- 6.3.2
(a) Observe that the p.d.f. is symmetric with respect to zero $\left(f_{X}(x)=\right.$ $\left.f_{X}(-x)\right)$, thus the random variable has zero mean. For the variance,

$$
\begin{aligned}
\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)=\int_{-1}^{1} & x^{2} \frac{3}{4}\left(1-x^{2}\right) d x \\
& =\int_{-1}^{1} \frac{3}{4} x^{2} d x-\int_{-1}^{1} \frac{3}{4} x^{4} d x=\frac{1}{2}-\frac{3}{10}=\frac{1}{5} .
\end{aligned}
$$

(b) By symmetry, $\mathbb{E} X=0$. For the variance, again by symmetry,

$$
\begin{equation*}
\operatorname{Var}(X)=\int_{-1}^{1} x^{2} \frac{\pi}{4} \cos (\pi x / 2) d x=2 \int_{0}^{1} x^{2} \frac{\pi}{4} \cos (\pi x / 2) d x \tag{1}
\end{equation*}
$$

By integration by parts,

$$
\begin{align*}
\int_{0}^{1} x^{2} \frac{\pi}{2} \cos (\pi x / 2) d x=\left.x^{2} \sin (\pi x / 2)\right|_{0} ^{1} & -\int_{0}^{1} 2 x \sin (\pi x / 2) d x \\
& =1-\int_{0}^{1} 2 x \sin (\pi x / 2) d x \tag{2}
\end{align*}
$$

Again by integration by parts,

$$
\begin{array}{r}
-\int_{0}^{1} 2 x \sin (\pi x / 2) d x=\left.2 x \frac{2}{\pi} \cos (\pi x / 2)\right|_{0} ^{1}-\int_{0}^{1} \frac{4}{\pi} \cos (\pi x / 2) d x \\
=-\frac{4}{\pi} \int_{0}^{1} \cos (\pi x / 2) d x=-\frac{8}{\pi^{2}} \tag{3}
\end{array}
$$

To sum up, combining (1), (2) and (3) we obtain $\operatorname{Var}(X)=1+8 / \pi^{2}$.

- 6.3.10
(c) By definition,

$$
\begin{aligned}
\mathbb{E}(\min (X, Y)) & =\int_{0}^{1} \int_{0}^{1} \min (x, y) d y d x \\
& =\int_{0}^{1} \int_{0}^{x} y d y d x+\int_{0}^{1} \int_{x}^{1} x d y d x \\
& =\int_{0}^{1} \frac{x^{2}}{2} d x+\int_{0}^{1} x(1-x) d x \\
& =\int_{0}^{1} x d x-\int_{0}^{1} \frac{x^{2}}{2} d x=\frac{1}{2}-\frac{1}{6}=\frac{1}{3} .
\end{aligned}
$$

One can also use the fact that $\mathbb{E} \min (X, Y)+\mathbb{E} \max (X, Y)=$ $\mathbb{E}(\min (X, Y)+\min (X<Y))=\mathbb{E}(X+Y)=1$, and the result we have seen in class that $\mathbb{E} \max (X, Y)=2 / 3$. An alternative way to compute $\mathbb{E} \max (X, Y)$ is to first find the p.d.f. of $\max (X, Y)$, which equals $2 x$ on $(0,1)$ and 0 elsewhere.
(e) $\mathbb{E}\left[(X+Y)^{2}\right]=\mathbb{E}\left(X^{2}+2 X Y+Y^{2}\right)$. Since X and Y have the same distribution and are independent,

$$
\mathbb{E}\left[(X+Y)^{2}\right]=2 \mathbb{E}\left(X^{2}\right)+2(\mathbb{E} X)^{2}=2 \cdot \frac{1}{3}+2 \cdot\left(\frac{1}{2}\right)^{2}=\frac{7}{6} .
$$

- 7.1.2 Let X_{1} and X_{2} represent the stock price change for the first two days. Then the two random variables have the same distribution, and they are independent. Thus, for $S=X_{1}+X_{2}$, it takes values from $\{-2,-1,0,1,2,3,4\}$. The distribution of S equals

$$
p_{S}=\left(\begin{array}{ccccccc}
-2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\frac{1}{16} & \frac{1}{4} & \frac{5}{16} & \frac{3}{16} & \frac{9}{64} & \frac{1}{32} & \frac{1}{64}
\end{array}\right) .
$$

- 7.1.6
(a) T_{r} is the negative binomial distribution with parameter $(r, 1-p)$. More precisely,

$$
\mathbb{P}\left(T_{r}=k\right)=\binom{k+r-1}{k-1}(1-p)^{k} p^{r}, k=0,1, \ldots .
$$

(b) C_{r} is a binomial distribution with parameter (r, p).
(c) We are asked to compute $\mathbb{E} C_{r}$ and $\operatorname{Var} C_{r}$. By knowledge of binomial distribution, $\mathbb{E} C_{r}=r p$ and $\operatorname{Var} C_{r}=r p(1-p)$.

- 7.2.2
(b) By convolution,

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x=\int_{3}^{5} \frac{1}{2} f_{Y}(z-x) d x
$$

By change of variables,

$$
f_{Z}(z)=\int_{z-5}^{z-3} \frac{1}{2} f_{Y}(y) d y
$$

Observe that for $z<6$ or $z>10,(z-5, z-3) \cap(3,5)=\emptyset$. That is, $f_{Z}(z)=0$ for $z \notin(6,10)$. Now,

$$
f_{Z}(z)=\int_{3}^{z-3} \frac{1}{4} d y=\frac{z-6}{4}, z \in(6,8)
$$

and

$$
f_{Z}(z)=\int_{z-5}^{5} \frac{1}{4} d y=\frac{10-z}{4}, z \in[8,10)
$$

(c) One can repeat a similar argument as above. Or, a better way is the following. Let X^{\prime} and Y^{\prime} be the random variables considered in part (c), and let $Z^{\prime}=X^{\prime}+Y^{\prime}$. Observe that one can write $X^{\prime}=X-2$ and $Y^{\prime}=Y$, where X and Y are the random variables considered in part (b). Therefore, the random variable Z^{\prime} considered in part (c) is
nothing but a shift of Z in part (b) by -2 . More precisely, $Z^{\prime}=Z-2$ and

$$
f_{Z^{\prime}}(z)=f_{Z}(z+2)=\left\{\begin{array}{cl}
(z-4) / 4 & z \in(4,6) \\
(8-z) / 4 & z \in[6,8) \\
0 & \text { otherwise }
\end{array}\right.
$$

