for
∫ 1
0 f(x)dx, for con-

tinuous function f .

(b) (∗) Show that for all non-negative continuous functions f(x) on
[0, 1], the two integrals have the same value.

5. (a) Construct a sequence of measurable functions {fn}n∈N on [0, 1]
that converge to 0 in measure (w.r.t. the Lebesgue measure).
That is,

lim
n→∞

Leb({ω ∈ (0, 1) : |fn(ω)| > ε}) = 0 for all ε > 0. (1)

Draw a picture of fn(x).

(b) Prove that (1) is implied by the following condition

lim
n→∞

fn(x) = 0, for almost all x ∈ [0, 1]. (2)

(c) Does your example satisfy (2)? If yes, can you construct an ex-
ample that satisfies (1) but not (2)? Draw a picture if you can.

(d) Do you have

lim
n→∞

∫
|fn(x)|dx = 0, (3)

for your example(s)? Are conditions (3) and (1) equivalent? Jus-
tify your answer.

(e) (∗) When viewing all the fn’s as random variables, what can you
say about their distributions?

6. In Theorem 1.5.4, it is assumed that fn ≥ 0. Show that this condition
cannot be removed by constructing a counterexample.
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Solution to Exercise 1.3.1. Proof: The goal is to show

σ(X−1(A)) = σ(X).

It is easy to show σ(X) is a σ-algebra. (The proof is omitted.)
We first show σ(X−1(A)) ⊂ σ(X). To see this, it suffices to observe that

σ(X) = {{X ∈ B} : B ∈ S}, which contains X−1(A) by definition, and
recall the definition that σ(X−1(A)) is the smallest σ-algebra containing
X−1(A).

Now, since we know σ(X−1(A)) ⊂ σ(X), there exists a collection of sets
F ⊂ S such that

σ(X−1(A)) = {{X ∈ B} : B ∈ F}.

Since σ(X−1(A)) is a σ-algebra, one can show that F is also a σ-algebra.
(The proof is omitted.) But S is the smallest σ-algebra containing A. There-
fore it follows that F = S. We have thus proved the desired result.
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