- 4.2.2
(a) $\frac{\int_{1}^{10} 0.1 e^{-0.1 t} d t}{\int_{1}^{\infty} 0.1 e^{-0.1 t} d t}=\frac{e^{-0.1}-e^{-1}}{e^{-0.1}}=1-e^{-0.9}$.
(b) $\frac{\int_{5}^{10} 0.1 e^{-0.1 t} d t}{\int_{5}^{\infty} 0.1 e^{-0.1 t} d t}=\frac{e^{-0.5}-e^{-1}}{e^{-0.5}}=1-e^{-0.5}$.

For the first two parts, one can also get the answer by memoryless property of the exponential distribution: $\mathbb{P}(T>s+t \mid T>s)=$ $\mathbb{P}(T>t)$, for all $s, t>0$ and for T with exponential distribution.
(c) 1 .
(d) $\frac{\int_{0}^{10} 0.1 e^{-0.1 t} d t}{\int_{0}^{20} 0.1 e^{-0.1 t} d t}=\frac{1-e^{-1}}{1-e^{-2}}$.

- 4.2 .4
(a) $\frac{1}{2}$.
(b) $\frac{\frac{1}{2} \pi \cdot 5^{2}}{\frac{1}{2} \pi \cdot 10^{2}}=\frac{1}{4}$.
(c) $1-\frac{1}{4}=\frac{3}{4}$. Here $1 / 4$ is the result from part (b).
(d) $\frac{\pi \cdot 5^{2}}{\frac{1}{2} \pi \cdot 10^{2}}=\frac{1}{2}$.
- 4.2 .6

We didn't cover conditional probability density function in class. See textbook page 162-163. The midterm exam will not have problems on this concept, although this is a very useful one.
(a) $p(x \mid E)=\frac{p(x)}{\int_{E} p(y) d y}=\frac{1}{\int_{1 / 4}^{1} d y}=\frac{4}{3}, x \in(1 / 4,1)$ and 0 elsewhere.
(b) $p(x \mid E)=\frac{p(x)}{\int_{E} p(y) d y}=\frac{e^{-x}}{e^{-1}-e^{-10}}$ for $x \in(1,10)$ and 0 elsewhere.
(c) The p.d.f. of the location of the dart is $p(x, y)=\frac{1}{100 \pi},(x, y) \in \Omega$ (see e.g. Example 2.11 from textbook). Note that here we have a random vector instead of a random variable, and the sample space is $\Omega=\left\{(x, y): x^{2}+y^{2} \leq 100\right\}$. So all the p.d.f.s are from \mathbb{R}^{2} to \mathbb{R}_{+}. Thus,
$p(x, y \mid E)=\frac{p(x, y)}{\int_{E} p\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}}=\frac{\frac{1}{100 \pi}}{\frac{1}{2}}=\frac{1}{50 \pi}$, for $(x, y) \in \Omega$, and 0 elsewhere.
(d) $p(x, y \mid E)=\frac{p(x, y)}{\int_{E} p\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}}=\frac{1}{1 / 2}=2$ for $(x, y) \in(0,1)$ and $x>y$, and 0 elsewhere.

