Name

1. On Halloween, Mr. and Mrs. Smith gave out 100 (indistinguishable) candies to 10 kids from the neighbor area. It might happen that a kid came too late so that the candies had been all gone already.
(a) How many different ways of distribution could have occurred?

$$
\binom{109}{100}=\binom{109}{9}
$$

(b) What about if Mr. and Mrs. had planned well in advance to guarantee that every kid would have at least one candy?

$$
\binom{99}{9} .
$$

(c) Describe the two problems in the balls and bars language.

Part (a) corresponds to the case of distributing $n(=100)$ balls into $r(r=10)$ groups with empty group allowed. So the problem becomes how many ways to arrange $r-1$ undistinguished bars and n undistinguished balls in a row.
Part (b) corresponds to the case of distributing n balls into r nonempty groups. So the problem comes how many ways to choose $r-1$ positions out of $n-1$ ones.
2. Let X be a random variable satisfying $\mathbb{P}(X>x)=x^{-\alpha}$ for $x>1$ for some $\alpha>0$. In this case $X>1$. Find the c.d.f. and p.d.f. of $(2 X)^{2}$. We first compute the c.d.f. of X.

$$
\mathbb{P}(X \leq x)=1-x^{-\alpha}, x>1 .
$$

Next, we compute the c.d.f. of $Y=(2 X)^{2}$. Before that, remark that since $X>1, Y=(2 X)^{2}>4$.

$$
\begin{aligned}
& \mathbb{P}(Y \leq y)=\mathbb{P}\left((2 X)^{2} \leq y\right) \\
& \quad=\mathbb{P}\left(X \leq y^{1 / 2} / 2\right)=1-\left(y^{1 / 2} / 2\right)^{-\alpha}=1-2^{\alpha} y^{-\alpha / 2}, y>4 .
\end{aligned}
$$

At last, we compute the p.d.f. of Y.

$$
p_{Y}(y)=\frac{d}{d y} \mathbb{P}(Y \leq y)=\left(1-2^{\alpha} y^{-\alpha / 2}\right)^{\prime}=\alpha 2^{\alpha-1} y^{-\alpha / 2-1}, y>4 .
$$

3. Choose independently two numbers B and C at random from the interval $[0,1]$ with uniform density. Note that the point (B, C) is then chosen at random in the unit square.
(a) Compute $\mathbb{P}(\min (B, C)>1 / 5)$.

$$
\begin{aligned}
\mathbb{P}(\min (B, C)>1 / 5)=\mathbb{P}(B> & 1 / 5 \text { and } C>1 / 5) \\
& =\mathbb{P}(B>1 / 5) \mathbb{P}(C>1 / 5)=\left(\frac{4}{5}\right)^{2} .
\end{aligned}
$$

(b) Find the probability density function of $Z=\max (B, C)$.

$$
\begin{aligned}
\mathbb{P}(Z \leq z)=\mathbb{P}(\max (B, C) \leq z) & =\mathbb{P}(B \leq z \text { and } C \leq z) \\
& \mathbb{P}(B \leq z) \mathbb{P}(C \leq z)=z^{2}, z \in[0,1] .
\end{aligned}
$$

The p.d.f. of Z thus equals

$$
p_{Z}(z)=\left(z^{2}\right)^{\prime}=2 z, z \in(0,1),
$$

and zero elsewhere.
(c) Compute $\mathbb{E} Z$ and $\operatorname{Var} Z$.

$$
\begin{gathered}
\mathbb{E} Z=\int_{0}^{1} z(2 z) d z=2 \int_{0}^{1} z^{2} d z=\frac{2}{3} . \\
\mathbb{E}\left(Z^{2}\right)=\int_{0}^{1} z^{2}(2 z) d z=2 \int_{0}^{1} z^{3} d z=\frac{1}{2} \\
\operatorname{Var}(Z)=\mathbb{E}\left(Z^{2}\right)-(\mathbb{E} Z)^{2}=\frac{1}{2}-\frac{4}{9}=\frac{1}{18} .
\end{gathered}
$$

(d) Compute $\mathbb{E}(2 B+C)$ and $\operatorname{Var}(2 B+C)$.

Remark that B and C have the same distribution, thus

$$
\mathbb{E}(2 B+C)=2 \mathbb{E} B+\mathbb{E} C=3 \mathbb{E} B=\frac{3}{2}
$$

For the variance, remark that B and C are independent. Then,

$$
\operatorname{Var}(2 B+C)=\operatorname{Var}(2 B)+\operatorname{Var}(C)=4 \operatorname{Var}(B)+\operatorname{Var}(C)=5 \operatorname{Var}(B) .
$$

Since

$$
\operatorname{Var}(B)=\int_{0}^{1}(x-1 / 2)^{2} d x=\int_{-1 / 2}^{1 / 2} x^{2} d x=2 \int_{0}^{1 / 2} x^{2} d x=\frac{1}{12},
$$

$\operatorname{Var}(2 B+C)=5 \operatorname{Var}(B)=5 / 12$.
4. Let X be a random variable with probability density function

$$
p_{X}(x)=\left\{\begin{array}{cl}
c x^{2} & x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Identify the constant c.

The constant c is such that $\int_{0}^{1} c x^{2} d x=1$, whence $c=3$.
(b) Compute $\mathbb{E} X$ and $\operatorname{Var} X$.

$$
\begin{aligned}
& \mathbb{E} X=\int_{0}^{1} x \cdot 3 x^{2} d x=3 \int_{0}^{1} x^{3} d x=\frac{3}{4} \\
& \mathbb{E}\left(X^{2}\right)=\int_{0}^{1} x^{2} \cdot 3 x^{2} d x=3 \int_{0}^{1} x^{4} d x=\frac{3}{5} \\
& \operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}=\frac{3}{5}-\frac{9}{16}=\frac{3}{80}
\end{aligned}
$$

5. A card is drawn at random from a deck consisting of cards numbered 1 through 9. A player wins 1 dollar if the number on the card is odd and loses 1 dollar if the number if even. What are the expected value and variance of his winnings?

Let X be the random variable representing the winning of the gambler. Then, $\mathbb{P}(X=1)=5 / 9$ and $\mathbb{P}(X=-1)=4 / 9$.

$$
\begin{gathered}
\mathbb{E} X=1 \cdot \frac{5}{9}+(-1) \cdot \frac{4}{9}=\frac{1}{9} \\
\mathbb{E}\left(X^{2}\right)=1^{2} \cdot \frac{5}{9}+(-1)^{2} \cdot \frac{4}{9}=1 \\
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}=1-\left(\frac{1}{9}\right)^{2}=\frac{80}{81}
\end{gathered}
$$

6. Throw a die three times.
(a) What is the probability that the sum of the first two throws is strictly larger than 8 ?
Write $S=X_{1}+X_{2}$ with X_{1} and X_{2} representing the numbers from the first two throws. Then X_{1} and X_{2} are independent with discrete uniform distribution over $\{1, \ldots, 6\}$. We count the total number, say T, of outcomes of the first two throws that have sum strictly larger than 8 . By enumeration, $T=4+3+2+1=10$. (For example, the total number of outcomes that sum to 9 is 4 : $(3,6),(4,5),(5,4),(6,3)$.
Since all 36 outcomes are equally likely, $\mathbb{P}(S>8)=10 / 36=$ 5/18.
(b) What is the probability that the sum of the three throws is 11 ? We count all the outcomes that have sum 11. First, observe that all the collection of three integers from $\{1, \ldots, 6\}$ that sum to 11 consists of (regardless of ordering)

$$
(1,4,6),(1,5,5),(2,3,6),(2,4,5),(3,3,5),(3,4,4) .
$$

Next, we take into account the different ordering for each case. The corresponding numbers of different orderings are $6,3,6,6,3,3$. Therefore, the total number of ordered outcomes that add to 11 equals

$$
6+3+6+6+3+3=27 .
$$

The desired probability then equals $27 / 6^{3}=1 / 8$.

