Name:

Due Friday Jan. 23 in class.

- 1. (*) Read Chapter 1.1.
- 2. Exercises 1.1.1, 1.1.2, 1.1.5, 1.1.6.
- 3. Let $\Omega = \mathbb{N}$, and \mathcal{F} be the collection of all subsets A of \mathbb{N} such that either A or A^c is finite. For all $A \in \mathcal{F}$, set $\mathbb{P}(A) = 0$ if A is finite, and $\mathbb{P}(A) = 1$ if A^c is finite.
 - (i) Is \mathcal{F} a σ -algebra? or an algebra? or a semi-algebra?
 - (ii) Is $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space? If not, can \mathbb{P} be extended to a probability measure on a certain σ -algebra of Ω ?
- 4. Let a < b be real numbers. Express

$$\bigcap_{n=1}^{\infty} \left[a, b + \frac{1}{n} \right]$$

using a single interval. Justify your answer.