Homework due Sep 15 Mon in class. Problems with $*$ are recommended but not required.

- Reading: Textbook ${ }^{1}$ Chapter 2.2.
- Hand-in Problems: several problems below require calculating integral and double integrals. Show full steps in a clear manner.

1. Textbook Chapter 2.2, Exercise

4 (a), (d)
8 (a)-(e), (i)
16 Hint: Try the following question first: the probability that three random points lie in the same semicircle, is the same as the probability that B and C (as in the hint from the original problem) lie in what region? Identify the region and then change the problem into a double integral. It is OK if you cannot give a rigorous argument on your choice of the region.
2. Let X and Y be two independent exponential random variables with parameters λ_{1} and λ_{2}, respectively.
(a) What is the probability that $X>Y$?
(b) Compute the cumulative distribution function of $\min (X, Y)$. Do you recognize the distribution of $\min (X, Y)$?
Solve the two problems by first translating them into calculation of double integrals.

- Not hand-in Problems: (choose one from the following two sets)

1. Textbook Chapter 2.2, Exercises 3, 5, 12*, 13.
2. SOA/CAS Exam P/1 Sample Questions ${ }^{2}$, 11-12, 14-16, 34, 40.
[^0]
[^0]: ${ }^{1}$ Introduction to Probability, Second Revised Edition, Grinstead and Snell. See textbook website for solutions of odd-number exercises.
 ${ }^{2}$ SOA/CAS Exam P/1 Sample Questions. See course website for samples and solutions.

