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Preface

The present manuscript is designed mainly to help students prepare for the
Probability Exam (Exam P/1), the first actuarial examination administered
by the Society of Actuaries. This examination tests a student’s knowledge of
the fundamental probability tools for quantitatively assessing risk. A thor-
ough command of calculus is assumed.
More information about the exam can be found on the webpage of the Soci-
ety of Actuaries www.soa.org.
Problems taken from previous exams provided by the Society of Actuaries
will be indicated by the symbol ‡.
The flow of topics in the book follows very closely that of Ross’s A First
Course in Probability, 8th edition. Selected topics are chosen based on July
2013 exam syllabus as posted on the SOA website.
This manuscript can be used for personal use or class use, but not for com-
mercial purposes. If you find any errors, I would appreciate hearing from
you: mfinan@atu.edu
This manuscript is also suitable for a one semester course in an undergradu-
ate course in probability theory. Answer keys to text problems are found at
the end of the book.

Marcel B. Finan
Russellville, AR
August, 2013
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A Review of Set Theory

The axiomatic approach to probability is developed using the foundation of
set theory, and a quick review of the theory is in order. If you are famil-
iar with set builder notation, Venn diagrams, and the basic operations on
sets, (unions, intersections, and complements), then you have a good start
on what we will need right away from set theory.
Set is the most basic term in mathematics. Some synonyms of a set are
class or collection. In this chapter we introduce the concept of a set and its
various operations and then study the properties of these operations.

Throughout this book, we assume that the reader is familiar with the follow-
ing number systems:

• The set of all positive integers

N = {1, 2, 3, · · · }.

• The set of all integers

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.

• The set of all rational numbers

Q = {a
b

: a, b ∈ Z with b 6= 0}.

• The set R of all real numbers.
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6 A REVIEW OF SET THEORY

1 Basic Definitions

We define a set A as a collection of well-defined objects (called elements
or members of A) such that for any given object x one can assert without
dispute that either x ∈ A (i.e., x belongs to A) or x 6∈ A but not both.

Example 1.1
Which of the following is a well-defined set.
(a) The collection of good movies.
(b) The collection of right-handed individuals in Russellville.

Solution.
(a) The collection of good movies is not a well-defined set since the answer to
the question: “Is Les Miserables a good movie?” may be subject to dispute.
(b) This collection is a well-defined set since a person is either left-handed or
right-handed. Of course, we are ignoring those few who can use both hands

There are two different ways for representing a set. The first one is to list,
without repetition, the elements of the set. For example, if A is the solution
set to the equation x2− 4 = 0 then A = {−2, 2}. The other way to represent
a set is to describe a property that characterizes the elements of the set. This
is known as the set-builder representation of a set. For example, the set A
above can be written as A = {x|x is an integer satisfying x2 − 4 = 0}.
We define the empty set, denoted by ∅, to be the set with no elements. A
set which is not empty is called a non-empty set.

Example 1.2
List the elements of the following sets.
(a) {x|x is a real number such that x2 = 1}.
(b) {x|x is an integer such that x2 − 3 = 0}.

Solution.
(a) {−1, 1}.
(b) Since the only solutions to the given equation are −

√
3 and

√
3 and both

are not integers, the set in question is the empty set

Example 1.3
Use a property to give a description of each of the following sets.
(a) {a, e, i, o, u}.
(b) {1, 3, 5, 7, 9}.
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Solution.
(a) {x|x is a vowel}.
(b) {n ∈ N|n is odd and less than 10 }

The first arithmetic operation involving sets that we consider is the equality
of two sets. Two sets A and B are said to be equal if and only if they contain
the same elements. We write A = B. For non-equal sets we write A 6= B. In
this case, the two sets do not contain the same elements.

Example 1.4
Determine whether each of the following pairs of sets are equal.
(a) {1, 3, 5} and {5, 3, 1}.
(b) {{1}} and {1, {1}}.

Solution.
(a) Since the order of listing elements in a set is irrelevant, {1, 3, 5} =
{5, 3, 1}.
(b) Since one of the sets has exactly one member and the other has two,
{{1}} 6= {1, {1}}

In set theory, the number of elements in a set has a special name. It is
called the cardinality of the set. We write n(A) to denote the cardinality
of the set A. If A has a finite cardinality we say that A is a finite set. Oth-
erwise, it is called infinite. For example, N is an infinite set.
Can two infinite sets have the same cardinality? The answer is yes. If A and
B are two sets (finite or infinite) and there is a bijection from A to B( i.e.,
a one-to-one1 and onto2 function) then the two sets are said to have the
same cardinality and we write n(A) = n(B).
If n(A) is either finite or has the same cardinality as N then we say that A
is countable. A set that is not countable is said to be uncountable.

Example 1.5
What is the cardinality of each of the following sets?
(a) ∅.

1A function f : A 7−→ B is a one-to-one function if f(m) = f(n) implies m = n,
where m,n ∈ A.

2A function f : A 7−→ B is an onto function if for every b ∈ B, there is an a ∈ A such
that b = f(a).
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(b) {∅}.
(c) A = {a, {a}, {a, {a}}}.

Solution.
(a) n(∅) = 0.
(b) This is a set consisting of one element ∅. Thus, n({∅}) = 1.
(c) n(A) = 3

Example 1.6
(a) Show that the set A = {a1, a2. · · · , an, · · · } is countable.
(b) Let A be the set of all infinite sequences of the digits 0 and 1. Show that
A is uncountable.

Solution.
(a) One can easily verify that the map f : N 7−→ A defined by f(n) = an is
a bijection.
(b) We will argue by contradiction. So suppose that A is countable with
elements a1, a2, · · · . where each ai is an infinite sequence of the digits 0 and
1. Let a be the infinite sequence with the first digit of 0 or 1 different from
the first digit of a1, the second digit of 0 or 1 different from the second digit
of a2, · · · , the nth digit is different from the nth digit of an, etc. Thus, a is
an infinite sequence of the digits 0 and 1 which is not in A, a contradiction.
Hence, A is uncountable

Now, one compares numbers using inequalities. The corresponding notion
for sets is the concept of a subset: Let A and B be two sets. We say that
A is a subset of B, denoted by A ⊆ B, if and only if every element of A is
also an element of B. If there exists an element of A which is not in B then
we write A 6⊆ B.
For any set A we have ∅ ⊆ A ⊆ A. That is, every set has at least two subsets.
Also, keep in mind that the empty set is a subset of any set.

Example 1.7
Suppose that A = {2, 4, 6}, B = {2, 6}, and C = {4, 6}. Determine which of
these sets are subsets of which other of these sets.

Solution.
B ⊆ A and C ⊆ A
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If sets A and B are represented as regions in the plane, relationships be-
tween A and B can be represented by pictures, called Venn diagrams.

Example 1.8
Represent A ⊆ B ⊆ C using Venn diagram.

Solution.
The Venn diagram is given in Figure 1.1

Figure 1.1

Let A and B be two sets. We say that A is a proper subset of B, denoted
by A ⊂ B, if A ⊆ B and A 6= B. Thus, to show that A is a proper subset of
B we must show that every element of A is an element of B and there is an
element of B which is not in A.

Example 1.9
Order the sets of numbers: Z,R,Q,N using ⊂

Solution.
N ⊂ Z ⊂ Q ⊂ R

Example 1.10
Determine whether each of the following statements is true or false.
(a) x ∈ {x} (b) {x} ⊆ {x} (c) {x} ∈ {x}
(d) {x} ∈ {{x}} (e) ∅ ⊆ {x} (f) ∅ ∈ {x}

Solution.
(a) True (b) True (c) False since {x} is a set consisting of a single element x
and so {x} is not a member of this set (d) True (e) True (f) False since {x}
does not have ∅ as a listed member

Now, the collection of all subsets of a set A is of importance. We denote
this set by P(A) and we call it the power set of A.
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Example 1.11
Find the power set of A = {a, b, c}.

Solution.

P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
We conclude this section, by introducing the concept of mathematical in-
duction: We want to prove that some statement P (n) is true for any non-
negative integer n ≥ n0. The steps of mathematical induction are as follows:

(i) (Basis of induction) Show that P (n0) is true.
(ii) (Induction hypothesis) Assume P (n0), P (n0 + 1), · · · , P (n) are true.
(iii) (Induction step) Show that P (n+ 1) is true.

Example 1.12
(a) Use induction to show that if n(A) = n then n(P(A)) = 2n, where n ≥ 0
and n ∈ N.
(b) If P(A) has 256 elements, how many elements are there in A?

Solution.
(a) We apply induction to prove the claim. If n = 0 then A = ∅ and in
this case P(A) = {∅}. Thus, n(P(A)) = 1 = 20. As induction hypothesis,
suppose that if n(A) = n then n(P(A)) = 2n. Let B = {a1, a2, · · · , an, an+1}.
Then P(B) consists of all subsets of {a1, a2, · · · , an} together with all subsets
of {a1, a2, · · · , an} with the element an+1 added to them. Hence, n(P(B)) =
2n + 2n = 2 · 2n = 2n+1.
(b) Since n(P(A)) = 256 = 28, by (a) we have n(A) = 8

Example 1.13

Use induction to show that
n∑
i=1

(2i− 1) = n2, n ∈ N.

Solution.

If n = 1 we have 12 = 2(1)− 1 =
1∑
i=1

(2i− 1). Suppose that the result is true

for up to n. We will show that it is true for n + 1. Indeed,
n+1∑
i=1

(2i − 1) =

n∑
i=1

(2i− 1) + 2(n+ 1)− 1 = n2 + 2n+ 2− 1 = (n+ 1)2
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Practice Problems

Problem 1.1
Consider the experiment of rolling a die. List the elements of the set A =
{x : x shows a face with prime number}. Recall that a prime number is a
number with only two different divisors: 1 and the number itself.

Problem 1.2
Consider the random experiment of tossing a coin three times.
(a) Let S be the collection of all outcomes of this experiment. List the ele-
ments of S. Use H for head and T for tail.
(b) Let E be the subset of S with more than one tail. List the elements of
E.
(c) Suppose F = {THH,HTH,HHT,HHH}. Write F in set-builder nota-
tion.

Problem 1.3
Consider the experiment of tossing a coin three times. Let E be the collection
of outcomes with at least one head and F the collection of outcomes of more
than one head. Compare the two sets E and F.

Problem 1.4
A hand of 5 cards is dealt from a deck of 52 cards. Let E be the event that
the hand contains 5 aces. List the elements of E.

Problem 1.5
Prove the following properties:
(a) Reflexive Property: A ⊆ A.
(b) Antisymmetric Property: If A ⊆ B and B ⊆ A then A = B.
(c) Transitive Property: If A ⊆ B and B ⊆ C then A ⊆ C.

Problem 1.6
Prove by using mathematical induction that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
, n ∈ N.

Problem 1.7
Prove by using mathematical induction that

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
, n ∈ N.
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Problem 1.8
Use induction to show that (1 + x)n ≥ 1 + nx for all n ∈ N, where x > −1.

Problem 1.9
Use induction to show that

1 + a+ a2 + · · ·+ an−1 =
1− an

1− a
.

Problem 1.10
Subway prepared 60 4-inch sandwiches for a birthday party. Among these
sandwiches, 45 of them had tomatoes, 30 had both tomatoes and onions,
and 5 had neither tomatoes nor onions. Using a Venn diagram, how many
sandwiches did he make with
(a) tomatoes or onions?
(b) onions?
(c) onions but not tomatoes?

Problem 1.11
A camp of international students has 110 students. Among these students,

75 speak english,
52 speak spanish,
50 speak french,
33 speak english and spanish,
30 speak english and french,
22 speak spanish and french,
13 speak all three languages.

How many students speak
(a) english and spanish, but not french,
(b) neither english, spanish, nor french,
(c) french, but neither english nor spanish,
(d) english, but not spanish,
(e) only one of the three languages,
(f) exactly two of the three languages.

Problem 1.12
An experiment consists of the following two stages:
(1) a fair coin is tossed
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(2) if the coin shows a head, then a fair die is rolled; otherwise, the coin is
flipped again.
An outcome of this experiment is a pair of the form (outcome from stage
1, outcome from stage 2). Let S be the collection of all outcomes. List the
elements of S and then find the cardinality of S.

Problem 1.13
Show that the function f : R 7−→ R defined by f(x) = 3x + 5 is one-to-one
and onto.

Problem 1.14
Find n(A) if n(P(A)) = 32.

Problem 1.15
Consider the function f : N 7−→ Z defined by

f(n) =

{
n
2
, if n is even

−n−1
2
, if n is odd.

(a) Show that f(n) = f(m) cannot happen if n and m have different parity,
i.e., either both are even or both are odd..
(b) Show that Z is countable.

Problem 1.16
Let A be a non-empty set and f : A 7−→ P(A) be any function. Let B =
{a ∈ A|a 6∈ f(a)}. Clearly, B ∈ P(A). Show that there is no b ∈ A such that
f(b) = B. Hence, there is no onto map from A to P(A).

Problem 1.17
Use the previous problem to show that P(N) is uncountable.
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2 Set Operations

In this section we introduce various operations on sets and study the prop-
erties of these operations.

Complements
If U is a given set whose subsets are under consideration, then we call U a
universal set. Let U be a universal set and A,B be two subsets of U. The
absolute complement of A (See Figure 2.1(I)) is the set

Ac = {x ∈ U |x 6∈ A}.

Example 2.1
Find the complement of A = {1, 2, 3} if U = {1, 2, 3, 4, 5, 6}.

Solution.
From the definition, Ac = {4, 5, 6}

The relative complement of A with respect to B (See Figure 2.1(II)) is
the set

B − A = {x ∈ U |x ∈ B and x 6∈ A}.

Figure 2.1

Example 2.2
Let A = {1, 2, 3} and B = {{1, 2}, 3}. Find A−B.

Solution.
The elements of A that are not in B are 1 and 2. That is, A−B = {1, 2}

Union and Intersection
Given two sets A and B. The union of A and B is the set

A ∪B = {x|x ∈ A or x ∈ B}
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where the ‘or’ is inclusive.(See Figure 2.2(a))

Figure 2.2

The above definition can be extended to more than two sets. More precisely,
if A1, A2, · · · , are sets then

∞⋃
n=1

An = {x|x ∈ Ai for some i ∈ N}.

The intersection of A and B is the set (See Figure 2.2(b))

A ∩B = {x|x ∈ A and x ∈ B}.

Example 2.3
Express each of the following events in terms of the events A,B, and C as
well as the operations of complementation, union and intersection:
(a) at least one of the events A,B,C occurs;
(b) at most one of the events A,B,C occurs;
(c) none of the events A,B,C occurs;
(d) all three events A,B,C occur;
(e) exactly one of the events A,B,C occurs;
(f) events A and B occur, but not C;
(g) either event A occurs or, if not, then B also does not occur.
In each case draw the corresponding Venn diagram.

Solution.
(a) A ∪B ∪ C
(b) (A ∩Bc ∩ Cc) ∪ (Ac ∩B ∩ Cc) ∪ (Ac ∩Bc ∩ C) ∪ (Ac ∩Bc ∩ Cc)
(c) (A ∪B ∪ C)c = Ac ∩Bc ∩ Cc

(d) A ∩B ∩ C
(e) (A ∩Bc ∩ Cc) ∪ (Ac ∩B ∩ Cc) ∪ (Ac ∩Bc ∩ C)
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(f) A ∩B ∩ Cc

(g) A ∪ (Ac ∩Bc)

Example 2.4
Translate the following set-theoretic notation into event language. For ex-
ample, “A ∪B” means “A or B occurs”.
(a) A ∩B
(b) A−B
(c) A ∪B − A ∩B
(d) A− (B ∪ C)
(e) A ⊂ B
(f) A ∩B = ∅

Solution.
(a) A and B occur
(b) A occurs and B does not occur
(c) A or B, but not both, occur
(d) A occurs, and B and C do not occur
(e) if A occurs, then B occurs but if B occurs then A need not occur.
(f) if A occurs, then B does not occur or if B occurs then A does not occur

Example 2.5
Find a simpler expression of [(A ∪ B) ∩ (A ∪ C) ∩ (Bc ∩ Cc)] assuming all
three sets A,B,C intersect.
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Solution.
Using a Venn diagram one can easily see that [(A∪B)∩(A∪C)∩(Bc∩Cc)] =
A− [A ∩ (B ∪ C)] = A−B ∪ C

If A ∩B = ∅ we say that A and B are disjoint sets.

Example 2.6
Let A and B be two non-empty sets. Write A as the union of two disjoint
sets.

Solution.
Using a Venn diagram one can easily see that A∩B and A∩Bc are disjoint
sets such that A = (A ∩B) ∪ (A ∩Bc)

Example 2.7
In a junior league tennis tournament, teams play 20 games. Let A denote
the event that Team Blazers wins 15 or more games in the tournament. Let
B be the event that the Blazers win less than 10 games and C be the event
that they win between 8 to 16 games. The Blazers can win at most 20 games.
Using words, what do the following events represent?
(a) A ∪B and A ∩B.
(b) A ∪ C and A ∩ C.
(c) B ∪ C and B ∩ C.
(d) Ac, Bc, and Cc.

Solution.
(a) A ∪ B is the event that the Blazers win 15 or more games or win 9 or
less games. A∩B is the empty set, since the Blazers cannot win 15 or more
games and have less than 10 wins at the same time. Therefore, event A and
event B are disjoint.
(b) A ∪ C is the event that the Blazers win at least 8 games. A ∩ C is the
event that the Blazers win 15 or 16 games.
(c) B ∪ C is the event that the Blazers win at most 16 games. B ∩ C is the
event that the Blazers win 8 or 9 games.
(d) Ac is the event that the Blazers win 14 or fewer games. Bc is the event
that the Blazers win 10 or more games. Cc is the event that the Blazers win
fewer than 8 or more than 16 games
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Given the sets A1, A2, · · · , we define

∞⋂
n=1

An = {x|x ∈ Ai for all i ∈ N}.

Example 2.8

For each positive integer n we define An = {n}. Find
∞⋂
n=1

An.

Solution.

Clearly,
∞⋂
n=1

An = ∅

Remark 2.1
Note that the Venn diagrams of A∩B and A∪B show that A∩B = B ∩A
and A ∪B = B ∪ A. That is, ∪ and ∩ are commutative laws.

The following theorem establishes the distributive laws of sets.

Theorem 2.1
If A,B, and C are subsets of U then
(a) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(b) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof.
See Problem 2.15

Remark 2.2
Note that since ∩ and ∪ are commutative operations, we have (A∩B)∪C =
(A ∪ C) ∩ (B ∪ C) and (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

The following theorem presents the relationships between (A ∪ B)c, (A ∩
B)c, Ac and Bc.

Theorem 2.2 (De Morgan’s Laws)
Let A and B be subsets of U. We have
(a) (A ∪B)c = Ac ∩Bc.
(b) (A ∩B)c = Ac ∪Bc.
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Proof.
We prove part (a) leaving part(b) as an exercise for the reader.
(a) Let x ∈ (A ∪B)c. Then x ∈ U and x 6∈ A ∪B. Hence, x ∈ U and (x 6∈ A
and x 6∈ B). This implies that (x ∈ U and x 6∈ A) and (x ∈ U and x 6∈ B).
It follows that x ∈ Ac ∩Bc.
Conversely, let x ∈ Ac ∩ Bc. Then x ∈ Ac and x ∈ Bc. Hence, x 6∈ A and
x 6∈ B which implies that x 6∈ (A ∪B). Hence, x ∈ (A ∪B)c

Remark 2.3
De Morgan’s laws are valid for any countable number of sets. That is(

∞⋃
n=1

An

)c

=
∞⋂
n=1

Acn

and (
∞⋂
n=1

An

)c

=
∞⋃
n=1

Acn

Example 2.9
An assisted living agency advertises its program through videos and booklets.
Let U be the set of people solicited for the agency program. All participants
were given a chance to watch a video and to read a booklet describing the
program. Let V be the set of people who watched the video, B the set of
people who read the booklet, and C the set of people who decided to enroll
in the program.
(a) Describe with set notation: “The set of people who did not see the video
or read the booklet but who still enrolled in the program”
(b) Rewrite your answer using De Morgan’s law and and then restate the
above.

Solution.
(a) (V ∪B)c ∩ C.
(b) (V ∪ B)c ∩ C = V c ∩ Bc ∩ C = the set of people who did not watch the
video, did not read the booklet, but did enroll

If Ai ∩ Aj = ∅ for all i 6= j then we say that the sets in the collection
{An}∞n=1 are pairwise disjoint.
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Example 2.10
Find three sets A,B, and C that are not pairwise disjoint but A∩B∩C = ∅.

Solution.
One example is A = B = {1} and C = ∅

Example 2.11

Find sets A1, A2, · · · that are pairwise disjoint and
∞⋂
n=1

An = ∅.

Solution.
For each positive integer n, let An = {n}

Example 2.12
Throw a pair of fair dice. Let A be the event the total is 5, B the event the
total is even, and C the event the total is divisible by 9. Show that A,B,
and C are pairwise disjoint.

Solution.
We have

A ={(1, 4), (2, 3), (3, 2), (4, 1)}
B ={(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (2, 6)(3, 1), (3, 3), (3, 5), (4, 2),

(4, 4), (4, 6), (5, 1), (5, 3), (5, 5), (6, 2), (6, 4), (6, 6)}
C ={(3, 6), (4, 5), (5, 4), (6, 3)}.

Clearly, A ∩B = A ∩ C = B ∩ C = ∅

Next, we establish the following rule of counting.

Theorem 2.3 (Inclusion-Exclusion Principle)
Suppose A and B are finite sets. Then
(a) n(A ∪B) = n(A) + n(B)− n(A ∩B).
(b) If A ∩B = ∅, then n(A ∪B) = n(A) + n(B).
(c) If A ⊆ B, then n(A) ≤ n(B).

Proof.
(a) Indeed, n(A) gives the number of elements in A including those that are
common to A and B. The same holds for n(B). Hence, n(A) +n(B) includes
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twice the number of common elements. Therefore, to get an accurate count of
the elements of A∪B, it is necessary to subtract n(A∩B) from n(A)+n(B).
This establishes the result.
(b) If A and B are disjoint then n(A∩B) = 0 and by (a) we have n(A∪B) =
n(A) + n(B).
(c) If A is a subset of B then the number of elements of A cannot exceed the
number of elements of B. That is, n(A) ≤ n(B)

Example 2.13
The State Department interviewed 35 candidates for a diplomatic post in
Algeria; 25 speak arabic, 28 speak french, and 2 speak neither languages.
How many speak both languages?

Solution.
Let F be the group of applicants that speak french, A those who speak
arabic. Then F ∩ A consists if those who speak both languages. By the
Inclusion-Exclusion Principle we have n(F ∪A) = n(F ) + n(A)− n(F ∩A).
That is, 33 = 28+25−n(F∩A). Solving for n(F∩A) we find n(F∩A) = 20

Cartesian Product
The notation (a, b) is known as an ordered pair of elements and is defined
by (a, b) = {{a}, {a, b}}.
The Cartesian product of two sets A and B is the set

A×B = {(a, b)|a ∈ A, b ∈ B}.

The idea can be extended to products of any number of sets. Given n sets
A1, A2, · · · , An the Cartesian product of these sets is the set

A1 × A2 × · · · × An = {(a1, a2, · · · , an) : a1 ∈ A1, a2 ∈ A2, · · · , an ∈ An}

Example 2.14
Consider the experiment of tossing a fair coin n times. Represent the sample
space as a Cartesian product.

Solution.
If S is the sample space then S = S1 × S2 × · · · × Sn, where Si, 1 ≤ i ≤ n,
is the set consisting of the two outcomes H=head and T = tail

The following theorem is a tool for finding the cardinality of the Cartesian
product of two finite sets.
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Theorem 2.4
Given two finite sets A and B. Then

n(A×B) = n(A) · n(B).

Proof.
Suppose that A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bm}. Then

A×B = {(a1, b1), (a1, b2), · · · , (a1, bm),

(a2, b1), (a2, b2), · · · , (a2, bm),

(a3, b1), (a3, b2), · · · , (a3, bm),

...

(an, b1), (an, b2), · · · , (an, bm)}

Thus, n(A×B) = n ·m = n(A) · n(B)

Remark 2.4
By induction, the previous result can be extended to any finite number of
sets.

Example 2.15
What is the total number of outcomes of tossing a fair coin n times.

Solution.
If S is the sample space then S = S1 × S2 × · · · × Sn where Si, 1 ≤ i ≤ n, is
the set consisting of the two outcomes H=head and T = tail. By the previous
theorem, n(S) = 2n
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Practice Problems

Problem 2.1
Let A and B be any two sets. Use Venn diagrams to show that B = (A ∩
B) ∪ (Ac ∩B) and A ∪B = A ∪ (Ac ∩B).

Problem 2.2
Show that if A ⊆ B then B = A ∪ (Ac ∩ B). Thus, B can be written as the
union of two disjoint sets.

Problem 2.3 ‡
A survey of a group’s viewing habits over the last year revealed the following
information

(i) 28% watched gymnastics
(ii) 29% watched baseball
(iii) 19% watched soccer
(iv) 14% watched gymnastics and baseball
(v) 12% watched baseball and soccer
(vi) 10% watched gymnastics and soccer
(vii) 8% watched all three sports.

Represent the statement “the group that watched none of the three sports
during the last year” using operations on sets.

Problem 2.4
An urn contains 10 balls: 4 red and 6 blue. A second urn contains 16 red
balls and an unknown number of blue balls. A single ball is drawn from each
urn. For i = 1, 2, let Ri denote the event that a red ball is drawn from urn
i and Bi the event that a blue ball is drawn from urn i. Show that the sets
R1 ∩R2 and B1 ∩B2 are disjoint.

Problem 2.5 ‡
An auto insurance has 10,000 policyholders. Each policyholder is classified
as

(i) young or old;
(ii) male or female;
(iii) married or single.
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Of these policyholders, 3,000 are young, 4,600 are male, and 7,000 are mar-
ried. The policyholders can also be classified as 1,320 young males, 3,010
married males, and 1,400 young married persons. Finally, 600 of the policy-
holders are young married males.
How many of the company’s policyholders are young, female, and single?

Problem 2.6 ‡
A marketing survey indicates that 60% of the population owns an automobile,
30% owns a house, and 20% owns both an automobile and a house. What
percentage of the population owns an automobile or a house, but not both?

Problem 2.7 ‡
35% of visits to a primary care physicians (PCP) office results in neither lab
work nor referral to a specialist. Of those coming to a PCPs office, 30% are
referred to specialists and 40% require lab work.
What percentage of visit to a PCPs office results in both lab work and referral
to a specialist?

Problem 2.8
In a universe U of 100, let A and B be subsets of U such that n(A∪B) = 70
and n(A ∪Bc) = 90. Determine n(A).

Problem 2.9 ‡
An insurance company estimates that 40% of policyholders who have only
an auto policy will renew next year and 60% of policyholders who have only
a homeowners policy will renew next year. The company estimates that 80%
of policyholders who have both an auto and a homeowners policy will renew
at least one of those policies next year. Company records show that 65% of
policyholders have an auto policy, 50% of policyholders have a homeowners
policy, and 15% of policyholders have both an auto and a homeowners policy.
Using the company’s estimates, calculate the percentage of policyholders that
will renew at least one policy next year.

Problem 2.10
Show that if A,B, and C are subsets of a universe U then

n(A∪B∪C) = n(A)+n(B)+n(C)−n(A∩B)−n(A∩C)−n(B∩C)+n(A∩B∩C).
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Problem 2.11
In a survey on popsicle flavor preferences of kids aged 3-5, it was found that
• 22 like strawberry.
• 25 like blueberry.
• 39 like grape.
• 9 like blueberry and strawberry.
• 17 like strawberry and grape.
• 20 like blueberry and grape.
• 6 like all flavors.
• 4 like none.

How many kids were surveyed?

Problem 2.12
Let A,B, and C be three subsets of a universe U with the following properties:
n(A) = 63, n(B) = 91, n(C) = 44, n(A∩B) = 25, n(A∩C) = 23, n(C ∩B) =
21, n(A ∪B ∪ C) = 139. Find n(A ∩B ∩ C).

Problem 2.13
Fifty students living in a college dormitory were registering for classes for
the fall semester. The following were observed:
• 30 registered in a math class,
• 18 registered in a history class,
• 26 registered in a computer class,
• 9 registered in both math and history classes,
• 16 registered in both math and computer classes,
• 8 registered in both history and computer classes,
• 47 registered in at least one of the three classes.
(a) How many students did not register in any of these classes ?
(b) How many students registered in all three classes?

Problem 2.14 ‡
A doctor is studying the relationship between blood pressure and heartbeat
abnormalities in her patients. She tests a random sample of her patients
and notes their blood pressures (high, low, or normal) and their heartbeats
(regular or irregular). She finds that:
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(i) 14% have high blood pressure.
(ii) 22% have low blood pressure.
(iii) 15% have an irregular heartbeat.
(iv) Of those with an irregular heartbeat, one-third have high blood pressure.
(v) Of those with normal blood pressure, one-eighth have an irregular heartbeat.

What portion of the patients selected have a regular heartbeat and low blood
pressure?

Problem 2.15
Prove: If A,B, and C are subsets of U then
(a) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(b) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Problem 2.16
Translate the following verbal description of events into set theoretic nota-
tion. For example, “A or B occurs, but not both” corresponds to the set
A ∪B − A ∩B.
(a) A occurs whenever B occurs.
(b) If A occurs, then B does not occur.
(c) Exactly one of the events A and B occurs.
(d) Neither A nor B occur.

Problem 2.17 ‡
A survey of 100 TV watchers revealed that over the last year:
i) 34 watched CBS.
ii) 15 watched NBC.
iii) 10 watched ABC.
iv) 7 watched CBS and NBC.
v) 6 watched CBS and ABC.
vi) 5 watched NBC and ABC.
vii) 4 watched CBS, NBC, and ABC.
viii) 18 watched HGTV and of these, none watched CBS, NBC, or ABC.
Calculate how many of the 100 TV watchers did not watch any of the four
channels (CBS, NBC, ABC or HGTV).



Counting and Combinatorics

The major goal of this chapter is to establish several (combinatorial) tech-
niques for counting large finite sets without actually listing their elements.
These techniques provide effective methods for counting the size of events,
an important concept in probability theory.

3 The Fundamental Principle of Counting

Sometimes one encounters the question of listing all the outcomes of a certain
experiment. One way for doing that is by constructing a so-called tree
diagram.

Example 3.1
List all two-digit numbers that can be constructed from the digits 1,2, and
3.

Solution.

27
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The different numbers are {11, 12, 13, 21, 22, 23, 31, 32, 33}

Of course, trees are manageable as long as the number of outcomes is not
large. If there are many stages to an experiment and several possibilities
at each stage, the tree diagram associated with the experiment would be-
come too large to be manageable. For such problems the counting of the
outcomes is simplified by means of algebraic formulas. The commonly used
formula is the Fundamental Principle of Counting, also known as the
multiplication rule of counting, which states:

Theorem 3.1
If a choice consists of k steps, of which the first can be made in n1 ways,
for each of these the second can be made in n2 ways,· · · , and for each of
these the kth can be made in nk ways, then the whole choice can be made in
n1 · n2 · · · ·nk ways.

Proof.
In set-theoretic term, we let Si denote the set of outcomes for the ith task,
i = 1, 2, · · · , k. Note that n(Si) = ni. Then the set of outcomes for the entire
job is the Cartesian product S1 × S2 × · · · × Sk = {(s1, s2, · · · , sk) : si ∈
Si, 1 ≤ i ≤ k}. Thus, we just need to show that

n(S1 × S2 × · · · × Sk) = n(S1) · n(S2) · · ·n(Sk).

The proof is by induction on k ≥ 2.

Basis of Induction
This is just Theorem 2.4.
Induction Hypothesis
Suppose

n(S1 × S2 × · · · × Sk) = n(S1) · n(S2) · · ·n(Sk).

Induction Conclusion
We must show

n(S1 × S2 × · · · × Sk+1) = n(S1) · n(S2) · · ·n(Sk+1).

To see this, note that there is a one-to-one correspondence between the sets
S1×S2×· · ·×Sk+1 and (S1×S2×· · ·Sk)×Sk+1 given by f(s1, s2, · · · , sk, sk+1) =
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((s1, s2, · · · , sk), sk+1). Thus, n(S1×S2×· · ·×Sk+1) = n((S1×S2×· · ·Sk)×
Sk+1) = n(S1 × S2 × · · ·Sk)n(Sk+1) ( by Theorem 2.4). Now, applying the
induction hypothesis gives

n(S1 × S2 × · · ·Sk × Sk+1) = n(S1) · n(S2) · · ·n(Sk+1)

Example 3.2
The following three factors were considered in the study of the effectivenenss
of a certain cancer treatment:

(i) Medicine (A1, A2, A3, A4, A5)
(ii) Dosage Level (Low, Medium, High)
(iii) Dosage Frequency (1,2,3,4 times/day)

Find the number of ways that a cancer patient can be given the medecine?

Solution.
The choice here consists of three stages, that is, k = 3. The first stage, can be
made in n1 = 5 different ways, the second in n2 = 3 different ways, and the
third in n3 = 4 ways. Hence, the number of possible ways a cancer patient
can be given medecine is n1 · n2 · n3 = 5 · 3 · 4 = 60 different ways

Example 3.3
How many license-plates with 3 letters followed by 3 digits exist?

Solution.
A 6-step process: (1) Choose the first letter, (2) choose the second letter,
(3) choose the third letter, (4) choose the first digit, (5) choose the second
digit, and (6) choose the third digit. Every step can be done in a number of
ways that does not depend on previous choices, and each license plate can
be specified in this manner. So there are 26 · 26 · 26 · 10 · 10 · 10 = 17, 576, 000
ways

Example 3.4
How many numbers in the range 1000 - 9999 have no repeated digits?

Solution.
A 4-step process: (1) Choose first digit, (2) choose second digit, (3) choose
third digit, (4) choose fourth digit. Every step can be done in a number
of ways that does not depend on previous choices, and each number can be
specified in this manner. So there are 9 · 9 · 8 · 7 = 4, 536 ways
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Example 3.5
How many license-plates with 3 letters followed by 3 digits exist if exactly
one of the digits is 1?

Solution.
In this case, we must pick a place for the 1 digit, and then the remaining
digit places must be populated from the digits {0, 2, · · · 9}. A 6-step process:
(1) Choose the first letter, (2) choose the second letter, (3) choose the third
letter, (4) choose which of three positions the 1 goes, (5) choose the first
of the other digits, and (6) choose the second of the other digits. Every
step can be done in a number of ways that does not depend on previous
choices, and each license plate can be specified in this manner. So there are
26 · 26 · 26 · 3 · 9 · 9 = 4, 270, 968 ways
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Practice Problems

Problem 3.1
If each of the 10 digits 0-9 is chosen at random, how many ways can you
choose the following numbers?
(a) A two-digit code number, repeated digits permitted.
(b) A three-digit identification card number, for which the first digit cannot
be a 0. Repeated digits permitted.
(c) A four-digit bicycle lock number, where no digit can be used twice.
(d) A five-digit zip code number, with the first digit not zero. Repeated
digits permitted.

Problem 3.2
(a) If eight cars are entered in a race and three finishing places are considered,
how many finishing orders can they finish? Assume no ties.
(b) If the top three cars are Buick, Honda, and BMW, in how many possible
orders can they finish?

Problem 3.3
You are taking 2 shirts(white and red) and 3 pairs of pants (black, blue, and
gray) on a trip. How many different choices of outfits do you have?

Problem 3.4
A Poker club has 10 members. A president and a vice-president are to be
selected. In how many ways can this be done if everyone is eligible?

Problem 3.5
In a medical study, patients are classified according to whether they have
regular (RHB) or irregular heartbeat (IHB) and also according to whether
their blood pressure is low (L), normal (N), or high (H). Use a tree diagram
to represent the various outcomes that can occur.

Problem 3.6
If a travel agency offers special weekend trips to 12 different cities, by air,
rail, bus, or sea, in how many different ways can such a trip be arranged?

Problem 3.7
If twenty different types of wine are entered in wine-tasting competition, in
how many different ways can the judges award a first prize and a second
prize?
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Problem 3.8
In how many ways can the 24 members of a faculty senate of a college choose
a president, a vice-president, a secretary, and a treasurer?

Problem 3.9
Find the number of ways in which four of ten new novels can be ranked first,
second, third, and fourth according to their figure sales for the first three
months.

Problem 3.10
How many ways are there to seat 8 people, consisting of 4 couples, in a row
of seats (8 seats wide) if all couples are to get adjacent seats?
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4 Permutations

Consider the following problem: In how many ways can 8 horses finish in a
race (assuming there are no ties)? We can look at this problem as a decision
consisting of 8 steps. The first step is the possibility of a horse to finish first
in the race, the second step is the possibility of a horse to finish second, · · · ,
the 8th step is the possibility of a horse to finish 8th in the race. Thus, by
the Fundamental Principle of Counting there are

8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 40, 320 ways.

This problem exhibits an example of an ordered arrangement, that is, the
order the objects are arranged is important. Such an ordered arrangement is
called a permutation. Products such as 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 can be written
in a shorthand notation called factorial. That is, 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 8!
(read “8 factorial”). In general, we define n factorial by

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1, n ≥ 1

where n is a whole number. By convention we define

0! = 1

Example 4.1
Evaluate the following expressions: (a) 6! (b) 10!

7!
.

Solution.
(a) 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720
(b) 10!

7!
= 10·9·8·7·6·5·4·3·2·1

7·6·5·4·3·2·1 = 10 · 9 · 8 = 720

Using factorials and the Fundamental Principle of Counting, we see that
the number of permutations of n objects is n!.

Example 4.2
There are 5! permutations of the 5 letters of the word “rehab.” In how many
of them is h the second letter?

Solution.
Then there are 4 ways to fill the first spot. The second spot is filled by the
letter h. There are 3 ways to fill the third, 2 to fill the fourth, and one way
to fill the fifth. There are 4! such permutations
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Example 4.3
Five different books are on a shelf. In how many different ways could you
arrange them?

Solution.
The five books can be arranged in 5 · 4 · 3 · 2 · 1 = 5! = 120 ways

Counting Permutations
We next consider the permutations of a set of objects taken from a larger
set. Suppose we have n items. How many ordered arrangements of k items
can we form from these n items? The number of permutations is denoted
by nPk. The n refers to the number of different items and the k refers to the
number of them appearing in each arrangement. A formula for nPk is given
next.

Theorem 4.1
For any non-negative integer n and 0 ≤ k ≤ n we have

nPk =
n!

(n− k)!
.

Proof.
We can treat a permutation as a decision with k steps. The first step can be
made in n different ways, the second in n − 1 different ways, ..., the kth in
n − k + 1 different ways. Thus, by the Fundamental Principle of Counting
there are n(n − 1) · · · (n − k + 1) k−permutations of n objects. That is,

nPk = n(n− 1) · · · (n− k + 1) = n(n−1)···(n−k+1)(n−k)!
(n−k)!

= n!
(n−k)!

Example 4.4
How many license plates are there that start with three letters followed by 4
digits (no repetitions)?

Solution.
The decision consists of two steps. The first is to select the letters and this
can be done in 26P3 ways. The second step is to select the digits and this
can be done in 10P4 ways. Thus, by the Fundamental Principle of Counting
there are 26P3 ·10 P4 = 78, 624, 000 license plates

Example 4.5
How many five-digit zip codes can be made where all digits are different?
The possible digits are the numbers 0 through 9.
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Solution.
The answer is 10P5 = 10!

(10−5)!
= 30, 240 zip codes
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Practice Problems

Problem 4.1
Find m and n so that mPn = 9!

6!

Problem 4.2
How many four-letter code words can be formed using a standard 26-letter
alphabet
(a) if repetition is allowed?
(b) if repetition is not allowed?

Problem 4.3
Certain automobile license plates consist of a sequence of three letters fol-
lowed by three digits.
(a) If letters can not be repeated but digits can, how many possible license
plates are there?
(b) If no letters and no digits are repeated, how many license plates are
possible?

Problem 4.4
A permutation lock has 40 numbers on it.
(a) How many different three-number permutation lock can be made if the
numbers can be repeated?
(b) How many different permutation locks are there if the three numbers are
different?

Problem 4.5
(a) 12 cabinet officials are to be seated in a row for a picture. How many
different seating arrangements are there?
(b) Seven of the cabinet members are women and 5 are men. In how many
different ways can the 7 women be seated together on the left, and then the
5 men together on the right?

Problem 4.6
Using the digits 1, 3, 5, 7, and 9, with no repetitions of the digits, how many
(a) one-digit numbers can be made?
(b) two-digit numbers can be made?
(c) three-digit numbers can be made?
(d) four-digit numbers can be made?
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Problem 4.7
There are five members of the Math Club. In how many ways can the
positions of a president, a secretary, and a treasurer, be chosen?

Problem 4.8
Find the number of ways of choosing three initials from the alphabet if none
of the letters can be repeated. Name initials such as MBF and BMF are
considered different.
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5 Combinations

In a permutation the order of the set of objects or people is taken into ac-
count. However, there are many problems in which we want to know the
number of ways in which k objects can be selected from n distinct objects in
arbitrary order. For example, when selecting a two-person committee from a
club of 10 members the order in the committee is irrelevant. That is choosing
Mr. A and Ms. B in a committee is the same as choosing Ms. B and Mr. A.
A combination is defined as a possible selection of a certain number of objects
taken from a group without regard to order. More precisely, the number of
k−element subsets of an n−element set is called the number of combina-
tions of n objects taken k at a time. It is denoted by nCk and is read
“n choose k”. The formula for nCk is given next.

Theorem 5.1
If nCk denotes the number of ways in which k objects can be selected from
a set of n distinct objects then

nCk =
nPk
k!

=
n!

k!(n− k)!
.

Proof.
Since the number of groups of k elements out of n elements is nCk and each
group can be arranged in k! ways, we have nPk = k!nCk. It follows that

nCk =
nPk
k!

=
n!

k!(n− k)!

An alternative notation for nCk is

(
n
k

)
. We define nCk = 0 if k < 0 or

k > n.

Example 5.1
A jury consisting of 2 women and 3 men is to be selected from a group of 5
women and 7 men. In how many different ways can this be done? Suppose
that either Steve or Harry must be selected but not both, then in how many
ways this jury can be formed?

Solution.
There are 5C2 ·7 C3 = 350 possible jury combinations consisting of 2 women



5 COMBINATIONS 39

and 3 men. Now, if we suppose that Steve and Harry can not serve together
then the number of jury groups that do not include the two men at the same
time is 5C25C22C1 = 200

The next theorem discusses some of the properties of combinations.

Theorem 5.2
Suppose that n and k are whole numbers with 0 ≤ k ≤ n. Then
(a) nC0 =n Cn = 1 and nC1 =n Cn−1 = n.
(b) Symmetry property: nCk =n Cn−k.
(c) Pascal’s identity: n+1Ck =n Ck−1 +n Ck.

Proof.
(a) From the formula of nCk we have nC0 = n!

0!(n−0)!
= 1 and nCn = n!

n!(n−n)!
=

1. Similarly, nC1 = n!
1!(n−1)!

= n and nCn−1 = n!
(n−1)!

= n.

(b) Indeed, we have nCn−k = n!
(n−k)!(n−n+k)!

= n!
k!(n−k)!

=n Ck.

(c) We have

nCk−1 +n Ck =
n!

(k − 1)!(n− k + 1)!
+

n!

k!(n− k)!

=
n!k

k!(n− k + 1)!
+
n!(n− k + 1)

k!(n− k + 1)!

=
n!

k!(n− k + 1)!
(k + n− k + 1)

=
(n+ 1)!

k!(n+ 1− k)!
=n+1 Ck

Example 5.2
The Russellville School District has six members. In how many ways
(a) can all six members line up for a picture?
(b) can they choose a president and a secretary?
(c) can they choose three members to attend a state conference with no
regard to order?

Solution.
(a) 6P6 = 6! = 720 different ways
(b) 6P2 = 30 ways
(c) 6C3 = 20 different ways
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Pascal’s identity allows one to construct the so-called Pascal’s triangle (for
n = 10) as shown in Figure 5.1.

Figure 5.1

As an application of combination we have the following theorem which pro-
vides an expansion of (x+ y)n, where n is a non-negative integer.

Theorem 5.3 (Binomial Theorem)
Let x and y be variables, and let n be a non-negative integer. Then

(x+ y)n =
n∑
k=0

nCkx
n−kyk

where nCk will be called the binomial coefficient.

Proof.
The proof is by induction on n.

Basis of induction: For n = 0 we have

(x+ y)0 =
0∑

k=0

0Ckx
0−kyk = 1.

Induction hypothesis: Suppose that the theorem is true up to n. That is,

(x+ y)n =
n∑
k=0

nCkx
n−kyk
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Induction step: Let us show that it is still true for n+ 1. That is

(x+ y)n+1 =
n+1∑
k=0

n+1Ckx
n−k+1yk.

Indeed, we have

(x+ y)n+1 =(x+ y)(x+ y)n = x(x+ y)n + y(x+ y)n

=x
n∑
k=0

nCkx
n−kyk + y

n∑
k=0

nCkx
n−kyk

=
n∑
k=0

nCkx
n−k+1yk +

n∑
k=0

nCkx
n−kyk+1

=[nC0x
n+1 + nC1x

ny + nC2x
n−1y2 + · · ·+ nCnxy

n]

+[nC0x
ny + nC1x

n−1y2 + · · ·+ nCn−1xy
n + nCny

n+1]

=n+1C0x
n+1 + [nC1 + nC0]xny + · · ·+

[nCn + nCn−1]xyn + n+1Cn+1y
n+1

=n+1C0x
n+1 + n+1C1x

ny + n+1C2x
n−1y2 + · · ·

+n+1Cnxy
n + n+1Cn+1y

n+1

=
n+1∑
k=0

n+1Ckx
n−k+1yk.

Note that the coefficients in the expansion of (x + y)n are the entries of the
(n+ 1)st row of Pascal’s triangle.

Example 5.3
Expand (x+ y)6 using the Binomial Theorem.

Solution.
By the Binomial Theorem and Pascal’s triangle we have

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

Example 5.4
How many subsets are there of a set with n elements?
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Solution.
Since there are nCk subsets of k elements with 0 ≤ k ≤ n, the total number
of subsets of a set of n elements is

n∑
k=0

nCk = (1 + 1)n = 2n
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Practice Problems

Problem 5.1
Find m and n so that mCn = 13

Problem 5.2
A club with 42 members has to select three representatives for a regional
meeting. How many possible choices are there?

Problem 5.3
In a UN ceremony, 25 diplomats were introduced to each other. Suppose
that the diplomats shook hands with each other exactly once. How many
handshakes took place?

Problem 5.4
There are five members of the math club. In how many ways can the two-
person Social Committee be chosen?

Problem 5.5
A medical research group plans to select 2 volunteers out of 8 for a drug
experiment. In how many ways can they choose the 2 volunteers?

Problem 5.6
A consumer group has 30 members. In how many ways can the group choose
3 members to attend a national meeting?

Problem 5.7
Which is usually greater the number of combinations of a set of objects or
the number of permutations?

Problem 5.8
Determine whether each problem requires a combination or a permutation:
(a) There are 10 toppings available for your ice cream and you are allowed to
choose only three. How many possible 3-topping combinations can yo have?
(b) Fifteen students participated in a spelling bee competition. The first
place winner will receive $1,000, the second place $500, and the third place
$250. In how many ways can the 3 winners be drawn?

Problem 5.9
Use the binomial theorem and Pascal’s triangle to find the expansion of
(a+ b)7.
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Problem 5.10
Find the 5th term in the expansion of (2a− 3b)7.

Problem 5.11 ‡
Thirty items are arranged in a 6-by-5 array as shown.

A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

A11 A12 A13 A14 A15

A16 A17 A18 A19 A20

A21 A22 A23 A24 A25

A26 A27 A28 A29 A30

Calculate the number of ways to form a set of three distinct items such that
no two of the selected items are in the same row or same column.



Probability: Definitions and
Properties

In this chapter we discuss the fundamental concepts of probability at a level
at which no previous exposure to the topic is assumed.
Probability has been used in many applications ranging from medicine to
business and so the study of probability is considered an essential component
of any mathematics curriculum.
So what is probability? Before answering this question we start with some
basic definitions.

6 Sample Space, Events, Probability Measure

A random experiment or simply an experiment is an experiment whose
outcomes cannot be predicted with certainty. Examples of an experiment
include rolling a die, flipping a coin, and choosing a card from a deck of
playing cards.
The sample space S of an experiment is the set of all possible outcomes for
the experiment. For example, if you roll a die one time then the experiment
is the roll of the die. A sample space for this experiment could be S =
{1, 2, 3, 4, 5, 6} where each digit represents a face of the die.
An event is a subset of the sample space. For example, the event of rolling
an odd number with a die consists of three outcomes {1, 3, 5}.

Example 6.1
Consider the random experiment of tossing a coin three times.
(a) Find the sample space of this experiment.
(b) Find the outcomes of the event of obtaining more than one head.

45
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Solution.
We will use T for tail and H for head.
(a) The sample space is composed of eight outcomes:

S = {TTT, TTH, THT, THH,HTT,HTH,HHT,HHH}.

(b) The event of obtaining more than one head is the set

{THH,HTH,HHT,HHH}

Probability is the measure of occurrence of an event. Various probability
concepts exist nowadays. A widely used probability concept is the exper-
imental probability which uses the relative frequency of an event and is
defined as follows. Let n(E) denote the number of times in the first n repeti-
tions of the experiment that the event E occurs. Then Pr(E), the probability
of the event E, is defined by

Pr(E) = lim
n→∞

n(E)

n
.

This states that if we repeat an experiment a large number of times then
the fraction of times the event E occurs will be close to Pr(E). This result
is a theorem called the law of large numbers which we will discuss in Section
50.1.
The function Pr satisfies the following axioms, known as Kolmogorov ax-
ioms:
Axiom 1: For any event E, 0 ≤ Pr(E) ≤ 1.
Axiom 2: Pr(S) = 1.
Axiom 3: For any sequence of mutually exclusive events {En}n≥1, that is
Ei ∩ Ej = ∅ for i 6= j, we have

Pr

(
∞⋃
n=1

En

)
=
∞∑
n=1

Pr(En).(Countable additivity)

If we let E1 = S, En = ∅ for n > 1 then by Axioms 2 and 3 we have

1 = Pr(S) = Pr

(
∞⋃
n=1

En

)
=

∞∑
n=1

Pr(En) = Pr(S) +
∞∑
n=2

Pr(∅). This implies

that Pr(∅) = 0. Also, if {E1, E2, · · · , En} is a finite set of mutually exclusive
events, then by defining Ek = ∅ for k > n and Axioms 3 we find

Pr

(
n⋃
k=1

Ek

)
=

n∑
k=1

Pr(Ek).
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Any function Pr that satisfies Axioms 1 - 3 will be called a probability
measure.

Example 6.2
Consider the sample space S = {1, 2, 3}. Suppose that Pr({1, 2}) = 0.5 and
Pr({2, 3}) = 0.7. Is Pr a valid probability measure? Justify your answer.

Solution.
We have Pr({1}) + Pr({2}) + Pr({3}) = 1. But Pr({1, 2}) = Pr({1}) +
Pr({2}) = 0.5. This implies that 0.5 + Pr({3}) = 1 or Pr({3}) = 0.5. Sim-
ilarly, 1 = Pr({2, 3}) + Pr({1}) = 0.7 + Pr({1}) and so Pr({1}) = 0.3. It
follows that Pr({2}) = 1 − Pr({1}) − Pr({3}) = 1 − 0.3 − 0.5 = 0.2. Since
Pr({1}) + Pr({2}) + Pr({3}) = 1, Pr is a valid probability measure

Example 6.3
If, for a given experiment, O1, O2, O3, · · · is an infinite sequence of distinct
outcomes, verify that

Pr({Oi}) =

(
1

2

)i
, i = 1, 2, 3, · · ·

is a probability measure.

Solution.
Note that Pr(E) > 0 for any event E. Moreover, if S is the sample space
then

Pr(S) =
∞∑
i=1

Pr({Oi}) =
1

2

∞∑
i=0

(
1

2

)i
=

1

2
· 1

1− 1
2

= 1

where the infinite sum is the infinite geometric series

1 + a+ a2 + · · ·+ an + · · · = 1

1− a
, |a| < 1

with a = 1
2
.

Next, if E1, E2, · · · is a sequence of mutually exclusive events then

Pr

(
∞⋃
n=1

En

)
=
∞∑
n=1

∞∑
j=1

Pr({Onj}) =
∞∑
n=1

Pr(En)
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where En = ∪∞i=1{Oni}. Thus, Pr defines a probability function

Now, since E ∪ Ec = S, E ∩ Ec = ∅, and Pr(S) = 1 we find

Pr(Ec) = 1− Pr(E)

where Ec is the complementary event.
When the outcome of an experiment is just as likely as another, as in the
example of tossing a coin, the outcomes are said to be equally likely. The
classical probability concept applies only when all possible outcomes are
equally likely, in which case we use the formula

Pr(E) =
number of outcomes favorable to event

total number of outcomes
=
n(E)

n(S)
.

Since for any event E we have ∅ ⊆ E ⊆ S, we can write 0 ≤ n(E) ≤ n(S) so

that 0 ≤ n(E)
n(S)
≤ 1. It follows that 0 ≤ Pr(E) ≤ 1. Clearly, Pr(S) = 1. Also,

Axiom 3 is easy to check using a generalization of Theorem 2.3 (b).

Example 6.4
A hand of 5 cards is dealt from a deck. Let E be the event that the hand
contains 5 aces. List the elements of E and find Pr(E).

Solution.
Recall that a standard deck of 52 playing cards can be described as follows:

hearts (red) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King
clubs (black) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King
diamonds (red) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King
spades (black) Ace 2 3 4 5 6 7 8 9 10 Jack Queen King

Cards labeled Ace, Jack, Queen, or King are called face cards.
Since there are only 4 aces in the deck, event E is impossible, i.e. E = ∅ so
that Pr(E) = 0

Example 6.5
What is the probability of drawing an ace from a well-shuffled deck of 52
playing cards?
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Solution.
Since there are four aces in a deck of 52 playing cards, the probability of
getting an ace is 4

52
= 1

13

Example 6.6
What is the probability of rolling a 3 or a 4 with a fair die?

Solution.
The event of having a 3 or a 4 has two outcomes {3, 4}. The probability of
rolling a 3 or a 4 is 2

6
= 1

3

Example 6.7 (Birthday problem)
In a room containing n people, calculate the chance that at least two of them
have the same birthday.

Solution.
In a group of n randomly chosen people, the sample space S will consist
of all ordered n−tuples of birthdays. Let Si be denote the birthday of the
ith person, where 1 ≤ i ≤ n. Then n(Si) = 365 (assuming no leap year).
Moreover, S = S1 × S2 × · · · × Sn. Hence,

n(S) = n(S1)n(S2) · · ·n(Sn) = 365n.

Now, let E be the event that at least two people share the same birthday.
Then the complementary event Ec is the event that no two people of the n
people share the same birthday. Moreover,

Pr(E) = 1− Pr(Ec).

The outcomes in Ec are ordered arrangements of n numbers chosen from 365
numbers without repetitions. Therefore

n(Ec) = 365Pn = (365)(364) · · · (365− n+ 1).

Hence,

Pr(Ec) = (365)(364)···(365−n+1)
(365)n

and

Pr(E) = 1− (365)(364) · · · (365− n+ 1)

(365)n
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Remark 6.1
It is important to keep in mind that the classical definition of probability
applies only to a sample space that has equally likely outcomes. Applying
the definition to a space with outcomes that are not equally likely leads to
incorrect conclusions. For example, the sample space for spinning the spinner
in Figure 6.1 is given by S = {Red,Blue}, but the outcome Blue is more
likely to occur than is the outcome Red. Indeed, Pr(Blue) = 3

4
whereas

Pr(Red) = 1
4

as opposed to Pr(Blue) = Pr(Red) = 1
2

Figure 6.1
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Practice Problems

Problem 6.1
Consider the random experiment of rolling a die.
(a) Find the sample space of this experiment.
(b) Find the event of rolling the die an even number.

Problem 6.2
An experiment consists of the following two stages: (1) first a coin is tossed
(2) if the face appearing is a head, then a die is rolled; if the face appearing
is a tail, then the coin is tossed again. An outcome of this experiment is a
pair of the form (outcome from stage 1, outcome from stage 2). Let S be the
collection of all outcomes.
Find the sample space of this experiment.

Problem 6.3 ‡
An insurer offers a health plan to the employees of a large company. As
part of this plan, the individual employees may choose exactly two of the
supplementary coverages A,B, and C, or they may choose no supplementary
coverage. The proportions of the company’s employees that choose coverages
A,B, and C are 1

4
, 1

3
, and , 5

12
respectively.

Determine the probability that a randomly chosen employee will choose no
supplementary coverage.

Problem 6.4
An experiment consists of throwing two dice.
(a) Write down the sample space of this experiment.
(b) If E is the event “total score is at most 10”, list the outcomes belonging
to Ec.
(c) Find the probability that the total score is at most 10 when the two dice
are thrown.
(d) What is the probability that a double, that is,

{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

will not be thrown?
(e) What is the probability that a double is not thrown nor is the score
greater than 10?
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Problem 6.5
Let S = {1, 2, 3, · · · , 10}. If a number is chosen at random, that is, with the
same chance of being drawn as all other numbers in the set, calculate each
of the following probabilities:
(a) The event A that an even number is drawn.
(b) The event B that a number less than 5 and greater than 9 is drawn.
(c) The event C that a number less than 11 but greater than 0 is drawn.
(d) The event D that a prime number is drawn.
(e) The event E that a number both odd and prime is drawn.

Problem 6.6
The following spinner is spun:

Find the probabilities of obtaining each of the following:
(a) Pr(factor of 24)
(b) Pr(multiple of 4)
(c) Pr(odd number)
(d) Pr({9})
(e) Pr(composite number), i.e., a number that is not prime
(f) Pr(neither prime nor composite)

Problem 6.7
A box of clothes contains 15 shirts and 10 pants. Three items are drawn
from the box without replacement. What is the probability that all three are
all shirts or all pants?

Problem 6.8
A coin is tossed repeatedly. What is the probability that the second head
appears at the 7th toss? (Hint: Since only the first seven tosses matter, you
can assume that the coin is tossed only 7 times.)
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Problem 6.9
Suppose each of 100 professors in a large mathematics department picks
at random one of 200 courses. What is the probability that at least two
professors pick the same course?

Problem 6.10
A large classroom has 100 foreign students, 30 of whom speak spanish. 25 of
the students speak italian, while 55 do not speak neither spanish nor italian.
(a) How many of the those speak both spanish and italian?
(b) A student who speak italian is chosen at random. What is the probability
that he/she speaks spanish?

Problem 6.11
A box contains 5 batteries of which 2 are defective. An inspector selects 2
batteries at random from the box. She/he tests the 2 items and observes
whether the sampled items are defective.
(a) Write out the sample space of all possible outcomes of this experiment.
Be very specific when identifying these.
(b) The box will not be accepted if both of the sampled items are defective.
What is the probability the inspector will reject the box?
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7 Probability of Intersection, Union, and Com-

plementary Event

In this section we find the probability of a complementary event, the union
of two events and the intersection of two events.
We define the probability of nonoccurrence of an event E (called its failure
or the complementary event) to be the number Pr(Ec). Since S = E ∪Ec

and E ∩ Ec = ∅, Pr(S) = Pr(E) + Pr(Ec). Thus,

Pr(Ec) = 1− Pr(E).

Example 7.1
The probability that a senior citizen in a nursing home without a pneumonia
shot will get pneumonia is 0.45. What is the probability that a senior citizen
without pneumonia shot will not get pneumonia?

Solution.
Our sample space consists of those senior citizens in the nursing home who
did not get the pneumonia shot. Let E be the set of those individuals
without the shot who did get the illness. Then Pr(E) = 0.45. The prob-
ability that an individual without the shot will not get the illness is then
Pr(Ec) = 1− Pr(E) = 1− 0.45 = 0.55

The union of two events A and B is the event A ∪ B whose outcomes are
either in A or in B. The intersection of two events A and B is the event
A ∩ B whose outcomes are outcomes of both events A and B. Two events
A and B are said to be mutually exclusive if they have no outcomes in
common. In this case A ∩B = ∅ and Pr(A ∩B) = Pr(∅) = 0.

Example 7.2
Consider the sample space of rolling a die. Let A be the event of rolling a
prime number, B the event of rolling a composite number, and C the event
of rolling a 4. Find
(a) A ∪B,A ∪ C, and B ∪ C.
(b) A ∩B,A ∩ C, and B ∩ C.
(c) Which events are mutually exclusive?
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Solution.
(a) We have

A ∪B = {2, 3, 4, 5, 6}
A ∪ C = {2, 3, 4, 5}
B ∪ C = {4, 6}

(b)

A ∩B = ∅
A ∩ C = ∅
B ∩ C = {4}

(c) A and B are mutually exclusive as well as A and C

Example 7.3
Let A be the event of drawing a “Queen” from a well-shuffled standard deck
of playing cards and B the event of drawing an “ace” card. Are A and B
mutually exclusive?

Solution.
SinceA = {queen of diamonds, queen of hearts, queen of clubs, queen of spades}
and B = {ace of diamonds, ace of hearts, ace of clubs, ace of spades}, A and
B are mutually exclusive

For any events A and B the probability of A ∪ B is given by the addition
rule.

Theorem 7.1
Let A and B be two events. Then

Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B).

Proof.
Let Ac ∩ B denote the event whose outcomes are the outcomes in B that
are not in A. Then using the Venn diagram in Figure 7.1 we see that B =
(A ∩B) ∪ (Ac ∩B) and A ∪B = A ∪ (Ac ∩B).
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Figure 7.1

Since (A ∩ B) and (Ac ∩ B) are mutually exclusive, by Axiom 3 of Section
6, we have

Pr(B) = Pr(A ∩B) + Pr(Ac ∩B).

Thus,
Pr(Ac ∩B) = Pr(B)− Pr(A ∩B).

Similarly, A and Ac ∩B are mutually exclusive, thus we have

Pr(A ∪B) = Pr(A) + Pr(Ac ∩B) = Pr(A) + Pr(B)− Pr(A ∩B)

Note that in the case A and B are mutually exclusive, Pr(A∩B) = 0 so that

Pr(A ∪B) = Pr(A) + Pr(B).

Example 7.4
An airport security has two checkpoints. Let A be the event that the first
checkpoint is busy, and let B be the event the second checkpoint is busy.
Assume that Pr(A) = 0.2, Pr(B) = 0.3 and Pr(A ∩ B) = 0.06. Find the
probability that neither of the two checkpoints is busy.

Solution.
The probability that neither of the checkpoints is busy is Pr[(A ∪ B)c] =
1−Pr(A∪B). But Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B) = 0.2+0.3−0.06 =
0.44. Hence, Pr[(A ∪B)c] = 1− 0.44 = 0.56

Example 7.5
Let Pr(A) = 0.9 and Pr(B) = 0.6. Find the minimum possible value for
Pr(A ∩B).
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Solution.
Since Pr(A) + Pr(B) = 1.5 and 0 ≤ Pr(A∪B) ≤ 1, by the previous theorem

Pr(A ∩B) = Pr(A) + Pr(B)− Pr(A ∪B) ≥ 1.5− 1 = 0.5.

So the minimum value of Pr(A ∩B) is 0.5

Example 7.6
Suppose there’s 40% chance of getting a freezing rain, 10% chance of snow
and freezing rain, 80% chance of snow or freezing rain. Find the chance of
snow.

Solution.
By the addition rule we have

Pr(R) = Pr(R ∪ C)− Pr(C) + Pr(R ∩ C) = 0.8− 0.4 + 0.1 = 0.5

Example 7.7
Let N be the set of all positive integers and Pr be a probability measure
defined by Pr(n) =

(
1
3

)n
for all n ∈ N. What is the probability that a

number chosen at random from N will be odd?

Solution.
We have

Pr({1, 3, 5, · · · }) =Pr({1}) + Pr({3}) + Pr({5}) + · · ·

=

(
1

3

)
+

(
1

3

)3

+

(
1

3

)5

+ · · ·

=

(
1

3

)[
1 +

(
1

3

)2

+

(
1

3

)4

+ · · ·

]

=

(
1

3

)
· 1

1−
(

1
3

)2 =
3

8

Finally, if E and F are two events such that E ⊆ F, then F can be written
as the union of two mutually exclusive events F = E ∪ (Ec ∩ F ). By Axiom
3 we obtain

Pr(F ) = Pr(E) + Pr(Ec ∩ F ).

Thus, Pr(F )− Pr(E) = Pr(Ec ∩ F ) ≥ 0 and this shows

E ⊆ F =⇒ Pr(E) ≤ Pr(F ).
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Theorem 7.2
For any three events A,B, and C we have

Pr(A ∪B ∪ C) =Pr(A) + Pr(B) + Pr(C)− Pr(A ∩B)− Pr(A ∩ C)− Pr(B ∩ C)

+Pr(A ∩B ∩ C).

Proof.
We have

Pr(A ∪B ∪ C) = Pr(A) + Pr(B ∪ C)− Pr(A ∩ (B ∪ C))

= Pr(A) + Pr(B) + Pr(C)− Pr(B ∩ C)

− Pr((A ∩B) ∪ (A ∩ C))

= Pr(A) + Pr(B) + Pr(C)− Pr(B ∩ C)

− [Pr(A ∩B) + Pr(A ∩ C)− Pr((A ∩B) ∩ (A ∩ C))]

= Pr(A) + Pr(B) + Pr(C)− Pr(B ∩ C)

− Pr(A ∩B)− Pr(A ∩ C) + Pr((A ∩B) ∩ (A ∩ C))

= Pr(A) + Pr(B) + Pr(C)− Pr(A ∩B)−
Pr(A ∩ C)− Pr(B ∩ C) + Pr(A ∩B ∩ C)

Example 7.8
If a person visits his primary care physician, suppose that the probability
that he will have blood test work is 0.44, the probability that he will have an
X-ray is 0.24, the probability that he will have an MRI is 0.21, the probability
that he will have blood test and an X-ray is 0.08, the probability that he will
have blood test and an MRI is 0.11, the probability that he will have an
X-ray and an MRI is 0.07, and the probability that he will have blood test,
an X-ray, and an MRI is 0.03. What is the probability that a person visiting
his PCP will have at least one of these things done to him/her?

Solution.
Let B be the event that a person will have blood test, X is the event that
a person will have an X-ray, and M is the event a person will have an MRI.
We are given Pr(B) = 0.44,Pr(X) = 0.24,Pr(M) = 0.21,Pr(B ∩ X) =
0.08,Pr(B∩M) = 0.11,Pr(X ∩M) = 0.07 and Pr(B∩X ∩M) = 0.03. Thus,

Pr(B ∪X ∪M) = 0.44 + 0.24 + 0.21− 0.08− 0.11− 0.07 + 0.03 = 0.66
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Practice Problems

Problem 7.1
A consumer testing service rates a given DVD player as either very good or
good. Let A denote the event that the rating is very good and B the event
that the rating is good. You are given: Pr(A) = 0.22, Pr(B) = 0.35. Find
(a) Pr(Ac);
(b) Pr(A ∪B);
(c) Pr(A ∩B).

Problem 7.2
An entrance exam consists of two subjects: Math and english. The proba-
bility that a student fails the math test is 0.20. The probability of failing
english is 0.15, and the probability of failing both subjects is 0.03. What is
the probability that the student will fail at least one of these subjects?

Problem 7.3
Let A be the event of “drawing a king” from a deck of cards and B the event
of “drawing a diamond”. Are A and B mutually exclusive? Find Pr(A∪B).

Problem 7.4
An urn contains 4 red balls, 8 yellow balls, and 6 green balls. A ball is
selected at random. What is the probability that the ball chosen is either
red or green?

Problem 7.5
Show that for any events A and B, Pr(A ∩B) ≥ Pr(A) + Pr(B)− 1.

Problem 7.6
An urn contains 2 red balls, 4 blue balls, and 5 white balls.
(a) What is the probability of the event R that a ball drawn at random is
red?
(b) What is the probability of the event “not R” that is, that a ball drawn
at random is not red?
(c) What is the probability of the event that a ball drawn at random is either
red or blue?

Problem 7.7
In the experiment of rolling of fair pair of dice, let E denote the event of
rolling a sum that is an even number and P the event of rolling a sum that is
a prime number. Find the probability of rolling a sum that is even or prime?
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Problem 7.8
Let S be a sample space and A and B be two events such that Pr(A) = 0.8
and Pr(B) = 0.9. Determine whether A and B are mutually exclusive or not.

Problem 7.9 ‡
A survey of a group’s viewing habits over the last year revealed the following
information

(i) 28% watched gymnastics
(ii) 29% watched baseball
(iii) 19% watched soccer
(iv) 14% watched gymnastics and baseball
(v) 12% watched baseball and soccer
(vi) 10% watched gymnastics and soccer
(vii) 8% watched all three sports.

Find the probability of the group that watched none of the three sports
during the last year.

Problem 7.10 ‡
The probability that a visit to a primary care physician’s (PCP) office results
in neither lab work nor referral to a specialist is 35% . Of those coming to a
PCP’s office, 30% are referred to specialists and 40% require lab work.
Determine the probability that a visit to a PCP’s office results in both lab
work and referral to a specialist.

Problem 7.11 ‡
You are given Pr(A ∪B) = 0.7 and Pr(A ∪Bc) = 0.9. Determine Pr(A).

Problem 7.12 ‡
Among a large group of patients recovering from shoulder injuries, it is found
that 22% visit both a physical therapist and a chiropractor, whereas 12% visit
neither of these. The probability that a patient visits a chiropractor exceeds
by 14% the probability that a patient visits a physical therapist.
Determine the probability that a randomly chosen member of this group
visits a physical therapist.

Problem 7.13 ‡
In modeling the number of claims filed by an individual under an auto-
mobile policy during a three-year period, an actuary makes the simplifying
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assumption that for all integers n ≥ 0, pn+1 = 1
5
pn, where pn represents the

probability that the policyholder files n claims during the period.
Under this assumption, what is the probability that a policyholder files more
than one claim during the period?

Problem 7.14 ‡
A marketing survey indicates that 60% of the population owns an automobile,
30% owns a house, and 20% owns both an automobile and a house.
Calculate the probability that a person chosen at random owns an automobile
or a house, but not both.

Problem 7.15 ‡
An insurance agent offers his clients auto insurance, homeowners insurance
and renters insurance. The purchase of homeowners insurance and the pur-
chase of renters insurance are mutually exclusive. The profile of the agent’s
clients is as follows:
i) 17% of the clients have none of these three products.
ii) 64% of the clients have auto insurance.
iii) Twice as many of the clients have homeowners insurance as have renters
insurance.
iv) 35% of the clients have two of these three products.
v) 11% of the clients have homeowners insurance, but not auto insurance.
Calculate the percentage of the agent’s clients that have both auto and renters
insurance.

Problem 7.16 ‡
A mattress store sells only king, queen and twin-size mattresses. Sales records
at the store indicate that one-fourth as many queen-size mattresses are sold
as king and twin-size mattresses combined. Records also indicate that three
times as many king-size mattresses are sold as twin-size mattresses.
Calculate the probability that the next mattress sold is either king or queen-
size.

Problem 7.17 ‡
The probability that a member of a certain class of homeowners with liability
and property coverage will file a liability claim is 0.04, and the probability
that a member of this class will file a property claim is 0.10. The probability
that a member of this class will file a liability claim but not a property claim
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is 0.01.
Calculate the probability that a randomly selected member of this class of
homeowners will not file a claim of either type.
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8 Probability and Counting Techniques

The Fundamental Principle of Counting can be used to compute probabilities
as shown in the following example.

Example 8.1
In an actuarial course in probability, an instructor has decided to give his
class a weekly quiz consisting of 5 multiple-choice questions taken from a
pool of previous SOA P/1 exams. Each question has 4 answer choices, of
which 1 is correct and the other 3 are incorrect.
(a) How many answer choices are there?
(b) What is the probability of getting all 5 right answers?
(c) What is the probability of answering exactly 4 questions correctly?
(d) What is the probability of getting at least four answers correctly?

Solution.
(a) We can look at this question as a decision consisting of five steps. There
are 4 ways to do each step so that by the Fundamental Principle of Counting
there are

(4)(4)(4)(4)(4) = 1024 possible choices of answers.

(b) There is only one way to answer each question correctly. Using the
Fundamental Principle of Counting there is (1)(1)(1)(1)(1) = 1 way to answer
all 5 questions correctly out of 1024 possible answer choices. Hence,

Pr(all 5 right) = 1
1024

(c) The following table lists all possible responses that involve exactly 4 right
answers where R stands for right and W stands for a wrong answer

Five Responses Number of ways to fill out the test
WRRRR (3)(1)(1)(1)(1) = 3
RWRRR (1)(3)(1)(1)(1) = 3
RRWRR (1)(1)(3)(1)(1) = 3
RRRWR (1)(1)(1)(3)(1) = 3
RRRRW (1)(1)(1)(1)(3) = 3

So there are 15 ways out of the 1024 possible ways that result in 4 right
answers and 1 wrong answer so that
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Pr(4 right,1 wrong) = 15
1024
≈ 1.5%

(d) “At least 4” means you can get either 4 right and 1 wrong or all 5 right.
Thus,

Pr(at least 4 right) =Pr(4R, 1W ) + P (5R)

=
15

1024
+

1

1024

=
16

1024
≈ 0.016

Example 8.2
Consider the experiment of rolling two dice. How many events A are there
with Pr(A) = 1

3
?

Solution.
We must have Pr({i, j}) = 1

3
with i 6= j. There are 6C2 = 15 such events

Probability Trees
Probability trees can be used to compute the probabilities of combined out-
comes in a sequence of experiments.

Example 8.3
Construct the probability tree of the experiment of flipping a fair coin twice.

Solution.
The probability tree is shown in Figure 8.1

Figure 8.1
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The probabilities shown in Figure 8.1 are obtained by following the paths
leading to each of the four outcomes and multiplying the probabilities along
the paths. This procedure is an instance of the following general property.

Multiplication Rule for Probabilities for Tree Diagrams
For all multistage experiments, the probability of the outcome along any
path of a tree diagram is equal to the product of all the probabilities along
the path.

Example 8.4
A shipment of 500 DVD players contains 9 defective DVD players. Construct
the probability tree of the experiment of sampling two of them without re-
placement.

Solution.
The probability tree is shown in Figure 8.2

Figure 8.2

Example 8.5
The faculty of a college consists of 35 female faculty and 65 male faculty.
70% of the female faculty favor raising tuition, while only 40% of the male
faculty favor the increase.
If a faculty member is selected at random from this group, what is the prob-
ability that he or she favors raising tuition?

Solution.
Figure 8.3 shows a tree diagram for this problem where F stands for female,
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M for male.

Figure 8.3

The first and third branches correspond to favoring the tuition raise. We add
their probabilities.

Pr(tuition raise) = 0.245 + 0.26 = 0.505

Example 8.6
A regular insurance claimant is trying to hide 3 fraudulent claims among 7
genuine claims. The claimant knows that the insurance company processes
claims in batches of 5 or in batches of 10. For batches of 5, the insurance
company will investigate one claim at random to check for fraud; for batches
of 10, two of the claims are randomly selected for investigation. The claimant
has three possible strategies:
(a) submit all 10 claims in a single batch,
(b) submit two batches of 5, one containing 2 fraudulent claims and the other
containing 1,
(c) submit two batches of 5, one containing 3 fraudulent claims and the other
containing 0.
What is the probability that all three fraudulent claims will go undetected
in each case? What is the best strategy?

Solution.
(a) Pr(fraud not detected) = 7

10
· 6

9
= 7

15

(b) Pr(fraud not detected) = 3
5
· 4

5
= 12

25

(c) Pr(fraud not detected) = 2
5
· 1 = 2

5

Claimant’s best strategy is to split fraudulent claims between two batches of
5
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Practice Problems

Problem 8.1
A box contains three red balls and two blue balls. Two balls are to be drawn
without replacement. Use a tree diagram to represent the various outcomes
that can occur. What is the probability of each outcome?

Problem 8.2
Repeat the previous exercise but this time replace the first ball before drawing
the second.

Problem 8.3
An urn contains three red marbles and two green marbles. An experiment
consists of drawing one marble at a time without replacement, until a red
one is obtained. Find the probability of the following events.

A : Only one draw is needed.

B : Exactly two draws are needed.

C : Exactly three draws are needed.

Problem 8.4
Consider a jar with three black marbles and one red marble. For the exper-
iment of drawing two marbles with replacement, what is the probability of
drawing a black marble and then a red marble in that order? Assume that
the balls are equally likely to be drawn.

Problem 8.5
An urn contains two black balls and one red ball. Two balls are drawn with
replacement. What is the probability that both balls are black? Assume
that the balls are equally likely to be drawn.

Problem 8.6
An urn contains four balls: one red, one green, one yellow, and one white.
Two balls are drawn without replacement from the urn. What is the prob-
ability of getting a red ball and a white ball? Assume that the balls are
equally likely to be drawn
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Problem 8.7
An urn contains 3 white balls and 2 red balls. Two balls are to be drawn one
at a time and without replacement. Draw a tree diagram for this experiment
and find the probability that the two drawn balls are of different colors.
Assume that the balls are equally likely to be drawn

Problem 8.8
Repeat the previous problem but with each drawn ball to be put back into
the urn.

Problem 8.9
An urn contains 16 black balls and 3 purple balls. Two balls are to be drawn
one at a time without replacement. What is the probability of drawing out
a black on the first draw and a purple on the second?

Problem 8.10
A board of trustees of a university consists of 8 men and 7 women. A com-
mittee of 3 must be selected at random and without replacement. The role
of the committee is to select a new president for the university. Calculate the
probability that the number of men selected exceeds the number of women
selected.

Problem 8.11 ‡
A store has 80 modems in its inventory, 30 coming from Source A and the
remainder from Source B. Of the modems from Source A, 20% are defective.
Of the modems from Source B, 8% are defective.
Calculate the probability that exactly two out of a random sample of five
modems from the store’s inventory are defective.

Problem 8.12 ‡
From 27 pieces of luggage, an airline luggage handler damages a random
sample of four. The probability that exactly one of the damaged pieces of
luggage is insured is twice the probability that none of the damaged pieces
are insured. Calculate the probability that exactly two of the four damaged
pieces are insured.



Conditional Probability and
Independence

In this chapter we introduce the concept of conditional probability. So far, the
notation Pr(A) stands for the probability of A regardless of the occurrence of
any other events. If the occurrence of an event B influences the probability
of A then this new probability is called conditional probability.

9 Conditional Probabilities

We desire to know the probability of an event A conditional on the knowledge
that another event B has occurred. The information the eventB has occurred
causes us to update the probabilities of other events in the sample space.
To illustrate, suppose you cast two dice; one red, and one green. Then the
probability of getting two ones is 1/36. However, if, after casting the dice,
you ascertain that the green die shows a one (but know nothing about the red
die), then there is a 1/6 chance that both of them will be one. In other words,
the probability of getting two ones changes if you have partial information,
and we refer to this (altered) probability as conditional probability.
If the occurrence of the event A depends on the occurrence of B then the
conditional probability will be denoted by Pr(A|B), read as the probability of
A given B. Conditioning restricts the sample space to those outcomes which
are in the set being conditioned on (in this case B). In this case,

Pr(A|B) =
number of outcomes corresponding to event A and B

number of outcomes of B
.

Thus,

Pr(A|B) =
n(A ∩B)

n(B)
=

n(A∩B)
n(S)

n(B)
n(S)

=
Pr(A ∩B)

Pr(B)

69
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provided that P (B) > 0.

Example 9.1
LetM denote the event “student is male” and letH denote the event “student
is hispanic”. In a class of 100 students suppose 60 are hispanic, and suppose
that 10 of the hispanic students are males. Find the probability that a
randomly chosen hispanic student is a male, that is, find Pr(M |H).

Solution.
Since 10 out of 100 students are both hispanic and male, Pr(M ∩H) = 10

100
=

0.1. Also, 60 out of the 100 students are hispanic, so Pr(H) = 60
100

= 0.6.
Hence, Pr(M |H) = 0.1

0.6
= 1

6

Using the formula

Pr(A|B) =
Pr(A ∩B)

Pr(B)

we can write

Pr(A ∩B) = Pr(A|B)Pr(B) = Pr(B|A)Pr(A). (9.1)

Example 9.2
The probability of a applicant to be admitted to a certain college is 0.8. The
probability for a student in the college to live on campus is 0.6. What is
the probability that an applicant will be admitted to the college and will be
assigned a dormitory housing?

Solution.
The probability of the applicant being admitted and receiving dormitory
housing is defined by
Pr(Accepted and Housing) = Pr(Housing|Accepted)Pr(Accepted)

= (0.6)(0.8) = 0.48

Equation (9.1) can be generalized to any finite number of events.

Theorem 9.1
Consider n events A1, A2, · · · , An. Then

Pr(A1∩A2∩· · ·∩An) = Pr(A1)Pr(A2|A1)Pr(A3|A1∩A2) · · ·Pr(An|A1∩A2∩· · ·∩An−1)
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Proof.
The proof is by induction on n ≥ 2. By Equation (9.1, the relation holds for
n = 2. Suppose that the relation is true for 2, 3, · · · , n. We wish to establish

Pr(A1∩A2∩· · ·∩An+1) = Pr(A1)Pr(A2|A1)Pr(A3|A1∩A2) · · ·Pr(An+1|A1∩A2∩· · ·∩An)

We have

Pr(A1 ∩A2 ∩ · · · ∩An+1) =Pr((A1 ∩A2 ∩ · · · ∩An) ∩An+1)

=Pr(An+1|A1 ∩A2 ∩ · · · ∩An)Pr(A1 ∩A2 ∩ · · · ∩An)

=Pr(An+1|A1 ∩A2 ∩ · · · ∩An)Pr(A1)Pr(A2|A1)Pr(A3|A1 ∩A2)

· · ·Pr(An|A1 ∩A2 ∩ · · · ∩An−1)

=Pr(A1)Pr(A2|A1)Pr(A3|A1 ∩A2) · · ·Pr(An|A1 ∩A2 ∩ · · · ∩An−1)

× Pr(An+1|A1 ∩A2 ∩ · · · ∩An)

Example 9.3
Suppose 5 cards are drawn from a deck of 52 playing cards. What is the
probability that all cards are the same suit, i.e. a flush?

Solution.
We must find

Pr(a flush) = Pr(5 spades) + Pr( 5 hearts ) + Pr( 5 diamonds ) + Pr( 5
clubs )

Now, the probability of getting 5 spades is found as follows:

Pr(5 spades) = Pr(1st card is a spade)Pr(2nd card is a spade|1st card is a spade)
× · · ·× Pr(5th card is a spade|1st,2nd,3rd,4th cards are spades)
= 13

52
× 12

51
× 11

50
× 10

49
× 9

48

Since the above calculation is the same for any of the four suits,

Pr(a flush) = 4× 13
52
× 12

51
× 11

50
× 10

49
× 9

48

We end this section by showing that Pr(·|A) satisfies the properties of ordi-
nary probabilities.
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Theorem 9.2
The function B → Pr(B|A) defines a probability measure.

Proof.
1. Since 0 ≤ Pr(A ∩B) ≤ Pr(A), 0 ≤ Pr(B|A) ≤ 1.

2. Pr(S|A) = Pr(S∩A)
Pr(A)

= Pr(A)
Pr(A)

= 1.
3. Suppose that B1, B2, · · · , are mutually exclusive events. Then B1∩A,B2∩
A, · · · , are mutually exclusive. Thus,

Pr(
∞⋃
n=1

Bn|A) =

Pr

(
∞⋃
n=1

(Bn ∩ A)

)
Pr(A)

=

∞∑
n=1

Pr(Bn ∩ A)

Pr(A)
=
∞∑
n=1

Pr(Bn|A)

Thus, every theorem we have proved for an ordinary probability function
holds for a conditional probability function. For example, we have

Pr(Bc|A) = 1− Pr(B|A).

Prior and Posterior Probabilities
The probability Pr(A) is the probability of the event A prior to introducing
new events that might affect A. It is known as the prior probability of A.
When the occurrence of an event B will affect the event A then Pr(A|B) is
known as the posterior probability of A.
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Practice Problems

Problem 9.1 ‡
A public health researcher examines the medical records of a group of 937
men who died in 1999 and discovers that 210 of the men died from causes
related to heart disease. Moreover, 312 of the 937 men had at least one
parent who suffered from heart disease, and, of these 312 men, 102 died from
causes related to heart disease.
Determine the probability that a man randomly selected from this group died
of causes related to heart disease, given that neither of his parents suffered
from heart disease.

Problem 9.2 ‡
An insurance company examines its pool of auto insurance customers and
gathers the following information:

(i) All customers insure at least one car.
(ii) 70% of the customers insure more than one car.
(iii) 20% of the customers insure a sports car.
(iv) Of those customers who insure more than one car, 15% insure a sports car.

Calculate the probability that a randomly selected customer insures exactly
one car and that car is not a sports car.

Problem 9.3 ‡
An actuary is studying the prevalence of three health risk factors, denoted
by A,B, and C, within a population of women. For each of the three factors,
the probability is 0.1 that a woman in the population has only this risk factor
(and no others). For any two of the three factors, the probability is 0.12 that
she has exactly these two risk factors (but not the other). The probability
that a woman has all three risk factors, given that she has A and B, is 1

3
.

What is the probability that a woman has none of the three risk factors,
given that she does not have risk factor A?

Problem 9.4
You are given Pr(A) = 2

5
, Pr(A ∪ B) = 3

5
, Pr(B|A) = 1

4
, Pr(C|B) = 1

3
, and

Pr(C|A ∩B) = 1
2
. Find Pr(A|B ∩ C).
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Problem 9.5
A pollster surveyed 100 people about watching the TV show “The big bang
theory”. The results of the poll are shown in the table.

Yes No Total
Male 19 41 60
Female 12 28 40
Total 31 69 100

(a) What is the probability of a randomly selected individual is a male and
watching the show?
(b) What is the probability of a randomly selected individual is a male?
(c) What is the probability of a randomly selected individual watches the
show?
(d) What is the probability of a randomly selected individual watches the
show, given that the individual is a male?
(e) What is the probability that a randomly selected individual watching the
show is a male?

Problem 9.6
An urn contains 22 marbles: 10 red, 5 green, and 7 orange. You pick two at
random without replacement. What is the probability that the first is red
and the second is orange?

Problem 9.7
You roll two fair dice. Find the (conditional) probability that the sum of the
two faces is 6 given that the two dice are showing different faces.

Problem 9.8
A machine produces small cans that are used for baked beans. The probabil-
ity that the can is in perfect shape is 0.9. The probability of the can having
an unnoticeable dent is 0.02. The probability that the can is obviously dented
is 0.08. Produced cans get passed through an automatic inspection machine,
which is able to detect obviously dented cans and discard them. What is the
probability that a can that gets shipped for use will be of perfect shape?

Problem 9.9
An urn contains 225 white marbles and 15 black marbles. If we randomly
pick (without replacement) two marbles in succession from the urn, what is
the probability that they will both be black?
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Problem 9.10
Find the probabilities of randomly drawing two kings in succession from an
ordinary deck of 52 playing cards if we sample
(a) without replacement
(b) with replacement

Problem 9.11
A box of television tubes contains 20 tubes, of which five are defective. If
three of the tubes are selected at random and removed from the box in
succession without replacement, what is the probability that all three tubes
are defective?

Problem 9.12
A study of texting and driving has found that 40% of all fatal auto accidents
are attributed to texting drivers, 1% of all auto accidents are fatal, and
drivers who text while driving are responsible for 20% of all accidents. Find
the percentage of non-fatal accidents caused by drivers who do not text.

Problem 9.13
A TV manufacturer buys TV tubes from three sources. Source A supplies
50% of all tubes and has a 1% defective rate. Source B supplies 30% of all
tubes and has a 2% defective rate. Source C supplies the remaining 20% of
tubes and has a 5% defective rate.
(a) What is the probability that a randomly selected purchased tube is de-
fective?
(b) Given that a purchased tube is defective, what is the probability it came
from Source A? From Source B? From Source C?

Problem 9.14
In a certain town in the United States, 40% of the population are liberals and
60% are conservatives. The city council has proposed selling alcohol illegal in
the town. It is known that 75% of conservatives and 30% of liberals support
this measure.
(a) What is the probability that a randomly selected resident from the town
will support the measure?
(b) If a randomly selected person does support the measure, what is the
probability the person is a liberal?
(c) If a randomly selected person does not support the measure, what is the
probability that he or she is a liberal?
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10 Posterior Probabilities: Bayes’ Formula

It is often the case that we know the probabilities of certain events conditional
on other events, but what we would like to know is the “reverse”. That is,
given Pr(A|B) we would like to find Pr(B|A).
Bayes’ formula is a simple mathematical formula used for calculating Pr(B|A)
given Pr(A|B). We derive this formula as follows. Let A and B be two events.
Then

A = A ∩ (B ∪Bc) = (A ∩B) ∪ (A ∩Bc).

Since the events A ∩B and A ∩Bc are mutually exclusive, we can write

Pr(A) = Pr(A ∩B) + Pr(A ∩Bc)

= Pr(A|B)Pr(B) + Pr(A|Bc)Pr(Bc) (10.1)

Example 10.1
The completion of a highway construction may be delayed because of a pro-
jected storm. The probabilities are 0.60 that there will be a storm, 0.85 that
the construction job will be completed on time if there is no storm, and 0.35
that the construction will be completed on time if there is a storm. What is
the probability that the construction job will be completed on time?

Solution.
Let A be the event that the construction job will be completed on time
and B is the event that there will be a storm. We are given Pr(B) =
0.60, Pr(A|Bc) = 0.85, and Pr(A|B) = 0.35. From Equation (10.1) we find

Pr(A) = Pr(B)Pr(A|B)+Pr(Bc)Pr(A|Bc) = (0.60)(0.35)+(0.4)(0.85) = 0.55

From Equation (10.1) we can get Bayes’ formula:

Pr(B|A) =
Pr(A ∩B)

Pr(A ∩B) + Pr(A ∩Bc)
=

Pr(A|B)Pr(B)

Pr(A|B)Pr(B) + Pr(A|Bc)Pr(Bc)
.(10.2)

Example 10.2
A small manufacturing company uses two machines A and B to make shirts.
Observation shows that machine A produces 10% of the total production
of shirts while machine B produces 90% of the total production of shirts.
Assuming that 1% of all the shirts produced by A are defective while 5% of
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all the shirts produced by B are defective, find the probability that a shirt
taken at random from a day’s production was made by machine A, given
that it is defective.

Solution.
We are given Pr(A) = 0.1, Pr(B) = 0.9, Pr(D|A) = 0.01, and Pr(D|B) =
0.05. We want to find Pr(A|D). Using Bayes’ formula we find

Pr(A|D) =
Pr(A ∩D)

Pr(D)
=

Pr(D|A)Pr(A)

Pr(D|A)Pr(A) + Pr(D|B)Pr(B)

=
(0.01)(0.1)

(0.01)(0.1) + (0.05)(0.9)
≈ 0.0217

Example 10.3
A credit card company offers two types of cards: a basic card (B) and a gold
card (G). Over the past year, 40% of the cards issued have been of the basic
type. Of those getting the basic card, 30% enrolled in an identity theft plan,
whereas 50% of all gold cards holders do so. If you learn that a randomly
selected cardholder has an identity theft plan, how likely is it that he/she
has a basic card?

Solution.
Let I denote the identity theft plan. We are given Pr(B) = 0.4,Pr(G) =
0.6, Pr(I|B) = 0.3, and Pr(I|G) = 0.5. By Bayes’ formula we have

Pr(B|I) =
Pr(B ∩ I)

Pr(I)
=

Pr(I|B)Pr(B)

Pr(I|B)Pr(B) + Pr(I|G)Pr(G)

=
(0.3)(0.4)

(0.3)(0.4) + (0.5)(0.6)
= 0.286

Formula (10.2) is a special case of the more general result:

Theorem 10.1 (Bayes’ formula)
Suppose that the sample space S is the union of mutually exclusive events
H1, H2, · · · , Hn with Pr(Hi) > 0 for each i. Then for any event A and 1 ≤
i ≤ n we have

Pr(Hi|A) =
Pr(A|Hi)Pr(Hi)

Pr(A)

where

Pr(A) = Pr(H1)Pr(A|H1) + Pr(H2)Pr(A|H2) + · · ·+ Pr(Hn)Pr(A|Hn).
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Proof.
First note that

Pr(A) =Pr(A ∩ S) = Pr(A ∩ (
n⋃
i=1

Hi))

=Pr(
n⋃
i=1

(A ∩Hi))

=
n∑
i=1

Pr(A ∩Hi) =
n∑
i=1

Pr(A|Hi)Pr(Hi)

Hence,

Pr(Hi|A) =
Pr(A|Hi)Pr(Hi)

Pr(A)
=

Pr(A|Hi)Pr(Hi)
n∑
i=1

Pr(A|Hi)Pr(Hi)

Example 10.4
A survey about a measure to legalize medical marijuanah is taken in three
states: Kentucky, Maine and Arkansas. In Kentucky, 50% of voters sup-
port the measure, in Maine, 60% of the voters support the measure, and in
Arkansas, 35% of the voters support the measure. Of the total population of
the three states, 40% live in Kentucky , 25% live in Maine, and 35% live in
Arkansas. Given that a voter supports the measure, what is the probability
that he/she lives in Maine?

Solution.
Let LI denote the event that a voter lives in state I, where I = K (Kentucky),
M (Maine), or A (Arkansas). Let S denote the event that a voter supports
the measure. We want to find Pr(LM |S). By Bayes’ formula we have

Pr(LM |S) = Pr(S|LM )Pr(LM )
Pr(S|LK)Pr(LK)+Pr(S|LM )Pr(LM )+Pr(S|LA)Pr(LA)

= (0.6)(0.25)
(0.5)(0.4)+(0.6)(0.25)+(0.35)(0.35)

≈ 0.3175

Example 10.5
Passengers in Little Rock Airport rent cars from three rental companies: 60%
from Avis, 30% from Enterprise, and 10% from National. Past statistics show
that 9% of the cars from Avis, 20% of the cars from Enterprise , and 6% of the
cars from National need oil change. If a rental car delivered to a passenger
needs an oil change, what is the probability that it came from Enterprise?
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Solution.
Define the events

A =car comes from Avis

E =car comes from Enterprise

N =car comes from National

O =car needs oil change

Then

Pr(A) = 0.6 Pr(E) = 0.3 Pr(N) = 0.1
Pr(O|A) = 0.09 Pr(O|E) = 0.2 Pr(O|N) = 0.06

From Bayes’ theorem we have

Pr(E|O) =
Pr(O|E)Pr(E)

Pr(O|A)Pr(A) + Pr(O|E)Pr(E) + Pr(O|N)Pr(N)

=
0.2× 0.3

0.09× 0.6 + 0.2× 0.3 + 0.06× 0.1
= 0.5

Example 10.6
A toy factory produces its toys with three machines A,B, and C. From the
total production, 50% are produced by machine A, 30% by machine B, and
20% by machine C. Past statistics show that 4% of the toys produced by
machine A are defective, 2% produced by machine B are defective, and 4%
of the toys produced by machine C are defective.
(a) What is the probability that a randomly selected toy is defective?
(b) If a randomly selected toy was found to be defective, what is the proba-
bility that this toy was produced by machine A?

Solution.
Let D be the event that the selected product is defective. Then, Pr(A) =
0.5,Pr(B) = 0.3,Pr(C) = 0.2,Pr(D|A) = 0.04, Pr(D|B) = 0.02,Pr(D|C) =
0.04. We have

Pr(D) =Pr(D|A)Pr(A) + Pr(D|B)Pr(B) + Pr(D|C)Pr(C)

=(0.04)(0.50) + (0.02)(0.30) + (0.04)(0.20) = 0.034

(b) By Bayes’ theorem, we find

Pr(A|D) =
Pr(D|A)Pr(A)

Pr(D)
=

(0.04)(0.50)

0.034
≈ 0.5882
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Example 10.7
A group of traffic violators consists of 45 men and 15 women. The men have
probability 1/2 for being ticketed for crossing a red light while the women
have probability 1/3 for the same offense.
(a) Suppose you choose at random a person from the group. What is the
probability that the person will be ticketed for crossing a red light?
(b) Determine the conditional probability that you chose a woman given that
the person you chose was being ticketed for crossing the red light.

Solution.
Let

W ={the one selected is a woman}
M ={the one selected is a man}
T ={the one selected is ticketed for crossing a red light}

(a) We are given the following information: Pr(W ) = 15
60

= 1
4
,Pr(M) =

3
4
, Pr(T |W ) = 1

3
, and Pr(T |M) = 1

2
. We have,

Pr(T ) = Pr(T |W )Pr(W ) + Pr(T |M)Pr(M) =
11

24
.

(b) Using Bayes’ theorem we find

Pr(W |T ) =
Pr(T |W )Pr(W )

Pr(T )
=

(1/3)(1/4)

(11/24)
=

2

11
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Practice Problems

Problem 10.1
An insurance company believes that auto drivers can be divided into two
categories: those who are a high risk for accidents and those who are low
risk. Past statistics show that the probability for a high risk driver to have
an accident within a one-year period is 0.4, whereas this probability is 0.2
for a low risk driver.
(a) If we assume that 30% of the population is high risk, what is the probabil-
ity that a new policyholder will have an accident within a year of purchasing
a policy?
(b) Suppose that a new policyholder has an accident within a year of pur-
chasing a policy. What is the probability that he or she is high risk?

Problem 10.2 ‡
An auto insurance company insures drivers of all ages. An actuary compiled
the following statistics on the company’s insured drivers:

Age of Probability Portion of Company’s
Driver of Accident Insured Drivers
16 - 20 0.06 0.08
21 - 30 0.03 0.15
31 - 65 0.02 0.49
66 - 99 0.04 0.28

A randomly selected driver that the company insures has an accident. Cal-
culate the probability that the driver was age 16-20.

Problem 10.3 ‡
An insurance company issues life insurance policies in three separate cate-
gories: standard, preferred, and ultra-preferred. Of the company’s policy-
holders, 50% are standard, 40% are preferred, and 10% are ultra-preferred.
Each standard policyholder has probability 0.010 of dying in the next year,
each preferred policyholder has probability 0.005 of dying in the next year,
and each ultra-preferred policyholder has probability 0.001 of dying in the
next year.
A policyholder dies in the next year. What is the probability that the de-
ceased policyholder was ultra-preferred?
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Problem 10.4 ‡
Upon arrival at a hospital’s emergency room, patients are categorized ac-
cording to their condition as critical, serious, or stable. In the past year:

(i) 10% of the emergency room patients were critical;
(ii) 30% of the emergency room patients were serious;
(iii) the rest of the emergency room patients were stable;
(iv) 40% of the critical patients died;
(v) 10% of the serious patients died; and
(vi) 1% of the stable patients died.

Given that a patient survived, what is the probability that the patient was
categorized as serious upon arrival?

Problem 10.5 ‡
A health study tracked a group of persons for five years. At the beginning of
the study, 20% were classified as heavy smokers, 30% as light smokers, and
50% as nonsmokers.
Results of the study showed that light smokers were twice as likely as non-
smokers to die during the five-year study, but only half as likely as heavy
smokers.
A randomly selected participant from the study died over the five-year pe-
riod. Calculate the probability that the participant was a heavy smoker.

Problem 10.6 ‡
An actuary studied the likelihood that different types of drivers would be
involved in at least one collision during any one-year period. The results of
the study are presented below.

Probability
Type of Percentage of of at least one
driver all drivers collision
Teen 8% 0.15
Young adult 16% 0.08
Midlife 45% 0.04
Senior 31% 0.05
Total 100%

Given that a driver has been involved in at least one collision in the past
year, what is the probability that the driver is a young adult driver?
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Problem 10.7 ‡
A blood test indicates the presence of a particular disease 95% of the time
when the disease is actually present. The same test indicates the presence of
the disease 0.5% of the time when the disease is not present. One percent of
the population actually has the disease.
Calculate the probability that a person has the disease given that the test
indicates the presence of the disease.

Problem 10.8 ‡
The probability that a randomly chosen male has a circulation problem is
0.25 . Males who have a circulation problem are twice as likely to be smokers
as those who do not have a circulation problem.
What is the conditional probability that a male has a circulation problem,
given that he is a smoker?

Problem 10.9 ‡
A study of automobile accidents produced the following data:

Probability of
Model Proportion of involvement
year all vehicles in an accident
1997 0.16 0.05
1998 0.18 0.02
1999 0.20 0.03
Other 0.46 0.04

An automobile from one of the model years 1997, 1998, and 1999 was in-
volved in an accident. Determine the probability that the model year of this
automobile is 1997.

Problem 10.10
A study was conducted about the excessive amounts of pollutants emitted by
cars in a certain town. The study found that 25% of all cars emit excessive
amounts of pollutants. The probability for a car emiting excessive amounts
of pollutants to fail the town’s vehicular emission test is found to be 0.99.
Cars who do not emit excessive amounts of pollutants have a probability
of 0.17 to fail to emission test. A car is selected at random. What is the
probability that the car emits excessive amounts of pollutants given that it
failed the emission test?
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Problem 10.11
A medical agency is conducting a study about injuries resulted from activities
for a group of people. For this group, 50% were skiing, 30% were hiking, and
20% were playing soccer. The (conditional) probability of a person getting
injured from skiing is 30% , it is 10% from hiking, and 20% from playing
soccer.
(a) What is the probability for a randomly selected person in the group for
getting injured?
(b) Given that a person is injured, what is the probability that his injuries
are due to skiing?

Problem 10.12
A written driving test is graded either pass or fail. A randomly chosen person
from a driving class has a 40% chance of knowing the material well. If the
person knows the material well, the probability for this person to pass the
written test is 0.8. For a person not knowing the material well, the probability
is 0.4 for passing the test.
(a) What is the probability of a randomly chosen person from the class for
passing the test?
(b) Given that a person in the class passes the test, what is the probability
that this person knows the material well?

Problem 10.13 ‡
Ten percent of a company’s life insurance policyholders are smokers. The
rest are nonsmokers. For each nonsmoker, the probability of dying during
the year is 0.01. For each smoker, the probability of dying during the year is
0.05.
Given that a policyholder has died, what is the probability that the policy-
holder was a smoker?

Problem 10.14
A prerequisite for students to take a probability class is to pass calculus. A
study of correlation of grades for students taking calculus and probability
was conducted. The study shows that 25% of all calculus students get an A,
and that students who had an A in calculus are 50% more likely to get an A
in probability as those who had a lower grade in calculus. If a student who
received an A in probability is chosen at random, what is the probability
that he/she also received an A in calculus?
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Problem 10.15
A group of people consists of 70 men and 70 women. Seven men and ten
women are found to be color-blind.
(a) What is the probability that a randomly selected person is color-blind?
(b) If the randomly selected person is color-blind, what is the probability
that the person is a man?

Problem 10.16
Calculate Pr(U1|A).

Problem 10.17
The probability that a person with certain symptoms has prostate cancer
is 0.8. A PSA test used to confirm this diagnosis gives positive results for
90% of those who have the disease, and 5% of those who do not have the
disease. What is the probability that a person who reacts positively to the
test actually has the disease ?
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11 Independent Events

Intuitively, when the occurrence of an event B has no influence on the prob-
ability of occurrence of an event A then we say that the two events are
independent. For example, in the experiment of tossing two coins, the first
toss has no effect on the second toss. In terms of conditional probability, two
events A and B are said to be independent if and only if

Pr(A|B) = Pr(A).

We next introduce the two most basic theorems regarding independence.

Theorem 11.1
A and B are independent events if and only if Pr(A ∩B) = Pr(A)Pr(B).

Proof.
A and B are independent if and only if Pr(A|B) = Pr(A) and this is equiv-
alent to

Pr(A ∩B) = Pr(A|B)Pr(B) = Pr(A)Pr(B)

Example 11.1
Show that Pr(A|B) > Pr(A) if and only if Pr(Ac|B) < Pr(Ac). We assume
that 0 < Pr(A) < 1 and 0 < Pr(B) < 1

Solution.
We have

Pr(A|B) > Pr(A)⇔Pr(A ∩B)

Pr(B)
> Pr(A)

⇔Pr(A ∩B) > Pr(A)Pr(B)

⇔Pr(B)− Pr(A ∩B) < Pr(B)− Pr(A)Pr(B)

⇔Pr(Ac ∩B) < Pr(B)(1− Pr(A))

⇔Pr(Ac ∩B) < Pr(B)Pr(Ac)

⇔Pr(Ac ∩B)

Pr(B)
< Pr(Ac)

⇔Pr(Ac|B) < Pr(Ac)
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Example 11.2
A coal exploration company is set to look for coal mines in two states Virginia
and New Mexico. Let A be the event that a coal mine is found in Virginia
and B the event that a coal mine is found in New Mexico. Suppose that A
and B are independent events with Pr(A) = 0.4 and Pr(B) = 0.7. What is
the probability that at least one coal mine is found in one of the states?

Solution.
The probability that at least one coal mine is found in one of the two states
is Pr(A ∪B). Thus,

Pr(A ∪B) =Pr(A) + Pr(B)− Pr(A ∩B)

=Pr(A) + Pr(B)− Pr(A)Pr(B)

=0.4 + 0.7− 0.4(0.7) = 0.82

Example 11.3
Let A and B be two independent events such that Pr(B|A ∪ B) = 2

3
and

Pr(A|B) = 1
2
. What is Pr(B)?

Solution.
First, note that by indepedence we have

1

2
= Pr(A|B) = Pr(A).

Next,

Pr(B|A ∪B) =
Pr(B)

Pr(A ∪B)

=
Pr(B)

Pr(A) + Pr(B)− Pr(A ∩B)

=
Pr(B)

Pr(A) + Pr(B)− Pr(A)Pr(B)
.

Thus,
2

3
=

Pr(B)
1
2

+ Pr(B)
2

Solving this equation for Pr(B) we find Pr(B) = 1
2
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Theorem 11.2
If A and B are independent then so are A and Bc.

Proof.
First note that A can be written as the union of two mutually exclusive
events: A = A∩ (B ∪Bc) = (A∩B)∪ (A∩Bc). Thus, Pr(A) = Pr(A∩B) +
Pr(A ∩Bc). It follows that

Pr(A ∩Bc) =Pr(A)− Pr(A ∩B)

=Pr(A)− Pr(A)Pr(B)

=Pr(A)(1− Pr(B)) = Pr(A)Pr(Bc)

Example 11.4
Show that if A and B are independent so are Ac and Bc.

Solution.
Using De Morgan’s formula we have

Pr(Ac ∩Bc) =1− Pr(A ∪B) = 1− [Pr(A) + Pr(B)− Pr(A ∩B)]

=[1− Pr(A)]− Pr(B) + Pr(A)Pr(B)

=Pr(Ac)− Pr(B)[1− Pr(A)] = Pr(Ac)− Pr(B)Pr(Ac)

=Pr(Ac)[1− Pr(B)] = Pr(Ac)Pr(Bc)

When the outcome of one event affects the outcome of a second event, the
events are said to be dependent. The following is an example of events that
are not independent.

Example 11.5
Draw two cards from a deck. Let A = “The first card is a spade,” and B =
“The second card is a spade.” Show that A and B are dependent.

Solution.
We have Pr(A) = Pr(B) = 13

52
= 1

4
and

Pr(A ∩B) =
13 · 12

52 · 51
<

(
1

4

)2

= Pr(A)Pr(B).
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By Theorem 11.1 the events A and B are dependent

The definition of independence for a finite number of events is defined as
follows: Events A1, A2, · · · , An are said to be mutually independent or
simply independent if for any 1 ≤ i1 < i2 < · · · < ik ≤ n we have

Pr(Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = Pr(Ai1)Pr(Ai2) · · ·Pr(Aik)

In particular, three events A,B,C are independent if and only if

Pr(A ∩B) =Pr(A)Pr(B)

Pr(A ∩ C) =Pr(A)Pr(C)

Pr(B ∩ C) =Pr(B)Pr(C)

Pr(A ∩B ∩ C) =Pr(A)Pr(B)Pr(C)

Example 11.6
Consider the experiment of tossing a coin n times. Let Ai = “the ith coin
shows Heads”. Show that A1, A2, · · · , An are independent.

Solution.
For any 1 ≤ i1 < i2 < · · · < ik ≤ n we have Pr(Ai1∩Ai2∩· · ·∩Aik) = 1

2k
. But

Pr(Ai) = 1
2
. Thus, Pr(Ai1 ∩ Ai2 ∩ · · · ∩ Aik) = Pr(Ai1)Pr(Ai2) · · ·Pr(Aik)

Example 11.7
In a clinic laboratory, the probability that a blood sample shows cancerous
cells is 0.05. Four blood samples are tested, and the samples are independent.
(a) What is the probability that none shows cancerous cells?
(b) What is the probability that exactly one sample shows cancerous cells?
(c) What is the probability that at least one sample shows cancerous cells?

Solution.
Let Hi denote the event that the ith sample contains cancerous cells for
i = 1, 2, 3, 4.
The event that none contains cancerous cells is equivalent toHc

1∩Hc
2∩Hc

3∩Hc
4.

So, by independence, the desired probability is

Pr(Hc
1 ∩Hc

2 ∩Hc
3 ∩Hc

4) =Pr(Hc
1)Pr(Hc

2)Pr(Hc
3)Pr(Hc

4)

=(1− 0.05)4 = 0.8145
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(b) Let

A1 =H1 ∩Hc
2 ∩Hc

3 ∩Hc
4

A2 =Hc
1 ∩H2 ∩Hc

3 ∩Hc
4

A3 =Hc
1 ∩Hc

2 ∩H3 ∩Hc
4

A4 =Hc
1 ∩Hc

2 ∩Hc
3 ∩H4

Then, the requested probability is the probability of the union A1∪A2∪A3∪
A4 and these events are mutually exclusive. Also, by independence, Pr(Ai) =
(0.95)3(0.05) = 0.0429, i = 1, 2, 3, 4. Therefore, the answer is 4(0.0429) =
0.1716.
(c) Let B be the event that no sample contains cancerous cells. The event
that at least one sample contains cancerous cells is the complement of B,
i.e. Bc. By part (a), it is known that Pr(B) = 0.8145. So, the requested
probability is

Pr(Bc) = 1− Pr(B) = 1− 0.8145 = 0.1855

Example 11.8
Find the probability of getting four sixes and then another number in five
random rolls of a balanced die.

Solution.
Because the events are independent, the probability in question is

1

6
· 1

6
· 1

6
· 1

6
· 5

6
=

5

7776

A collection of events A1, A2, · · · , An are said to be pairwise independent
if and only if Pr(Ai ∩ Aj) = Pr(Ai)Pr(Aj) for any i 6= j where 1 ≤ i, j ≤ n.
Pairwise independence does not imply mutual independence as the following
example shows.

Example 11.9
Consider the experiment of flipping two fair coins. Consider the three events:
A = the first coin shows heads; B = the second coin shows heads, and C =
the two coins show the same result. Show that these events are pairwise
independent, but not independent.
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Solution.
Note thatA = {H,H), (H,T )}, B = {(H,H), (T,H)}, C = {(H,H), (T, T )}.
We have

Pr(A ∩B) =Pr({(H,H)}) =
1

4
=

2

4
· 2

4
= Pr(A)Pr(B)

Pr(A ∩ C) =Pr({(H,H)}) =
1

4
=

2

4
· 2

4
= Pr(A)Pr(C)

Pr(B ∩ C) =Pr({(H,H)}) =
1

4
=

2

4
· 2

4
= Pr(B)Pr(C)

Hence, the events A,B, and C are pairwise independent. On the other hand

Pr(A ∩B ∩ C) = Pr({(H,H)}) =
1

4
6= 2

4
· 2

4
· 2

4
= Pr(A)Pr(B)Pr(C)

so that A,B, and C are not independent
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Practice Problems

Problem 11.1
Determine whether the events are independent or dependent.
(a) Selecting a marble from an urn and then choosing a second marble from
the same urn without replacing the first marble.
(b) Rolling a die and spinning a spinner.

Problem 11.2
Amin and Nadia are allowed to have one topping on their ice cream. The
choices of toppings are Butterfingers, M and M, chocolate chips, Gummy
Bears, Kit Kat, Peanut Butter, and chocolate syrup. If they choose at ran-
dom, what is the probability that they both choose Kit Kat as a topping?

Problem 11.3
You randomly select two cards from a standard 52-card deck. What is the
probability that the first card is not a face card (a king, queen, jack, or an
ace) and the second card is a face card if
(a) you replace the first card before selecting the second, and
(b) you do not replace the first card?

Problem 11.4
Marlon, John, and Steve are given the choice for only one topping on their
personal size pizza. There are 10 toppings to choose from. What is the
probability that each of them orders a different topping?

Problem 11.5 ‡
One urn contains 4 red balls and 6 blue balls. A second urn contains 16 red
balls and x blue balls. A single ball is drawn from each urn. The probability
that both balls are the same color is 0.44 .
Calculate x.

Problem 11.6 ‡
An actuary studying the insurance preferences of automobile owners makes
the following conclusions:
(i) An automobile owner is twice as likely to purchase a collision coverage as
opposed to a disability coverage.
(ii) The event that an automobile owner purchases a collision coverage is
independent of the event that he or she purchases a disability coverage.
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(iii) The probability that an automobile owner purchases both collision and
disability coverages is 0.15.
What is the probability that an automobile owner purchases neither collision
nor disability coverage?

Problem 11.7 ‡
An insurance company pays hospital claims. The number of claims that
include emergency room or operating room charges is 85% of the total num-
ber of claims. The number of claims that do not include emergency room
charges is 25% of the total number of claims. The occurrence of emergency
room charges is independent of the occurrence of operating room charges on
hospital claims.
Calculate the probability that a claim submitted to the insurance company
includes operating room charges.

Problem 11.8
Let S = {1, 2, 3, 4} with each outcome having equal probability 1

4
and define

the events A = {1, 2}, B = {1, 3}, and C = {1, 4}. Show that the three
events are pairwise independent but not independent.

Problem 11.9
Assume A and B are independent events with Pr(A) = 0.2 and Pr(B) = 0.3.
Let C be the event that neither A nor B occurs, let D be the event that
exactly one of A or B occurs. Find Pr(C) and Pr(D).

Problem 11.10
Suppose A,B, and C are mutually independent events with probabilities
Pr(A) = 0.5, Pr(B) = 0.8, and Pr(C) = 0.3. Find the probability that at
least one of these events occurs.

Problem 11.11
Suppose A,B, and C are mutually independent events with probabilities
Pr(A) = 0.5,Pr(B) = 0.8, and Pr(C) = 0.3. Find the probability that exactly
two of the events A,B,C occur.

Problem 11.12
If events A,B, and C are independent, show that
(a) A and B ∩ C are independent
(b) A and B ∪ C are independent
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Problem 11.13
Suppose you flip a nickel, a dime and a quarter. Each coin is fair, and the
flips of the different coins are independent. Let A be the event “the total
value of the coins that came up heads is at least 15 cents”. Let B be the
event “the quarter came up heads”. Let C be the event “the total value of
the coins that came up heads is divisible by 10 cents”.
(a) Write down the sample space, and list the events A,B, and C.
(b) Find Pr(A),Pr(B) and Pr(C).
(c) Compute Pr(B|A).
(d) Are B and C independent? Explain.

Problem 11.14 ‡
Workplace accidents are categorized into three groups: minor, moderate and
severe. The probability that a given accident is minor is 0.5, that it is mod-
erate is 0.4, and that it is severe is 0.1. Two accidents occur independently
in one month.
Calculate the probability that neither accident is severe and at most one is
moderate.

Problem 11.15
Among undergraduate students living on a college campus, 20% have an
automobile. Among undergraduate students living off campus, 60% have an
automobile. Among undergraduate students, 30% live on campus. Give the
probabilities of the following events when a student is selected at random:
(a) Student lives off campus
(b) Student lives on campus and has an automobile
(c) Student lives on campus and does not have an automobile
(d) Student lives on campus or has an automobile
(e) Student lives on campus given that he/she does not have an automobile.
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12 Odds and Conditional Probability

What’s the difference between probabilities and odds? To answer this ques-
tion, let’s consider a game that involves rolling a die. If one gets the face
1 then he wins the game, otherwise he loses. The probability of winning is
1
6

whereas the probability of losing is 5
6
. The odds of winning is 1:5(read 1

to 5). This expression means that the probability of losing is five times the
probability of winning. Thus, probabilities describe the frequency of a favor-
able result in relation to all possible outcomes whereas the odds in favor
of an event compare the favorable outcomes to the unfavorable outcomes.
More formally,

odds in favor = favorable outcomes
unfavorable outcomes

If E is the event of all favorable outcomes then its complementary, Ec, is the
event of unfavorable outcomes. Hence,

odds in favor = n(E)
n(Ec)

Also, we define the odds against an event as

odds against = unfavorable outcomes
favorable outcomes

= n(Ec)
n(E)

Any probability can be converted to odds, and any odds can be converted to
a probability.

Converting Odds to Probability
Suppose that the odds in favor for an event E is a:b. Thus, n(E) = ak and
n(Ec) = bk where k is a positive integer. Since S = E ∪Ec and E ∩Ec = ∅,
by Theorem 2.3(b) we have n(S) = n(E) + n(Ec). Therefore,

Pr(E) = n(E)
n(S)

= n(E)
n(E)+n(Ec)

= ak
ak+bk

= a
a+b

and

Pr(Ec) = n(Ec)
n(S)

= n(Ec)
n(E)+n(Ec)

= bk
ak+bk

= b
a+b

Example 12.1
If the odds in favor of an event E is 5:4, compute Pr(E) and Pr(Ec).

Solution.
We have
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Pr(E) = 5
5+4

= 5
9

and Pr(Ec) = 4
5+4

= 4
9

Converting Probability to Odds
Given Pr(E), we want to find the odds in favor of E and the odds against
E. The odds in favor of E are

n(E)

n(Ec)
=
n(E)

n(S)
· n(S)

n(Ec)

=
Pr(E)

Pr(Ec)

=
Pr(E)

1− Pr(E)

and the odds against E are

n(Ec)

n(E)
=

1− Pr(E)

Pr(E)

Example 12.2
For each of the following, find the odds in favor of the event’s occurring:
(a) Rolling a number less than 5 on a die.
(b) Tossing heads on a fair coin.
(c) Drawing an ace from an ordinary 52-card deck.

Solution.
(a) The probability of rolling a number less than 5 is 4

6
and that of rolling 5

or 6 is 2
6
. Thus, the odds in favor of rolling a number less than 5 is 4

6
÷ 2

6
= 2

1

or 2:1
(b) Since Pr(H) = 1

2
and Pr(T ) = 1

2
, the odds in favor of getting heads is(

1
2

)
÷
(

1
2

)
or 1:1

(c) We have Pr(ace) = 4
52

and Pr(not an ace) =48
52

so that the odds in favor
of drawing an ace is

(
4
52

)
÷
(

48
52

)
= 1

12
or 1:12

Remark 12.1
A probability such as Pr(E) = 5

6
is just a ratio. The exact number of

favorable outcomes and the exact total of all outcomes are not necessarily
known.
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Practice Problems

Problem 12.1
If the probability of a boy being born is 1

2
, and a family plans to have four

children, what are the odds against having all boys?

Problem 12.2
If the odds against Nadia’s winning first prize in a chess tournament are 3:5,
what is the probability that she will win first prize?

Problem 12.3
What are the odds in favor of getting at least two heads if a fair coin is tossed
three times?

Problem 12.4
If the probability of snow for the day is 60%, what are the odds against
snowing?

Problem 12.5
On a tote board at a race track, the odds for Smarty Harper are listed as
26:1. Tote boards list the odds that the horse will lose the race. If this is the
case, what is the probability of Smarty Harper’s winning the race?

Problem 12.6
If a die is tossed, what are the odds in favor of the following events?
(a) Getting a 4
(b) Getting a prime
(c) Getting a number greater than 0
(d) Getting a number greater than 6.

Problem 12.7
Find the odds against E if Pr(E) = 3

4
.

Problem 12.8
Find Pr(E) in each case.
(a) The odds in favor of E are 3:4
(b) The odds against E are 7:3
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Discrete Random Variables

This chapter is one of two chapters dealing with random variables. After
introducing the notion of a random variable, we discuss discrete random
variables. Continuous random variables are left to the next chapter.

13 Random Variables

By definition, a random variable X is a function with domain the sample
space and range a subset of the real numbers. For example, in rolling two
dice X might represent the sum of the points on the two dice. Similarly, in
taking samples of college students X might represent the number of hours
per week a student studies, a student’s GPA, or a student’s height.
The notation X(s) = x means that x is the value associated with the out-
come s by the random variable X.
There are three types of random variables: discrete random variables, con-
tinuous random variables, and mixed random variables.
A discrete is a random variable whose range is either finite or countably
infinite. A continuous random variable is a random variable whose range is
an interval in R. A mixed random variable is partially discrete and partially
continuous.
In this chapter we will just consider discrete random variables.

Example 13.1
State whether the random variables are discrete, continuous or mixed.
(a) A coin is tossed ten times. The random variable X is the number of tails
that are noted.
(b) A light bulb is burned until it burns out. The random variable Y is its
lifetime in hours.

99
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(c) Z : (0, 1)→ R where

Z(s) =

{
1− s, 0 < s < 1

2
1
2
, 1

2
≤ s < 1.

Solution.
(a) X can only take the values 0, 1, ..., 10, so X is a discrete random variable.
(b) Y can take any positive real value, so Y is a continuous random variable.
(c) Z is a mixed random variable since Z is continuous in the interval (0, 1

2
)

and discrete on the interval [1
2
, 1)

Example 13.2
The sample space of the experiment of tossing a coin 3 times is given by

S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

Let X = # of Heads in 3 tosses. Find the range of X.

Solution.
We have

X(HHH) = 3 X(HHT ) = 2 X(HTH) = 2 X(HTT ) = 1
X(THH) = 2 X(THT ) = 1 X(TTH) = 1 X(TTT ) = 0

Thus, the range of X consists of {0, 1, 2, 3} so that X is a discrete random
variable

We use upper-case letters X, Y, Z, etc. to represent random variables. We
use small letters x, y, z, etc to represent possible values that the correspond-
ing random variables X, Y, Z, etc. can take. The statement X = x defines an
event consisting of all outcomes with X-measurement equal to x which is the
set {s ∈ S : X(s) = x}. For instance, considering the random variable of the
previous example, the statement “X = 2” is the event {HHT,HTH, THH}.
Because the value of a random variable is determined by the outcomes of the
experiment, we may assign probabilities to the possible values of the random
variable. For example, Pr(X = 2) = 3

8
.

Example 13.3
Consider the experiment consisting of 2 rolls of a fair 4-sided die. Let X
be a random variable, equal to the maximum of the 2 rolls. Complete the
following table
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x 1 2 3 4
Pr(X=x)

Solution.
The sample space of this experiment is

S ={(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3),

(3, 4), (4, 1), (4, 2), (4, 3), (4, 4)}.

Thus,

x 1 2 3 4
Pr(X=x) 1

16
3
16

5
16

7
16

Example 13.4
A class consisting of five male students and five female students has taken
the GRE examination. All ten students got different scores on the test.
The students are ranked according to their scores on the test. Assume that
all possible rankings are equally likely. Let X denote the highest ranking
achieved by a male student. Find Pr(X = i), i = 1, 2, · · · , 10.

Solution.
Since 6 is the lowest possible rank attainable by the highest-scoring male, we
must have Pr(X = 7) = Pr(X = 8) = Pr(X = 9) = Pr(X = 10) = 0.
For X = 1 (male is highest-ranking scorer), we have 5 possible choices out
of 10 for the top spot that satisfy this requirement; hence

Pr(X = 1) =
5 · 9!

10!
=

1

2
.

For X = 2 (male is 2nd-highest scorer), we have 5 possible choices for the
top female, then 5 possible choices for the male who ranked 2nd overall, and
then any arrangement of the remaining 8 individuals is acceptable (out of
10! possible arrangements of 10 individuals); hence,

Pr(X = 2) =
5 · 5 · 8!

10!
=

5

18
.

For X = 3 (male is 3rd-highest scorer), acceptable configurations yield
(5)(4)=20 possible choices for the top 2 females, 5 possible choices for the
male who ranked 3rd overall, and 7! different arrangement of the remaining



102 DISCRETE RANDOM VARIABLES

7 individuals (out of a total of 10! possible arrangements of 10 individuals);
hence,

Pr(X = 3) =
5 · 4 · 5 · 7!

10!
=

5

36
.

Similarly, we have

Pr(X = 4) =
5 · 4 · 3 · 5 · 6!

10!
=

5

84

Pr(X = 5) =
5 · 4 · 3 · 2 · 5 · 5!

10!
=

5

252

Pr(X = 6) =
5 · 4 · 3 · 2 · 1 · 5 · 4!

10!
=

1

252
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Practice Problems

Problem 13.1
Determine whether the random variable is discrete, continuous or mixed.
(a) X is a randomly selected number in the interval (0, 1). (b) Y is the number
of heart beats per minute.
(c) Z is the number of calls at a switchboard in a day.
(d) U : (0, 1)→ R defined by U(s) = 2s− 1.
(e) V : (0, 1)→ R defined by V (s) = 2s− 1 for 0 < s < 1

2
and V (s) = 1 for

1
2
≤ s < 1.

Problem 13.2
Two apples are selected at random and removed in succession and without
replacement from a bag containing five golden apples and three red apples.
List the elements of the sample space, the corresponding probabilities, and
the corresponding values of the random variable X, where X is the number
of golden apples selected.

Problem 13.3
Suppose that two fair dice are rolled so that the sample space is S = {(i, j) :
1 ≤ i, j ≤ 6}. Let X be the random variable X(i, j) = i+ j. Find Pr(X = 6).

Problem 13.4
Let X be a random variable with probability distribution table given below

x 0 10 20 50 100
Pr(X=x) 0.4 0.3 0.15 0.1 0.05

Find Pr(X < 50).

Problem 13.5
You toss a coin repeatedly until you get heads. Let X be the random variable
representing the number of times the coin flips until the first head appears.
Find Pr(X = n) where n is a positive integer.

Problem 13.6
A couple is expecting the arrival of a new boy. They are deciding on a name
from the list S = { Steve, Stanley, Joseph, Elija }. Let X(ω) = first letter in
name. Find Pr(X = S).
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Problem 13.7 ‡
The number of injury claims per month is modeled by a random variable N
with

Pr(N = n) =
1

(n+ 1)(n+ 2)
, n ≥ 0.

Determine the probability of at least one claim during a particular month,
given that there have been at most four claims during that month.

Problem 13.8
Let X be a discrete random variable with the following probability table

x 1 5 10 50 100
Pr(X=x) 0.02 0.41 0.21 0.08 0.28

Compute Pr(X > 4|X ≤ 50).

Problem 13.9
Shooting is one of the sports listed in the Olympic games. A contestant
shoots three times, independently. The probability of hiting the target in
the first try is 0.7, in the second try 0.5, and in the third try 0.4. Let X
be the discrete random variable representing the number of successful shots
among these three.
(a) Find a formula for the piecewise defined function X : Ω→ R.
(b) Find the event corresponding to X = 0. What is the probability that he
misses all three shots; i.e., Pr(X = 0)?
(c) What is the probability that he succeeds exactly once among these three
shots; i.e Pr(X = 1)?
(d) What is the probability that he succeeds exactly twice among these three
shots; i.e Pr(X = 2)?
(e) What is the probability that he makes all three shots; i.e Pr(X = 3)?

Problem 13.10
Let X be a discrete random variable with range {0, 1, 2, 3, · · · }. Suppose that

Pr(X = 0) = Pr(X = 1), Pr(X = k + 1) =
1

k
Pr(X = k), k = 1, 2, 3, · · ·

Find Pr(0).
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Problem 13.11 ‡
Under an insurance policy, a maximum of five claims may be filed per year
by a policyholder. Let pn be the probability that a policyholder files n claims
during a given year, where n = 0, 1, 2, 3, 4, 5. An actuary makes the following
observations:
(i) pn ≥ pn+1 for 0 ≤ n ≤ 4
(ii) The difference between pn and pn+1 is the same for 0 ≤ n ≤ 4
(iii) Exactly 40% of policyholders file fewer than two claims during a given
year.
Calculate the probability that a random policyholder will file more than three
claims during a given year.
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14 Probability Mass Function and Cumulative

Distribution Function

For a discrete random variable X, we define the probability distribution
or the probability mass function(abbreviated pmf) by the equation

p(x) = Pr(X = x).

That is, a probability mass function gives the probability that a discrete
random variable is exactly equal to some value.
The pmf can be an equation, a table, or a graph that shows how probability
is assigned to possible values of the random variable.

Example 14.1
Suppose a variable X can take the values 1, 2, 3, or 4. The probabilities
associated with each outcome are described by the following table:

x 1 2 3 4
p(x) 0.1 0.3 0.4 0.2

Draw the probability histogram.

Solution.
The probability histogram is shown in Figure 14.1

Figure 14.1
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Example 14.2
A committee of 4 is to be selected from a group consisting of 5 men and 5
women. Let X be the random variable that represents the number of women
in the committee. Create the probability mass distribution.

Solution.
For x = 0, 1, 2, 3, 4 we have

p(x) =

(
5
x

)(
5

4− x

)
(

10
4

) .

The probability mass function can be described by the table

x 0 1 2 3 4
p(x) 5

210
50
210

100
210

50
210

5
210

Example 14.3
Consider the experiment of rolling a fair die twice. Let X(i, j) = max{i, j}.
Find the equation of Pr(x).

Solution.
The pmf of X is

p(x) =

{
2x−1

36
if x = 1, 2, 3, 4, 5, 6

0 otherwise

=
2x− 1

36
I{1,2,3,4,5,6}(x)

where

I{1,2,3,4,5,6}(x) =

{
1 if x ∈ {1, 2, 3, 4, 5, 6}
0 otherwise

In general, we define the indicator function of a set A to be the function

IA(x) =

{
1 if x ∈ A
0 otherwise

Note that if the range of a random variable is Ω = {x1, x2, · · · } then

p(x) ≥ 0, x ∈ Ω
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and ∑
x∈Ω

p(x) = 1.

All random variables (discrete, continuous or mixed) have a distribution
function or a cumulative distribution function, abbreviated cdf. It is
a function giving the probability that the random variable X is less than or
equal to x, for every value x. For a discrete random variable, the cumulative
distribution function is found by summing up the probabilities. That is,

F (a) = Pr(X ≤ a) =
∑
x≤a

p(x).

Example 14.4
Given the following pmf

p(x) =

{
1, if x = a
0, otherwise

Find a formula for F (x) and sketch its graph.

Solution.
A formula for F (x) is given by

F (x) =

{
0, if x < a
1, otherwise

Its graph is given in Figure 14.2

Figure 14.2

For discrete random variables the cumulative distribution function will al-
ways be a step function with jumps at each value of x that has probability
greater than 0. Note the value of F (x) is assigned to the top of the jump.
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Example 14.5
Consider the following probability mass distribution

x 1 2 3 4
p(x) 0.25 0.5 0.125 0.125

Find a formula for F (x) and sketch its graph.

Solution.
The cdf is given by

F (x) =


0 x < 1

0.25 1 ≤ x < 2
0.75 2 ≤ x < 3
0.875 3 ≤ x < 4

1 4 ≤ x.

Its graph is given in Figure 14.3

Figure 14.3

Note that the size of the step at any of the values 1,2,3,4 is equal to the
probability that X assumes that particular value. That is, we have

Theorem 14.1
If the range of a discrete random variable X consists of the values x1 < x2 <
· · · < xn then p(x1) = F (x1) and

p(xi) = F (xi)− F (xi−1), i = 2, 3, · · · , n
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Proof.
Because F (x) = 0 for x < x1 then F (x1) = Pr(X ≤ x1) = Pr(X < x1) +
Pr(X = x1) = Pr(X = x1) = p(x1). Now, for i = 2, 3, · · · , n, let A = {s ∈
S : X(s) > xi−1} and B = {s ∈ S : X(s) ≤ xi}. Thus, A ∪B = S. We have

Pr(xi−1 < X ≤ xi) =Pr(A ∩B)

=Pr(A) + Pr(B)− Pr(A ∪B)

=1− F (xi−1) + F (xi)− 1

=F (xi)− F (xi−1)

Example 14.6
If the cumulative distribution function of X is given by

F (x) =



0 x < 0
1
16

0 ≤ x < 1
5
16

1 ≤ x < 2
11
16

2 ≤ x < 3
15
16

3 ≤ x < 4
1 x ≥ 4

find the pmf of X.

Solution.
Making use of the previous theorem, we get p(0) = 1

16
, p(1) = 1

4
, p(2) =

3
8
, p(3) = 1

4
, and p(4) = 1

16
and 0 otherwise
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Practice Problems

Problem 14.1
Consider the experiment of tossing a fair coin three times. Let X denote the
random variable representing the total number of heads.
(a) Describe the probability mass function by a table.
(b) Describe the probability mass function by a histogram.

Problem 14.2
In the previous problem, describe the cumulative distribution function by a
formula and by a graph.

Problem 14.3
Toss a pair of fair dice. Let X denote the sum of the dots on the two faces.
Find the probability mass function.

Problem 14.4
A box of six apples has one roten apple. Randomly draw one apple from the
box, without replacement, until the roten apple is found. Let X denote the
number of apples drawn until the roten apple is found. Find the probability
mass function of X and draw its histogram.

Problem 14.5
In the experiment of rolling two dice, let X be the random variable repre-
senting the number of even numbers that appear. Find the probability mass
function of X.

Problem 14.6
Let X be a random variable with pmf

p(n) =
1

3

(
2

3

)n
, n = 0, 1, 2, · · · .

Find a formula for F (n).

Problem 14.7
A box contains 100 computer mice of which 95 are defective.
(a) One mouse is taken from the box at a time (without replacement) until
a nondefective mouse is found. Let X be the number of mouses you have
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to take out in order to find one that is not defective. Find the probability
distribution of X.
(b) Exactly 10 mouses were taken from the box and then each of the 10
mouses is tested. Let Y denote the number of nondefective mouses among
the 10 that were taken out. Find the probability distribution of Y.

Problem 14.8
Let X be a discrete random variable with cdf given by

F (x) =


0 x < −4
3
10
−4 ≤ x < 1

7
10

1 ≤ x < 4
1 x ≥ 4

Find a formula of p(x).

Problem 14.9
A game consists of randomly selecting two balls without replacement from
an urn containing 3 red balls and 4 blue balls. If the two selected balls are of
the same color then you win $2. If they are of different colors then you lose
$1. Let X denote your gain/lost. Find the probability mass function of X.

Problem 14.10
An unfair coin is tossed three times. The probability of tails on any particular
toss is known to be 2

3
. Let X denote the number of heads.

(a) Find the probability mass function.
(b) Graph the cumulative distribution function for X.

Problem 14.11
A lottery game consists of matching three numbers drawn (without replace-
ment) from a set of 15 numbers. Let X denote the random variable repre-
senting the numbers on your tickets that match the winning numbers. Find
the cumulative distribution of X.
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Problem 14.12
If the cumulative distribution function of X is given by

F (x) =



0 x < 2
1
36

2 ≤ x < 3
3
36

3 ≤ x < 4
6
36

4 ≤ x < 5
10
36

5 ≤ x < 6
15
36

6 ≤ x < 7
21
36

7 ≤ x < 8
26
36

8 ≤ x < 9
30
36

9 ≤ x < 10
33
36

10 ≤ x < 11
35
36

11 ≤ x < 12
1 x ≥ 12

find the probability distribution of X.
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15 Expected Value of a Discrete Random Vari-

able

A cube has three red faces, two green faces, and one blue face. A game
consists of rolling the cube twice. You pay $2 to play. If both faces are the
same color, you are paid $5(that is you win $3). If not, you lose the $2 it
costs to play. Will you win money in the long run? Let W denote the event
that you win. Then W = {RR,GG,BB} and

Pr(W ) = Pr(RR) + Pr(GG) + Pr(BB) =
1

2
· 1

2
+

1

3
· 1

3
+

1

6
· 1

6
=

7

18
≈ 39%.

Thus, Pr(L) = 11
18

= 61%. Hence, if you play the game 18 times you expect
to win 7 times and lose 11 times on average. So your winnings in dollars will
be 3 × 7 − 2 × 11 = −1. That is, you can expect to lose $1 if you play the
game 18 times. On the average, you will lose $ 1

18
per game (about 6 cents).

This can be found also using the equation

3× 7

18
− 2× 11

18
= − 1

18

If we let X denote the winnings of this game then the range of X consists of
the two numbers 3 and −2 which occur with respective probability 0.39 and
0.61. Thus, we can write

E(X) = 3× 7

18
− 2× 11

18
= − 1

18
.

We call this number the expected value of X. More formally, let the range of
a discrete random variable X be a sequence of numbers x1, x2, · · · , xk, and let
Pr(x) be the corresponding probability mass function. Then the expected
value of X is

E(X) = x1p(x1) + x2p(x2) + · · ·+ xkp(xk).

The following is a justification of the above formula. Suppose that X has k
possible values x1, x2, · · · , xk and that

pi = Pr(X = xi) = p(xi), i = 1, 2, · · · , k.

Suppose that in n repetitions of the experiment, the number of times that X
takes the value xi is ni. Then the sum of the values of X over the n repetitions
is

n1x1 + n2x2 + · · ·+ nkxk
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and the average value of X is

n1x1 + n2x2 + · · ·+ nkxk
n

=
n1

n
x1 +

n2

n
x2 + · · ·+ nk

n
xk.

But Pr(X = xi) = limn→∞
ni
n
. Thus, the average value of X approaches

E(X) = x1p(x1) + x2p(x2) + · · ·+ xkp(xk).

The expected value of X is also known as the mean value.

Example 15.1 ‡
Suppose that an insurance company has broken down yearly automobile
claims for drivers from age 16 through 21 as shown in the following table.

Amount of claim Probability
$ 0 0.80

$ 2000 0.10
$ 4000 0.05
$ 6000 0.03
$ 8000 0.01
$ 10000 0.01

How much should the company charge as its average premium in order to
break even on costs for claims?

Solution.
Let X be the random variable of the amount of claim. Finding the expected
value of X we have

E(X) = 0(.80)+2000(.10)+4000(.05)+6000(.03)+8000(.01)+10000(.01) = 760

Since the average claim value is $760, the average automobile insurance pre-
mium should be set at $760 per year for the insurance company to break
even

Example 15.2
Let A be a nonempty set. Consider the random variable I with range 0 and
1 and with pmf the indicator function IA where

IA(x) =

{
1 if x ∈ A
0 otherwise

Find E(I).
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Solution.
Since Pr(1) = Pr(A) and Pr(0) = Pr(Ac), we have

E(I) = 1 · Pr(A) + 0 · Pr(Ac) = Pr(A)

That is, the expected value of I is just the probability of A

Example 15.3
An insurance policy provides the policyholder with a payment of $1,000 if a
death occurs within 5 years. Let X be the random variable of the amount
paid by an insurance company to the policyholder. Suppose that the proba-
bility of death of the policyholder within 5 years is estimated to be 0.15.
(a) Find the probability distribution of X.
(b) What is the most the policyholder should be willing to pay for this policy?

Solution.
(a) Pr(X = 1, 000) = 0.15 and Pr(X = 0) = 0.85.
(b) E(X) = 1000 × 0.15 + 0 × 0.85 = 150. Thus, the policyholder expected
payout is $150, so he/she should not be willing to pay more than $150 for
the policy

Example 15.4
You have a fancy car video system in your car and you feel you want to insure
it against theft. An insurance company offers you a $2000 1-year coverage
for a premium of $225. The probability that the theft will occur is 0.1. What
is your expected return from this policy?

Solution.
Let X be the random variable of the profit/loss from this policy to poli-
cyholder. Then either X = 1, 775 with probability 0.1 or X = −225 with
porbability 0.9. Thus, the expected return of this policy is

E(X) = 1, 775(0.1) + (−225)(0.9) = −$25.

That is, by insuring the car video system for many years, and under the same
circumstances, you will expect a net loss of $25 per year to the insurance
company
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Remark 15.1
The expected value (or mean) is related to the physical property of center
of mass. If we have a weightless rod in which weights of mass Pr(x) located
at a distance x from the left endpoint of the rod then the point at which
the rod is balanced is called the center of mass. If α is the center of
mass then we must have

∑
x(x − α)p(x) = 0. This equation implies that

α =
∑

x xp(x) = E(X). Thus, the expected value tells us something about
the center of the probability mass function.
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Practice Problems

Problem 15.1
Consider the experiment of rolling two dice. Let X be the random variable
representing the sum of the two faces. Find E(X).

Problem 15.2
A game consists of rolling two dice. The sum of the two faces is a positive
integer between 2 and 12. For each such a value, you win an amount of
money as shown in the table below.

Score 2 3 4 5 6 7 8 9 10 11 12
$ won 4 6 8 10 20 40 20 10 8 6 4

Compute the expected value of this game.

Problem 15.3
A game consists of rolling two dice. The game costs $2 to play. If a sum of
7 appears you win $10 otherwise you lose your $2. Would you be making
money, losing money, or coming out about even if you keep playing this
game? Explain.

Problem 15.4
A game consists of rolling two dice. The game costs $8 to play. You get
paid the sum of the numbers in dollars that appear on the dice. What is the
expected value of this game (long-run average gain or loss per game)?

Problem 15.5
A storage company provides insurance coverage for items stored on its premises.
For items valued at $800, the probability that $400 worth of items of being
stolen is 0.01 while the probability the whole items being stolen is 0.0025.
Assume that these are the only possible kinds of expected loss. How much
should the storage company charge for people with this coverage in order
to cover the money they pay out and to make an additional $20 profit per
person on the average?

Problem 15.6
A game consists of spinning a spinner with payoff as shown in Figure 15.1.
The cost of playing is $2 per spin. What is the expected return to the owner
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of this game?

Figure 15.1

Problem 15.7
Consider a game that costs $1 to play. The probability of losing is 0.7. The
probability of winning $50 is 0.1, and the probability of winning $35 is 0.2.
Would you expect to win or lose if you play this game 10 times?

Problem 15.8
A lottery type game consists of matching the correct three numbers that are
selected from the numbers 1 through 12. The cost of one ticket is $1. If your
ticket matched the three selected numbers, you win $100. What are your
expected earnings?

Problem 15.9 ‡
Two life insurance policies, each with a death benefit of 10,000 and a one-
time premium of 500, are sold to a couple, one for each person. The policies
will expire at the end of the tenth year. The probability that only the wife
will survive at least ten years is 0.025, the probability that only the husband
will survive at least ten years is 0.01, and the probability that both of them
will survive at least ten years is 0.96 .
What is the expected excess of premiums over claims, given that the husband
survives at least ten years?

Problem 15.10
An urn contains 30 marbles of which 8 are black, 12 are red, and 10 are blue.
Randomly, select four marbles without replacement. Let X be the number
black marbles in the sample of four.
(a) What is the probability that no black marble was selected?
(b) What is the probability that exactly one black marble was selected?
(c) Compute E(X).
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Problem 15.11
The distribution function of a discrete random variable X is given by

F (x) =



0 x < −2
0.2 −2 ≤ x < 0
0.5 0 ≤ x < 2.2
0.6 2.2 ≤ x < 3

0.6 + q 3 ≤ x < 4
1 x ≥ 4

Suppose that Pr(X > 3) = 0.1.
(a) Determine the value of q?
(b) Compute Pr(X2 > 2).
(c) Find p(0), p(1)? and p(Pr(X ≤ 0)).
(d) Find the formula of the probability mass function p(x).
(e) Compute E(X).

Problem 15.12
A computer store specializes in selling used laptops. The laptops can be
classified as either in good condition or in fair condition. Assume that the
store salesperson is able to tell whether a laptop is in good or fair condition.
However, a buyer in the store can not tell the difference. Suppose that buyers
are aware that the probability of a laptop of being in good condition is 0.4.
A laptop in good condition costs the store $400 and a buyer is willing to
pay $525 for it whereas a laptop in fair conidition costs the store $200 and a
buyer is willing to pay for $300 for it.
(a) Find the expected value of a used laptop to a buyer who has no extra
information.
(b) Assuming that buyers will not pay more than their expected value for a
used laptop, will sellers ever sell laptops in good condition?

Problem 15.13
An urn contains 10 marbles in which 3 are black. Four of the marbles are
selected at random (without replacement) and are tested for the black color.
Define the random variable X to be the number of the selected marbles that
are not black.
(a) Find the probability mass function of X.
(b) What is the cumulative distribution function of X?
(c) Find the expected value of X.
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Problem 15.14 ‡
An auto insurance company is implementing a new bonus system. In each
month, if a policyholder does not have an accident, he or she will receive a
5.00 cash-back bonus from the insurer.
Among the 1,000 policyholders of the auto insurance company, 400 are clas-
sified as low-risk drivers and 600 are classified as high-risk drivers.
In each month, the probability of zero accidents for high-risk drivers is 0.80
and the probability of zero accidents for low-risk drivers is 0.90.
Calculate the expected bonus payment from the insurer to the 1000 policy-
holders in one year.
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16 Expected Value of a Function of a Discrete

Random Variable

If we apply a function g(·) to a random variable X, the result is another ran-
dom variable Y = g(X). For example, X2, logX, 1

X
are all random variables

derived from the original random variable X.
In this section we are interested in finding the expected value of this new
random variable. But first we look at an example.

Example 16.1
Let X be a discrete random variable with range {−1, 0, 1} and probabilities
Pr(X = −1) = 0.2,Pr(X = 0) = 0.5, and Pr(X = 1) = 0.3. Compute
E(X2).

Solution.
Let Y = X2. Then the range of Y is {0, 1}. Also, Pr(Y = 0) = Pr(X = 0) =
0.5 and Pr(Y = 1) = Pr(X = −1) + Pr(X = 1) = 0.2 + 0.3 = 0.5 Thus,
E(X2) = 0(0.5)+1(0.5) = 0.5. Note that E(X) = −1(0.2)+0(0.5)+1(0.3) =
0.1 so that E(X2) 6= (E(X))2

Now, if X is a discrete random variable and g(x) = x then we know that

E(g(X)) = E(X) =
∑
x∈D

xp(x)

where D is the range of X and p(x) is its probability mass function. This
suggests the following result for finding E(g(X)).

Theorem 16.1
If X is a discrete random variable with range D and pmf Pr(x), then the
expected value of any function g(X) is computed by

E(g(X)) =
∑
x∈D

g(x)p(x).

Proof.
Let D be the range of X and D′ be the range of g(X). Thus,

D′ = {g(x) : x ∈ D}.
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For each y ∈ D′ we let Ay = {x ∈ D : g(x) = y}. We will show that

{s ∈ S : g(X)(s) = y} =
⋃
x∈Ay

{s ∈ S : X(s) = x}. The prove is by double

inclusions. Let s ∈ S be such that g(X)(s) = y. Then g(X(s)) = y. Since
X(s) ∈ D, there is an x ∈ D such that x = X(s) and g(x) = y. This shows
that s ∈ ∪x∈Ay{s ∈ S : X(s) = x}. For the converse, let s ∈ ∪x∈Ay{s ∈
S : X(s) = x}. Then there exists x ∈ D such that g(x) = y and X(s) = x.
Hence, g(X)(s) = g(x) = y and this implies that s ∈ {s ∈ S : g(X)(s) = y}.
Next, if x1 and x2 are two distinct elements of Ay and w ∈ {s ∈ S : X(s) =
x1}∩{t ∈ S : X(t) = x2} then this leads to x1 = x2, a contradiction. Hence,
{s ∈ S : X(s) = x1} ∩ {t ∈ S : X(t) = x2} = ∅.
From the above discussion we are in a position to find pY (y), the pmf of
Y = g(X), in terms of the pmf of X. Indeed,

pY (y) =Pr(Y = y)

=Pr(g(X) = y)

=
∑
x∈Ay

Pr(X = x)

=
∑
x∈Ay

p(x)

Now, from the definition of the expected value we have

E(g(X)) =E(Y ) =
∑
y∈D′

ypY (y)

=
∑
y∈D′

y
∑
x∈Ay

p(x)

=
∑
y∈D′

∑
x∈Ay

g(x)p(x)

=
∑
x∈D

g(x)p(x)

Note that the last equality follows from the fact that D is the disjoint unions
of the Ay

Example 16.2
Let X be the number of points on the side that comes up when rolling a fair
die. Find the expected value of g(X) = 2X2 + 1.
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Solution.
Since each possible outcome has the probability 1

6
, we get

E[g(X)] =
6∑
i=1

(2i2 + 1) · 1

6

=
1

6

(
6 + 2

6∑
i=1

i2

)

=
1

6

(
6 + 2

6(6 + 1)(2 · 6 + 1)

6

)
=

94

3

As a consequence of the above theorem we have the following result.

Corollary 16.1
If X is a discrete random variable, then for any constants a and b we have

E(aX + b) = aE(X) + b.

Proof.
Let D denote the range of X. Then

E(aX + b) =
∑
x∈D

(ax+ b)p(x)

=a
∑
x∈D

xp(x) + b
∑
x∈D

p(x)

=aE(X) + b

A similar argument establishes

E(aX2 + bX + c) = aE(X2) + bE(X) + c.

Example 16.3
Let X be a random variable with E(X) = 6 and E(X2) = 45, and let
Y = 20− 2X. Find E(Y ) and E(Y 2)− [E(Y )]2.



16 EXPECTEDVALUE OF A FUNCTIONOF ADISCRETE RANDOMVARIABLE125

Solution.
By the properties of expectation,

E(Y ) =E(20− 2X) = 20− 2E(X) = 20− 12 = 8

E(Y 2) =E(400− 80X + 4X2) = 400− 80E(X) + 4E(X2) = 100

E(Y 2)− (E(Y ))2 = 100− 64 = 36

We conclude this section with the following definition. If g(x) = xn then we
call E(Xn) =

∑
x x

np(x) the nth moment about the origin of X or the
nth raw moment. Thus, E(X) is the first moment of X.

Example 16.4
Show that E(X2) = E(X(X − 1)) + E(X).

Solution.
Let D be the range of X. We have

E(X2) =
∑
x∈D

x2p(x)

=
∑
x∈D

(x(x− 1) + x)p(x)

=
∑
x∈D

x(x− 1)p(x) +
∑
x∈D

xp(x) = E(X(X − 1)) + E(X)

Remark 16.1
In our definition of expectation the set D can be countably infinite. It is
possible to have a random variable with undefined expectation as seen in the
next example.

Example 16.5
If the probability distribution of X is given by

p(x) =

(
1

2

)x
, x = 1, 2, 3, · · ·

show that E(2X) does not exist.

Solution.
We have

E(2X) = (21)
1

21
+ (22)

1

22
+ · · · =

∞∑
n=1

1

The series on the right is divergent so that E(2X) does not exist
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Practice Problems

Problem 16.1
Suppose that X is a discrete random variable with probability mass function

p(x) = cx2, x = 1, 2, 3, 4.

(a) Find the value of c.
(b) Find E(X).
(c) Find E(X(X − 1)).

Problem 16.2
A random variable X has the following probability mass function defined in
tabular form

x -1 1 2
p(x) 2c 3c 4c

(a) Find the value of c.
(b) Compute p(−1), p(1), and p(2).
(c) Find E(X) and E(X2).

Problem 16.3
Let X be a random variable with range {1, 2, 3, 4, 5, 6}. Suppose that p(x) =
kx for some positive constant k.
(a) Determine the value of k.
(b) Find Pr(X = x) for x even.
(c) Find the expected value of X.

Problem 16.4
Let X be a discrete random variable. Show that E(aX2+bX+c) = aE(X2)+
bE(X) + c.

Problem 16.5
Consider a random variable X whose probability mass function is given by

p(x) =



0.1 x = −3
0.2 x = 0
0.3 x = 2.2
0.1 x = 3
0.3 x = 4
0 otherwise

Let F (x) be the corresponding cdf. Find E(F (X)).
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Problem 16.6 ‡
An insurance policy pays 100 per day for up to 3 days of hospitalization and
50 per day for each day of hospitalization thereafter.
The number of days of hospitalization, X, is a discrete random variable with
probability function

p(k) =

{
6−k
15

k = 1, 2, 3, 4, 5
0 otherwise

Determine the expected payment for hospitalization under this policy.

Problem 16.7 ‡
An insurance company sells a one-year automobile policy with a deductible
of 2 . The probability that the insured will incur a loss is 0.05 . If there is
a loss, the probability of a loss of amount N is K

N
, for N = 1, · · · , 5 and K

a constant. These are the only possible loss amounts and no more than one
loss can occur.
Determine the net premium for this policy.

Problem 16.8
Consider a random variable X whose probability mass function is given by

p(x) =



0.2 x = −1
0.3 x = 0
0.1 x = 0.2
0.1 x = 0.5
0.3 x = 4
0 otherwise

Find E(p(x)).

Problem 16.9
A box contains 7 marbles of which 3 are red and 4 are blue. Randomly select
two marbles without replacement. If the marbles are of the same color then
you win $2, otherwise you lose $1. Let X be the random variable representing
your net winnings.
(a) Find the probability mass function of X.
(b) Compute E(2X).
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Problem 16.10
Three kinds of tickets are sold at a movie theater: children (for $3), adult
(for $8), and seniors (for $5). Let C denote the number of children tickets
sold, A number of adult tickets, and S number of senior tickets. You are
given: E[C] = 45, E[A] = 137, E[S] = 34. Assume the number of tickets
sold is indepndent.
Any particular movie costs $300 to show, regardless of the audience size.
(a) Write a formula relating C,A, and S to the theater’s profit P for a
particular movie.
(b) Find E(P ).
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17 Variance and Standard Deviation

In the previous section we learned how to find the expected values of various
functions of random variables. The most important of these are the variance
and the standard deviation which give an idea about how spread out the
probability mass function is about its expected value.
The expected squared distance between the random variable and its mean is
called the variance of the random variable. The positive square root of the
variance is called the standard deviation of the random variable. If σX
denotes the standard deviation then the variance is given by the formula

Var(X) = σ2
X = E [(X − E(X))2]

The variance of a random variable is typically calculated using the following
formula

Var(X) =E[(X − E(X))2]

=E[X2 − 2XE(X) + (E(X))2]

=E(X2)− 2E(X)E(X) + (E(X))2

=E(X2)− (E(X))2

where we have used the result of Problem 16.4.

Example 17.1
Find the variance of the random variable X with probability distribution
Pr(X = 1) = Pr(X = −1) = 1

2
.

Solution.
Since E(X) = 1× 1

2
− 1× 1

2
= 0 and E(X2) = 12 1

2
+ (−1)2 × 1

2
= 1 we find

Var(X) = 1− 0 = 1

A useful identity is given in the following result

Theorem 17.1
If X is a discrete random variable then for any constants a and b we have

Var(aX + b) = a2Var(X)
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Proof.
Since E(aX + b) = aE(X) + b, we have

Var(aX + b) =E
[
(aX + b− E(aX + b))2

]
=E[a2(X − E(X))2]

=a2E((X − E(X))2)

=a2Var(X)

Remark 17.1
Note that the units of Var(X) is the square of the units of X. This motivates
the definition of the standard deviation σX =

√
Var(X) which is measured

in the same units as X.

Example 17.2
In a recent study, it was found that tickets cost to the Dallas Cowboys football
games averages $80 with a variance of 105 square dollar. What will be the
variance of the cost of tickets if 3% tax is charged on all tickets?

Solution.
Let X be the current ticket price and Y be the new ticket price. Then
Y = 1.03X. Hence,

Var(Y ) = Var(1.03X) = 1.032Var(X) = (1.03)2(105) = 111.3945

Example 17.3
In the experiment of rolling one die, let X be the number on the face that
comes up. Find the variance and standard deviation of X.

Solution.
We have

E(X) = (1 + 2 + 3 + 4 + 5 + 6) · 1

6
=

21

6
=

7

2

and

E(X2) = (12 + 22 + 32 + 42 + 52 + 62) · 1

6
=

91

6
.

Thus,

Var(X) =
91

6
− 49

4
=

35

12
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The standard deviation is

σX =

√
35

12
≈ 1.7078

Next, we will show that g(c) = E[(X − c)2] is minimum when c = E(X).

Theorem 17.2
Let c be a constant and let X be a random variable with mean E(X) and
variance Var(X) <∞. Then
(a) g(c) = E[(X − c)2] = Var(X) + (c− E(X))2.
(b) g(c) is minimized at c = E(X).

Proof.
(a) We have

E[(X − c)2] =E[((X − E(X))− (c− E(X)))2]

=E[(X − E(X))2]− 2(c− E(X))E(X − E(X)) + (c− E(X))2

=Var(X) + (c− E(X))2

(b) Note that g′(c) = 0 when c = E(X) and g′′(E(X)) = 2 > 0 so that g has
a global minimum at c = E(X)
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Practice Problems

Problem 17.1 ‡
A probability distribution of the claim sizes for an auto insurance policy is
given in the table below:

Claim size Probability
20 0.15
30 0.10
40 0.05
50 0.20
60 0.10
70 0.10
80 0.30

What percentage of the claims are within one standard deviation of the mean
claim size?

Problem 17.2 ‡
The annual cost of maintaining and repairing a car averages 200 with a
variance of 260. what will be the variance of the annual cost of maintaining
and repairing a car if 20% tax is introduced on all items associated with the
maintenance and repair of cars?

Problem 17.3
A discrete random variable, X, has probability mass function

p(x) = c(x− 3)2, x = −2,−1, 0, 1, 2.

(a) Find the value of the constant c.
(b) Find the mean and variance of X.

Problem 17.4
An urn contains 10 marbles in which 3 are black. Four of the marbles are
selected at random and are tested for the black color. Define the random
variable X to be the number of the selected marbles that are not black.
(a) Find the probability mass function of X.
(b) Find the variance of X.
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Problem 17.5
Suppose that X is a discrete random variable with probability mass function

p(x) = cx2, x = 1, 2, 3, 4.

(a) Find the value of c.
(b) Find E(X) and E(X(X − 1)).
(c) Find Var(X).

Problem 17.6
Suppose X is a random variable with E(X) = 4 and Var(X) = 9. Let
Y = 4X + 5. Compute E(Y ) and Var(Y ).

Problem 17.7
A box contains 3 red and 4 blue marbles. Two marbles are randomly selected
without replacement. If they are the same color then you win $2. If they are
of different colors then you lose $ 1. Let X denote the amount you win.
(a) Find the probability mass function of X.
(b) Compute E(X) and E(X2).
(c) Find Var(X).

Problem 17.8
Let X be a discrete random variable with probability mass function is given
by

x -4 1 4
p(x) 0.3 0.4 0.3

Find the variance and the standard deviation of X.

Problem 17.9
Let X be a random variable with probability distribution p(0) = 1−p, p(1) =
p, and 0 otherwise, where 0 < p < 1. Find E(X) and V ar(X).
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Commonly Used Discrete
Random Variables

In this chapter, we consider the discrete random variables listed in the exam’s
syllabus: binomial, negative binomial, geometric, hypergeometric, and Pois-
son.

18 Bernoulli Trials and Binomial Distributions

A Bernoulli trial3 is an experiment with exactly two outcomes: Success
and failure. The probability of a success is denoted by p and that of a failure
by q. Moreover, p and q are related by the formula

p+ q = 1.

Example 18.1
Consider the experiment of rolling a fair die where a success is the face that
comes up shows a number divisible by 2. Find p and q.

Solution.
The numbers on the die that are divisible by 2 are 2,4, and 6. Thus, p = 3

6
= 1

2

and q = 1− 1
2

= 1
2

A Bernoulli experiment is a sequence of independent4 Bernoulli trials.
LetX represent the number of successes that occur in n indepednent Bernoulli
trials. Then X is said to be a binomial random variable with parameters

3The prefix bi in binomial experiment refers to the fact that there are two possible
outcomes (e.g., head or tail, true or false, working or defective) to each trial.

4That is what happens to one trial does not affect the probability of a success in any
other trial.

135
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(n, p). If n = 1 then X is said to be a Bernoulli random variable.
The central question of a binomial experiment is to find the probability of r
successes out of n trials. In the next paragraph we’ll see how to compute such
a probability. Now, anytime we make selections from a population without
replacement, we do not have independent trials. For example, selecting a
ball from a box that contain balls of two different colors.

Example 18.2
We roll a fair die 5 times. A success is when the face that comes up shows a
prime number. We are interested in the probability of obtaining three prime
numbers. What are p, q, n, and r?

Solutions.
This is a binomial experiment with 5 trials. The prime numbers on the die
are 2, 3, 5 so that p = q = 1

2
. Also, we have n = 5 and r = 3

Binomial Distribution Function
As mentioned above, the central problem of a binomial experiment is to find
the probability of r successes out of n independent trials.

Recall from Section 5 the formula for finding the number of combinations
of n distinct objects taken r at a time

nCr =
n!

r!(n− r)!
.

Now, the probability of r successes in a sequence of n independent trials is
given by prqn−r. Since the binomial coefficient nCr counts all the number of
outcomes that have r successes and n− r failures, the probability of having
r successes in any order is given by the binomial mass function

p(r) = Pr(X = r) = nCrp
rqn−r.

Note that by letting a = p and b = 1− p in the binomial formula we find

n∑
k=0

p(k) =
n∑
k=0

nCkp
k(1− p)n−k = (p+ 1− p)n = 1.
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The histogram of the binomial distribution is given in Figure 18.1.

Figure 18.1

The cumulative distribution function is given by

F (x) = Pr(X ≤ x) =


0, x < 0

bxc∑
k=0

nCkp
k(1− p)n−k, 0 ≤ x ≤ n

1, x > n

where bkc is the floor function5.

Example 18.3
Suppose that in a box of 100 computer chips, the probability of a chip to be
defective is 3%. Inspection process for defective chips consists of selecting
with replacement 5 randomly chosen chips in the box and to send the box
for shipment if none of the five chips is defective. Write down the random
variable, the corresponding probability distribution and then determine the
probability that the box described here will be allowed to be shipped.

Solution.
Let X be the number of defective chips in the box. Then X is a binomial
random variable with probability distribution

Pr(X = x) = 5Cx(0.03)x(0.97)5−x, x = 0, 1, 2, 3, 4, 5.

5bxc = the largest integer less than or equal to x.
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Now,

Pr(sheet goes into circulation) = Pr(X = 0) = (0.97)5 = 0.859

Example 18.4
Suppose that 40% of the voters in a city are in favor of a ban of smoking in
public buildings. Suppose 5 voters are to be randomly sampled. Find the
probability that
(a) 2 favor the ban.
(b) less than 4 favor the ban.
(c) at least 1 favor the ban.

Solution.
(a) Pr(X = 2) = 5C2(0.4)2(0.6)3 ≈ 0.3456.
(b) Pr(X < 4) = p(0)+p(1)+p(2)+p(3) = 5C0(0.4)0(0.6)5+5C1(0.4)1(0.6)4+

5C2(0.4)2(0.6)3 + 5C3(0.4)3(0.6)2 ≈ 0.913.
(c) Pr(X ≥ 1) = 1− Pr(X < 1) = 1− 5C0(0.4)0(0.6)5 ≈ 0.922

Example 18.5
A student takes a test consisting of 10 true-false questions.
(a) What is the probability that the student answers at least six questions
correctly?
(b) What is the probability that the student answers at most two questions
correctly?

Solution.
(a) Let X be the number of correct responses. Then X is a binomial random
variable with parameters n = 10 and p = 1

2
. So, the desired probability is

Pr(X ≥ 6) =Pr(X = 6) + Pr(X = 7) + Pr(X = 8) + Pr(X = 9) + Pr(X = 10)

=
10∑
x=6

10Cx(0.5)x(0.5)10−x ≈ 0.3769.

(b) We have

Pr(X ≤ 2) =
2∑

x=0

10Cx(0.5)x(0.5)10−x ≈ 0.0547
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Example 18.6
A study shows that 30 percent people aged 50-60 in a certain town have
high blood pressure. What is the probability that in a sample of fourteen
individuals aged between 50 and 60 tested for high blood pressure, more than
six will have high blood pressure?

Solution.
Let X be the number of people in the town aged 50-60 with high blood
pressure. Then X is a binomial random variable with n = 14 and p = 0.3.
Thus,

Pr(X > 6) =1− Pr(X ≤ 6)

=1−
6∑
i=0

14Ci(0.3)i(0.7)14−i

≈0.0933
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Practice Problems

Problem 18.1
Mark is a car salesman with a 10% chance of persuading a randomly selected
customer to buy a car. Out of 8 customers that were serviced by Mark, what
is the probability that exactly one agreed to buy a car?

Problem 18.2
The probability of a newly born child to get a genetic disease is 0.25. If
a couple carry the disease and wish to have four children then what is the
probability that 2 of the children will get the disease?

Problem 18.3
A skyscraper has three elevators. Each elevator has a 50% chance of being
down, independently of the others. Let X be the number of elevators which
are down at a particular time. Find the probability mass function (pmf) of
X.

Problem 18.4 ‡
A hospital receives 1/5 of its flu vaccine shipments from Company X and the
remainder of its shipments from other companies. Each shipment contains a
very large number of vaccine vials.
For Company Xs shipments, 10% of the vials are ineffective. For every other
company, 2% of the vials are ineffective. The hospital tests 30 randomly
selected vials from a shipment and finds that one vial is ineffective.
What is the probability that this shipment came from Company X?

Problem 18.5 ‡
A company establishes a fund of 120 from which it wants to pay an amount,
C, to any of its 20 employees who achieve a high performance level during the
coming year. Each employee has a 2% chance of achieving a high performance
level during the coming year, independent of any other employee.
Determine the maximum value of C for which the probability is less than 1%
that the fund will be inadequate to cover all payments for high performance.

Problem 18.6 ‡
A company prices its hurricane insurance using the following assumptions:
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(i) In any calendar year, there can be at most one hurricane.
(ii) In any calendar year, the probability of a hurricane is 0.05 .
(iii) The number of hurricanes in any calendar year is independent of the

number of hurricanes in any other calendar year.

Using the company’s assumptions, calculate the probability that there are
fewer than 3 hurricanes in a 20-year period.

Problem 18.7
The probability of winning a game is 1

300
. If you play this game 200 times,

what is the probability that you win at least twice?

Problem 18.8
Suppose a local bus service accepted 12 reservations for a commuter bus with
10 seats. Seven of the ten reservations went to regular commuters who will
show up for sure. The other 5 passengers will show up with a 50% chance,
independently of each other.
(a) Find the probability that the bus will be overbooked.
(b) Find the probability that there will be empty seats.

Problem 18.9
Suppose that 3% of flashlight batteries produced by a certain machine are
defective. The batteries are put into packages of 20 batteries for distribution
to retailers.
What is the probability that a randomly selected package of batteries will
contain at least 2 defective batteries?

Problem 18.10
The probability of late arrival of flight 701 in any day is 0.20 and is indepen-
dent of the late arrival in any other day. The flight can be late only once per
day. Calculate the probability that the flight is late two or more times in ten
days.

Problem 18.11
Ashley finds that she beats Carla in tennis 70% of the time. The two play
3 times in a particular month. Assuming independence of outcomes, what is
the probability Ashley wins at least 2 of the 3 matches?
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Problem 18.12
The probability of a computer chip to be defective is 0.05. Consider a package
of 6 computer chips.
(a) What is the probability one chip will be defective?
(b) What is the probability at least one chip will be defective?
(c) What is the probability that more than one chip will be defective, given
at least one is defective?

Problem 18.13
In a promotion, a popcorn company inserts a coupon for a free Red Box
movie in 10% of boxes produced. Suppose that we buy 10 boxes of popcorn,
what is the probability that we get at least 2 coupons?
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19 The Expected Value and Variance of the

Binomial Distribution

In this section, we find the expected value and the variance of a binomial
random variable X with parameters (n, p).

The expected value is found as follows.

E(X) =
n∑
k=1

k
n!

k!(n− k)!
pk(1− p)n−k = np

n∑
k=1

(n− 1)!

(k − 1)!(n− k)!
pk−1(1− p)n−k

=np
n−1∑
j=0

(n− 1)!

j!(n− 1− j)!
pj(1− p)n−1−j = np(p+ 1− p)n−1 = np

where we used the binomial theorem and the substitution j = k − 1. Also,
we have

E(X(X − 1)) =
n∑
k=0

k(k − 1)
n!

k!(n− k)!
pk(1− p)n−k

=n(n− 1)p2

n∑
k=2

(n− 2)!

(k − 2)!(n− k)!
pk−2(1− p)n−k

=n(n− 1)p2

n−2∑
j=0

(n− 2)!

j!(n− 2− j)!
pj(1− p)n−2−j

=n(n− 1)p2(p+ 1− p)n−2 = n(n− 1)p2

This implies E(X2) = E(X(X−1))+E(X) = n(n−1)p2 +np. The variance
of X is then

Var(X) = E(X2)− (E(X))2 = n(n− 1)p2 + np− n2p2 = np(1− p)

Example 19.1
The probability of a student passing an exam is 0.2. Ten students took the
exam.
(a) What is the probability that at least two students passed the exam?
(b) What is the expected number of students who passed the exam?
(c) How many students must take the exam to make the probability at least
0.99 that a student will pass the exam?
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Solution.
Let X be the number of students who passed the exam. Then, X has a
binomial distribution with n = 10 and p = 0.2.
(a) The event that at least two students passed the exam is {X ≥ 2}. So,

Pr(X ≥ 2) =1− Pr(X < 2) = 1− p(0)− p(1)

=1− 10C0(0.2)0(0.8)10 − 10C1(0.2)1(0.8)9

≈0.6242

(b) E(X) = np = 10 · (0.2) = 2.
(c) Suppose that n students are needed to make the probability at least 0.99
that a student will pass the exam. Let A denote the event that a student
pass the exam. Then, Ac means that all the students fail the exam. We have,

Pr(A) = 1− Pr(Ac) = 1− (0.8)n ≥ 0.99

Solving the inequality, we find that n ≥ ln (0.01)
ln (0.8)

≈ 20.6. So, the required
number of students is 21

Example 19.2
Let X be a binomial random variable with parameters (12, 0.5). Find the
variance and the standard deviation of X.

Solution.
We have n = 12 and p = 0.5. Thus, Var(X) = np(1 − p) = 6(1 − 0.5) = 3.
The standard deviation is σX =

√
3

Example 19.3
A multiple choice exam consists of 25 questions each with five choices with
once choice is correct. Randomly select an answer for each question. Let X
be the random variable representing the total number of correctly answered
questions.
(a) What is the probability that you get exactly 16, or 17, or 18 of the
questions correct?
(b) What is the probability that you get at least one of the questions correct.
(c) Find the expected value of the number of correct answers.

Solution.
(a) Let X be the number of correct answers. We have

Pr(X = 16 or X = 17 or X = 18) =25C16(0.2)16(0.8)9 + 25C17(0.2)17(0.8)8

+25C18(0.2)18(0.8)7 = 2.06× 10−6.
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(b) Pr(X ≥ 1) = 1− Pr(X = 0) = 1− 25C0(0.8)25 = 0.9962.
(c) We have E(X) = 25(0.2) = 5

A useful fact about the binomial distribution is a recursion for calculating
the probability mass function.

Theorem 19.1
Let X be a binomial random variable with parameters (n, p). Then for k =
1, 2, 3, · · · , n

p(k) =
p

1− p
n− k + 1

k
p(k − 1)

Proof.
We have

p(k)

p(k − 1)
=

nCkp
k(1− p)n−k

nCk−1pk−1(1− p)n−k+1

=

n!
k!(n−k)!

pk(1− p)n−k
n!

(k−1)!(n−k+1)!
pk−1(1− p)n−k+1

=
(n− k + 1)p

k(1− p)
=

p

1− p
n− k + 1

k

The following theorem details how the binomial pmf first increases and then
decreases.

Theorem 19.2
Let X be a binomial random variable with parameters (n, p). As k goes from
0 to n, p(k) first increases monotonically and then decreases monotonically
reaching its largest value when k is the largest integer such that k ≤ (n+1)p.

Proof.
From the previous theorem we have

p(k)

p(k − 1)
=

p

1− p
n− k + 1

k
= 1 +

(n+ 1)p− k
k(1− p)

.

Accordingly, p(k) > p(k − 1) when k < (n + 1)p and p(k) < p(k − 1) when
k > (n + 1)p. Now, if (n + 1)p = m is an integer then p(m) = p(m − 1). If
not, then by letting k = [(n + 1)p] = greatest integer less than or equal to
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(n+ 1)p we find that p reaches its maximum at k

We illustrate the previous theorem by a histogram.

Binomial Random Variable Histogram
The histogram of a binomial random variable is constructed by putting the r
values on the horizontal axis and p(r) values on the vertical axis. The width
of the bar is 1 and its height is p(r). The bars are centered at the r values.

Example 19.4
Construct the binomial distribution for the total number of heads in four
flips of a balanced coin. Make a histogram.

Solution.
The binomial distribution is given by the following table

r 0 1 2 3 4
p(r) 1

16
4
16

6
16

4
16

1
16

The corresponding histogram is shown in Figure 19.1

Figure 19.1
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Practice Problems

Problem 19.1
If X is the number of “6”’s that turn up when 72 ordinary dice are indepen-
dently thrown, find the expected value of X2.

Problem 19.2 ‡
A tour operator has a bus that can accommodate 20 tourists. The operator
knows that tourists may not show up, so he sells 21 tickets. The probability
that an individual tourist will not show up is 0.02, independent of all other
tourists.
Each ticket costs 50, and is non-refundable if a tourist fails to show up. If
a tourist shows up and a seat is not available, the tour operator has to pay
100 (ticket cost + 50 penalty) to the tourist.
What is the expected revenue of the tour operator?

Problem 19.3
Let Y be a binomial random variable with parameters (n, 0.2). Define the
random variable

S = 100 + 50Y − 10Y 2.

Give the expected value of S when n = 1, 2, and 3.

Problem 19.4
A recent study shows that the probability of a marriage will end in a divorce
within 10 years is 0.4. Letting a divorce be a success, find the mean and the
standard deviation for the binomial distribution X involving 1000 marriages.

Problem 19.5
The probability of a person contracting the flu on exposure is 0.4. Let a
success be a person contracting the flu. Consider the binomial distribution
for a group of 5 people that has been exposed.
(a) Find the probability mass function.
(b) Compute p(x) for x = 0, 1, 2, 3, 4, 5.
(c) Draw a histogram for the distribution.
(d) Find the mean and the standard deviation.

Problem 19.6
A fair die is rolled twice. A success is when the face that comes up shows 3
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or 6. (a) Write the function defining the distribution.
(b) Construct a table for the distribution.
(c) Construct a histogram for the distribution.
(d) Find the mean and the standard deviation for the distribution.
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20 Poisson Random Variable

A random variable X is said to be a Poisson random variable with parameter
λ > 0 if its probability mass function has the form

p(k) = e−λ
λk

k!
, k = 0, 1, 2, · · ·

where λ indicates the average number of successes per unit time or space.
Note that p(k) ≥ 0 and

∞∑
k=0

p(k) = e−λ
∞∑
k=0

λk

k!
= e−λeλ = 1.

The Poisson random variable is most commonly used to model the number of
random occurrences of some phenomenon in a specified unit of space or time.
For example, the number of phone calls received by a telephone operator in
a 10-minute period or the number of typos per page made by a secretary.

Example 20.1
The number of car accidents on a certain section of highway I40 averages
2.1 per day. Assuming that the number of accidents in a given day follows a
Poisson distribution, what is the probability that 4 accidents will occur on a
given day?

Solution.
The probability that 4 accidents will occur on a given day is given by

Pr(X = 4) = e−2.1 (2.1)4

4!
≈ 0.0992

Example 20.2
The number of people entering a movie theater averages one every two min-
utes. Assuming that a Poisson distribution is appropriate.
(a) What is the probability that no people enter between 12:00 and 12:05?
(b) Find the probability that at least 4 people enter during [12:00,12:05].

Solution.
(a) Let X be the number of people that enter between 12:00 and 12:05. We
model X as a Poisson random variable with parameter λ, the average number
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of people that arrive in the 5-minute interval. But, if 1 person arrives every
2 minutes, on average (so 1/2 a person per minute), then in 5 minutes an
average of 2.5 people will arrive. Thus, λ = 2.5. Now,

Pr(X = 0) = e−2.5 2.50

0!
= e−2.5.

(b)

Pr(X ≥ 4) =1− Pr(X ≤ 3)

=1− Pr(X = 0)− Pr(X = 1)− Pr(X = 2)− Pr(X = 3)

=1− e−2.5 2.50

0!
− e−2.5 2.51

1!
− e−2.5 2.52

2!
− e−2.5 2.53

3!

Example 20.3
The number of weekly life insurance sold by an insurance agent averages 3 per
week. Assuming that this number follows a Poisson distribution, calculate
the probability that in a given week the agent will sell
(a) some policies
(b) 2 or more policies but less than 5 policies.
(c) Assuming that there are 5 working days per week, what is the probability
that in a given day the agent will sell one policy?

Solution.
(a) Let X be the number of policies sold in a week. Then

Pr(X ≥ 1) = 1− Pr(X = 0) = 1− e−330

0!
≈ 0.95021

(b) We have

Pr(2 ≤ X < 5) =Pr(X = 2) + Pr(X = 3) + Pr(X = 4)

=
e−332

2!
+
e−333

3!
+
e−334

4!
≈ 0.61611

(c) Let X be the number of policies sold per day. Then λ = 3
5

= 0.6. Thus,

Pr(X = 1) =
e−0.6(0.6)

1!
≈ 0.32929
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Example 20.4
The number X of people in a certain town who get the influenza follows a
Poisson distribution. The proportion of people who did not get the flu is
0.01. Find the probability mass function of X.

Solution.
The pmf of X is

Pr(X = k) = λk
e−λ

k!
, k = 0, 1, 2, · · ·

Since P (X = 0) = 0.01 we can write e−λ = 0.01. Thus, λ = 4.605 and the
exact Poisson distribution is

Pr(X = k) = (4.605)k
e−4.605

k!
, k = 0, 1, 2, · · ·

If X has a Poissom distribution, its expected value is found as follows.

E(X) =
∞∑
k=1

k
e−λλk

k!
= λ

∞∑
k=1

e−λλk−1

(k − 1)!

=λ
∞∑
k=0

e−λλk

k!
= λe−λeλ = λ

To find the variance, we first compute E(X2). From

E(X(X − 1)) =
∞∑
k=2

k(k − 1)
e−λλk

k!
= λ2

∞∑
k=2

e−λλk−2

(k − 2)!

=λ2

∞∑
k=0

e−λλk

k!
= λ2e−λeλ = λ2

we find E(X2) = E(X(X − 1)) +E(X) = λ2 + λ. Thus, Var(X) = E(X2)−
(E(X))2 = λ.

Example 20.5
Misprints in a book averages one misprint per 10 pages. Suppose that the
number of misprints is a random variable having Poisson distribution. Let
X denote the number of misprints in a stack of 50 pages. Find the mean and
the standard deviation of X.
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Solution.
Since the book has 1 misprint per 10 pages, the number of misprints in a
stack of 50 pages is 5. Thus, X is a Poisson random variable with parameter
λ = 5. Hence, E(X) = λ = 5 and σX =

√
5

Example 20.6 ‡
Let X represent the number of customers arriving during the morning hours
and let Y represent the number of customers arriving during the afternoon
hours at a diner. You are given:
i) X and Y are Poisson distributed.
ii) The first moment of X is less than the first moment of Y by 8.
iii) The second moment of X is 60% of the second moment of Y.
Calculate the variance of Y.

Solution.
We have

E(X) = E(Y )− 8 =⇒ E(X)2 = E(Y )2 − 16E(Y ) + 64.

But

E(X)2 = Var(X)+E(X) = E(X)+E(X)2 = 0.6E(Y 2) = 0.6(E(Y )+E(Y )2).

Hence,
0.6(E(Y ) + E(Y )2) = E(Y )2 − 16E(Y ) + 64

yields the quadratic equation

0.4E(Y )2 − 15.5E(Y ) + 56 = 0

whose roots are E(Y ) = 4 and E(Y ) = 35. The value E(Y ) = 4 yields
E(X) = 4−8 = −4 which is impossible since the expected value of a Poisson
random variable is always positive. Hence, E(Y ) = 35
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Practice Problems

Problem 20.1
The number of accidents on a certain section of a highway averages 4 per
day. Assuming that this number follows a Poisson distribution, what is the
probability of no car accident in one day? What is the probability of 1 car
accident in two days?

Problem 20.2
A phone operator receives calls on average of 2 calls per minute. What is the
probability of receiving 10 calls in 5 minutes?

Problem 20.3
In the first draft of a book on probability theory, there are an average of 15
spelling errors per page. Suppose that the number of errors per page follows
a Poisson distribution. What is the probability of having no errors on a page?

Problem 20.4
Suppose that the number of people admitted to an emergency room each day
is a Poisson random variable with parameter λ = 3.
(a) Find the probability that 3 or more people admitted to the emergency
room today.
(b) Find the probability that no people were admitted to the emergency room
today.

Problem 20.5
At a reception event guests arrive at an average of 2 per minute. Find the
probability that
(a) at most 4 will arrive at any given minute
(b) at least 3 will arrive during an interval of 2 minutes
(c) 5 will arrive in an interval of 3 minutes.

Problem 20.6
Suppose that the number of car accidents on a certain section of a highway
can be modeled by a random variable having Poisson distribution with stan-
dard deviation σ = 2. What is the probability that there are at least three
accidents?
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Problem 20.7
A Geiger counter is monitoring the leakage of alpha particles from a container
of radioactive material. Over a long period of time, an average of 50 particles
per minute is measured. Assume the arrival of particles at the counter is
modeled by a Poisson distribution.
(a) Compute the probability that at least one particle arrives in a particular
one second period.
(b) Compute the probability that at least two particles arrive in a particular
two second period.

Problem 20.8 ‡
An actuary has discovered that policyholders are three times as likely to file
two claims as to file four claims.
If the number of claims filed has a Poisson distribution, what is the variance
of the number of claims filed?

Problem 20.9 ‡
A company buys a policy to insure its revenue in the event of major snow-
storms that shut down business. The policy pays nothing for the first such
snowstorm of the year and $10,000 for each one thereafter, until the end of
the year. The number of major snowstorms per year that shut down business
is assumed to have a Poisson distribution with mean 1.5 .
What is the expected amount paid to the company under this policy during
a one-year period?

Problem 20.10 ‡
A baseball team has scheduled its opening game for April 1. If it rains on
April 1, the game is postponed and will be played on the next day that it
does not rain. The team purchases insurance against rain. The policy will
pay 1000 for each day, up to 2 days, that the opening game is postponed.
The insurance company determines that the number of consecutive days of
rain beginning on April 1 is a Poisson random variable with mean 0.6 .
What is the standard deviation of the amount the insurance company will
have to pay?

Problem 20.11
The average number of trains arriving on any one day at a train station in a
certain city is known to be 12. What is the probability that on a given day
fewer than nine trains will arrive at this station?
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Problem 20.12
In the inspection sheet metals produced by a machine, five defects per 10
square feet were spotted, on average. If we assume a Poisson distribution,
what is the probability that a 15-square feet sheet of the metal will have at
least six defects?

Problem 20.13
Let X be a Poisson random variable with mean λ. If P (X = 1|X ≤ 1) = 0.8,
what is the value of λ?

Problem 20.14
The number of trucks arriving at a truck depot on a given day has a Poisson
distribution with a mean of 2.5 per day.
(a) What is the probability a day goes by with no more than one truck
arriving?
(b) Give the mean and standard deviation of the number of trucks arriving
in an 8-day period.
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21 Poisson Approximation to the Binomial Dis-

tribution

In this section, we show that a binomial random variable with parameters n
and p such that n is large and p is small can be approximated by a Poisson
distribution.

Theorem 21.1
Let X be a binomial random variable with parameters n and p. If n→∞ and
p→ 0 so that np = λ = E(X) remains constant then X can be approximated
by a Poisson distribution with parameter λ.

Proof.
First notice that for small p << 1 we can write

(1− p)n =en ln (1−p)

=en(−p− p
2

2
−··· )

≈e−np

=e−λ

where we have used the Taylor series expansion

ln (1− x) =
∞∑
n=1

(−1)2n+1x
n

n
, |x| ≤ 1.

We prove that

Pr(X = k) ≈ e−λ
λk

k!
.

This is true for k = 0 since Pr(X = 0) = (1 − p)n ≈ e−λ. Suppose k > 0.
Using the fact that

lim
n→∞

(
1 +

x

n

)n
= ex
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we find

Pr(X = k) =nCk

(
λ

n

)k (
1− λ

n

)n−k
=
n(n− 1) · · · (n− k + 1)

nk
λk

k!

(
1− λ

n

)n(
1− λ

n

)−k
=
n

n
· n− 1

n
· · · n− k + 1

n

λk

k!

(
1− λ

n

)n(
1− λ

n

)−k
→1 · λ

k

k!
· e−λ · 1

as n→∞. Note that for 0 ≤ j ≤ k−1 we have n−j
n

= 1− j
n
→ 1 as n→∞

In general, Poisson distribution will provide a good approximation to bi-
nomial probabilities when n ≥ 20 and p ≤ 0.05. When n ≥ 100 and p ≤ 0.01,
the approximation will generally be excellent.

Example 21.1
In a group of 100 individuals, let X be the random variable representing the
total number of people in the group with a birthday on Thanksgiving day.
Then X is a binomial random variable with parameters n = 100 and p = 1

365
.

What is the probability at least one person in the group has a birthday on
Thanksgiving day?

Solution.
We have

Pr(X ≥ 1) = 1− Pr(X = 0) = 1− 100C0

(
1

365

)0(
364

365

)100

≈ 0.2399.

Using the Poisson approximation, with λ = 100× 1
365

= 100
365

= 20
73

we find

Pr(X ≥ 1) = 1− Pr(X = 0) = 1− (20/73)0

0!
e(−

20
73) ≈ 0.2396

Example 21.2
Consider the experiment of rolling two fair dice 6 times. Let X denote
the number of times a double 4 appears. For k = 0, 1, 2 compare Pr(X =
k) found using the binomial distribution with the one found using Poisson
approximation.
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Solution.
We are given that n = 6 and p = 1

36
so that λ = np = 1

6
. Let B(X = k) be

the probability using binomial distribution and P (X = k) be the probability
using Poisson distribution. Then

B(X = 0) =

(
1− 1

36

)6

≈ 0.8445

P (X = 0) =e−
1
6 ≈ 0.8465

B(X = 1) =6C1
1

36

(
1− 1

36

)5

≈ 0.1448

P (X = 1) =e−
1
6

(
1

6

)
≈ 0.1411

B(X = 2) =6C2

(
1

36

)2(
1− 1

36

)4

≈ 0.0103

P (X = 2) =e−
1
6

(
1
6

)2

2!
≈ 0.0118

Example 21.3
Consider a contest where a participant fires at a small can placed on the top
of box. Each time the can is hit, it is replaced by another can. Suppose
that the probability of a paticipant hiting the can is 1

32
. Assume that the

participant shoots 96 times, and that all shoots are independent.
(a) Find the probability mass function of the number of shoots that hit a
can.
(b) Give an approximation for the probability of the participant hitting no
more than one can.

Solution.
(a) Let X denote the number of shoots that hit a can. Then X is binomially
distributed:

Pr(X = k) = nCkp
k(1− p)n−k, n = 96, p =

1

32
.

(b) Since n is large, and p small, we can use the Poisson approximation, with
parameter λ = np = 3. Thus,

Pr(X ≤ 1) = Pr(X = 0) + Pr(X = 1) ≈ e−λ + λe−λ = 4e−3 ≈ 0.199
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We conclude this section by establishing a recursion formula for computing
p(k) = Pr(X = k).

Theorem 21.2
If X is a Poisson random variable with parameter λ, then

p(k + 1) =
λ

k + 1
p(k).

Proof.
We have

p(k + 1)

p(k)
=
e−λ λk+1

(k+1)!

e−λ λ
k

k!

=
λ

k + 1
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Practice Problems

Problem 21.1
Let X be a binomial distribution with parameters n = 200 and p = 0.02.
We want to calculate Pr(X ≥ 2). Explain why a Poisson distribution can be
expected to give a good approximation of Pr(X ≥ 2) and then find the value
of this approximation.

Problem 21.2
In a TV plant, the probability of manufacturing a defective TV is 0.03. Using
Poisson approximation, find the probability of obtaining exactly one defective
TV set out of a group of 20.

Problem 21.3
Suppose that 1 out of 400 tires are devective. Let X denote the number of
defective tires in a group of 200 tires. What is the probability that at least
three of them are defective?

Problem 21.4
1000 cancer patients are receving a clinical trial drug for cancer. Side effects
are being studied. The probability that a patient experiences side effects to
the drug is found to be 0.001. Find the probability that none of the patients
administered the trial drug experienced any side effect.

Problem 21.5
From a group of 120 engineering students, 3% are not in favor of studying
differential equations. Use the Poisson approximation to estimate the prob-
ability that
(a) exactly 2 students are not in favor of studying differential equations;
(b) at least two students are not in favor of studying differential equations.
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22 Geometric Random Variable

A geometric random variable with parameter p, 0 < p < 1 has a probability
mass function

p(n) = Pr(X = n) = p(1− p)n−1, n = 1, 2, · · · .

Note that p(n) ≥ 0 and

∞∑
n=1

p(1− p)n−1 =
p

1− (1− p)
= 1.

A geometric random variable models the number of successive independent
Bernoulli trials that must be performed to obtain the first “success”. For
example, the number of flips of a fair coin until the first head appears follows
a geometric distribution.

Example 22.1
Consider the experiment of rolling a pair of fair dice.
(a) What is the probability of getting a sum of 11?
(b) If you roll the dice repeatedly, what is the probability that the first 11
occurs on the 8th roll?

Solution.
(a) A sum of 11 accurs when the pair of dice show either (5, 6) or (6, 5) so
that the required probability is 2

36
= 1

18
.

(b) Let X be the number of rolls on which the first 11 occurs. Then X is a
geometric random variable with parameter p = 1

18
. Thus,

Pr(X = 8) =

(
1

18

)(
1− 1

18

)7

= 0.0372

To find the expected value and variance of a geometric random variable we
proceed as follows. First we recall from calculus the geometric series

f(x) =
∞∑
n=0

xn =
1

1− x
, |x| < 1

Differentiating f(x) twice we find
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f ′(x) =
∞∑
n=1

nxn−1 = (1−x)−2 and f ′′(x) =
∞∑
n=1

n(n−1)xn−2 = 2(1−x)−3.

Evaluating f ′(x) and f ′′(x) at x = 1− p, we find

f ′(1− p) =
∞∑
n=1

n(1− p)n−1 = p−2

and

f ′′(1− p) =
∞∑
n=1

n(n− 1)(1− p)n−2 = 2p−3.

We next apply these equalities in finding E(X) and E(X2). Indeed, we have

E(X) =
∞∑
n=1

n(1− p)n−1p = p
∞∑
n=1

n(1− p)n−1 = p · p−2 = p−1

and

E(X(X − 1)) =
∞∑
n=1

n(n− 1)(1− p)n−1p

=p(1− p)
∞∑
n=1

n(n− 1)(1− p)n−2

=p(1− p) · (2p−3) = 2p−2(1− p).

Thus,

E(X2) = E[X(X − 1)] + E(X) = 2p−2(1− p) + p−1 = (2− p)p−2.

The variance is then given by

Var(X) = E(X2)− (E(X))2 = (2− p)p−2 − p−2 =
1− p
p2

.

Next, observe that for k = 1, 2, · · · we have

Pr(X ≥ k) =
∞∑
n=k

p(1−p)n−1 = p(1−p)k−1

∞∑
n=0

(1−p)n =
p(1− p)k−1

1− (1− p)
= (1−p)k−1
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and

Pr(X ≤ k) = 1− Pr(X ≥ k + 1) = 1− (1− p)k.

From this, one can find the cdf X given by

F (x) = Pr(X ≤ x) =

{
0 x < 1
1− (1− p)bxc x ≥ 1

Example 22.2
Used watch batteries are tested one at a time until a good battery is found.
Let X denote the number of batteries that need to be tested in order to find
a good one. Find the expected value of X, given that Pr(X > 3) = 0.5.

Solution.
X has geometric distribution, so Pr(X > 3) = Pr(X ≥ 4) = (1−p)3. Setting

this equal to 1/2 and solving for p gives p = 1− 2−
1
3 . Therefore,

E(X) =
1

p
=

1

1− 2−
1
3

= 4.847

Example 22.3
From past experience it is noted that 3% of customers at an ATM machine
make deposits on Sundays.
(a) What is the probability that the first deposit was made with the 5th

customer who used the ATM?
(b) What is the probability that the first deposit was made when 5 customers
used the ATM?

Solution.
(a) Let X be the number of customers who used the ATM before the first
deposit was made. Then X is a geometric random variable with p = 0.03.
If 5 customers used the ATM before a deposit was made, then the first four
customers did not make a deposit and the fifth customer made the deposit.
Hence,

Pr(X = 5) = 0.03(0.97)4 = 0.027.

(b)

Pr(X ≤ 5) = 1− 0.975 ≈ 0.141
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Example 22.4
Assume that every time you attend your high school reunion there is a proba-
bility of 0.1 that your high school prom companion will not show up. Assume
her arrival to any given reunion is independent of her arrival (or non-arrival)
to any other reunion. What is the expected number of high school reunions
you must attend until the time your prom miss the reunion?

Solution.
Let X be the number of reunions you must attend until you arrive to find
your prom companion is absent, then X has a Geometric distribution with
parameter p = 0.1. Thus

Pr(X = n) = 0.1(1− p)n−1, n = 1, 2, · · ·

and

E(X) =
1

p
= 10

Example 22.5
An archer shoots arrows at a circular target where the central portion of the
target inside is called the bull. Suppose that an archer hits the target 70%
of the time. Let X be the number of shoots until the first hit. Find the
expected value and the standard deviation of X.

Solution.
X is a geometric random variable with p = 0.7. Thus, E(X) = 1

p
= 1

0.7
= 0.43

and σX =
√

1−p
p2

=
√

0.3
0.72

= 0.78
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Practice Problems

Problem 22.1
A box of candies contains 5 KitKat, 4 M&M, and 1 Crunch. Candies are
drawn, with replacement, until a Crunch is found. IfX is the random variable
counting the number of trials until a Crunch appears, then
(a) What is the probability that the Crunch appears on the first trial?
(b) What is the probability that the Crunch appears on the second trial?
(c) What is is the probability that the Crunch appears on the nrmth trial.

Problem 22.2
The probability that a computer chip is defective is 0.10. Each computer is
checked for inspection as it is produced. Find the probability that at least
10 computer chips must be checked to find one that is defective.

Problem 22.3
Suppose a certain exam is classified as either difficult (with probability 90/92)
or fair (with probability 2/92). Exams are taken one after the other. What
is the probability that at least 4 difficult exams will occur before the first fair
one?

Problem 22.4
Assume that every time you hot salsa, there is a 0.001 probability that you
will get heartburn, independent of all other times you eaten hot salsa.
(a) What is the probability you will eat hot salsa two or less times until your
first heartburn?
(b) What is the expected number of times you will eat hot salsa until you
get your first heartburn?

Problem 22.5
Consider the experiment of flipping three coins simultaneously. Let a success
be when the three outcomes are the same. What is the probability that
(a) exactly three rounds of flips are needed for the first success?
(b) more than four rounds are needed?

Problem 22.6
You roll a fair die repeatedly. Let a success be when the die shows either a
1 or a 3. Let X be the number of times you roll the die.
(a) What is Pr(X = 3)? What is Pr(X = 50)?
(b) Find the expected value of X.
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Problem 22.7
Fifteen percent of the cars in a dealer’s showroom have a sunroof. A sales-
person starts showing you cars at random, one after the other. Let X be the
number of cars with a sunroof that you see, before the first car that has no
sunroof.
(a) What is the probability distribution function of X
(b) What is the probability distribution of Y = X + 1?

Problem 22.8
A study of car batteries shows that 3% of car batteries produced by a certain
machine are defective. The batteries are put into packages of 20 batteries for
distribution to retailers.
(a) What is the probability that a randomly selected package of batteries will
contain at least 2 defective batteries?
(b) Suppose we continue to select packages of batteries randomly from the
production site. What is the probability that it will take fewer than five
packages to find a package with at least 2 defective batteries?

Problem 22.9
Show that the Geometric distribution with parameter p satisfies the equation

Pr(X > i+ j|X > i) = Pr(X > j).

This says that the Geometric distribution satisfies the memoryless prop-
erty

Problem 22.10 ‡
As part of the underwriting process for insurance, each prospective policy-
holder is tested for high blood pressure. Let X represent the number of tests
completed when the first person with high blood pressure is found. The ex-
pected value of X is 12.5.
Calculate the probability that the sixth person tested is the first one with
high blood pressure.

Problem 22.11
Suppose that the probability for an applicant to get a job offer after an
interview is 0.1. An applicant plans to keep trying out for more interviews
until she gets offered. Assume outcomes of interviews are independent.
(a) How many interviews does she expect to have to take in order to get a
job offer?
(b) What is the probability she will need to attend more than 2 interviews?
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Problem 22.12
In each of the following you are to determine whether the problem is a bi-
nomial type problem or a geometric type. In each case, find the probability
mass function p(x). Assume outcomes of individual trials are independent
with constant probability of success.
(a) A arch shooter will aim at the target until one successfully hits it. The
underlying probability of success is 0.40.
(b) A clinical trial enrolls 20 patients with a rare disease. Each patient is
given an experimental therapy, and the number of patients showing marked
improvement is observed. The true underlying probability of success is 0.60.
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23 Negative Binomial Random Variable

The geometric distribution is the distribution of the number of bernoulli trials
needed to get the first sucess. In this section we consider an extension of this
distribution. We will study the distribution of the number of independent
Bernoulli trials needed to get the rth success.
Consider a Bernoulli experiment where a success occurs with probability p
and a failure occurs with probability q = 1− p. Assume that the experiment
continues, that is the trials are performed, until the rth success occurs. For
example, in the rolling of a fair die, let a success be when the die shows a 5.
We roll the die repeatedly until the fourth time the face 5 appears. In this
case, p = 1

6
and r = 4.

The random variable X, the number of trials needed to get the rth success,
has a negative binomial distribution with parameters r and p. It is worth
mentioning the difference between the binomial distribution and the negative
binomial distribution: In the binomial idistribution, X is the number of
success in a fixed number of independent Bernoulli trials n. In the negative
binomial distribution, X is the number of trials needed to get a fixed number
of successes r.
For the rth success to occur on the nth trial, there must have been r − 1
successes among the first n − 1 trials. The number of ways of distributing
r − 1 successes among n− 1 trials is n−1Cr−1. But the probability of having
r− 1 successes and n− r failures is pr−1(1− p)n−r. The probability of the rth

success is p. Thus, the product of these three terms ( using independence) is
the probability that there are r successes and n − r failures in the n trials,
with the rth success occurring on the nth trial. Hence, the probability mass
function of X is

p(n) = Pr(X = n) = n−1Cr−1p
r(1− p)n−r,

where n = r, r + 1, · · · (In order to have r successes there must be at least r
trials.)
Note that if r = 1 then X is a geometric random variable with parameter p.
The negative binomial distribution is sometimes defined in terms of the ran-
dom variable Y = number of failures before the rth success. This formulation
is statistically equivalent to the one given above in terms of X = number of
trials at which the rth success occurs, since Y = X − r. The alternative form
of the negative binomial distribution is

Pr(Y = y) = r+y−1Cyp
r(1− p)y = r+y−1Cr−1p

r(1− p)y, y = 0, 1, 2, · · · .
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In this form, the negative binomial distribution is used when the number
of successes is fixed and we are interested in the number of failures before
reaching the fixed number of successes.
Note that the binomial coefficient

r+y−1Cy =
(r + y − 1)!

y!(r − 1)!
=

(y + r − 1)(y + r − 2) · · · (r + 1)r

y!

can be alternatively written in the following manner, expalining the name
“negative binomial:

r+y−1Cy = (−1)y
(−r)(−r − 1) · · · (−r − y + 1)

y!
= (−1)yyC−r

which is the defining equation for binomial coefficient with negative integers.
Now, recalling the Taylor series expansion of the function f(t) = (1− t)−r at
t = 0,

(1− t)−r =
∞∑
k=0

(−1)k−rCkt
k

=
∞∑
k=0

r+k−1Ckt
k, − 1 < t < 1

Thus,

∞∑
y=0

Pr(Y = y) =
∞∑
y=0

r+y−1Cyp
r(1− p)y

=pr
∞∑
y=0

r+y−1Cy(1− p)y

=pr · p−r = 1

This shows that p(y) is indeed a probability mass function.

Example 23.1
A research study is concerned with the side effects of a new drug. The drug
is given to patients, one at a time, until two patients develop sided effects.
If the probability of getting a side effect from the drug is 1

6
, what is the

probability that eight patients are needed?
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Solution.
Let Y be the number of patients who do not show side effects. Then Y
follows a negative binomial distribution with r = 2, y = 6, and p = 1

6
. Thus,

Pr(Y = 6) = 2+6−1C6

(
1

6

)2(
5

6

)6

≈ 0.0651

Example 23.2
A person is conducting a phone survey. Define “success” as the event a person
completes the survey and let Y be the number of failures before the third
success. What is the probability that there are 10 failures before the third
success? Assume that 1 out of 6 people contacted completed the survey.

Solution.
The probability that there are 10 failures before the third success is given by

Pr(Y = 10) = 3+10−1C10

(
1

6

)3(
5

6

)10

≈ 0.0493

Example 23.3
A four-sided die is rolled repeatedly. A success is when the die shows a 1.
What is the probability that the tenth success occurs in the fortieth attempt?

Solution.
Let X number of attempts at which the tenth success occurs. Then X is a
negative binomial random variable with parameters r = 10 and p = 0.25.
Thus,

Pr(X = 40) = 40−1C10−1(0.25)10(0.75)30 ≈ 0.0360911
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Expected value and Variance
The expected value of Y is

E(Y ) =
∞∑
y=0

yr+y−1Cyp
r(1− p)y

=
∞∑
y=1

(r + y − 1)!

(y − 1)!(r − 1)!
pr(1− p)y

=
∞∑
y=1

r(1− p)
p

r+y−1Cy−1p
r+1(1− p)y−1

=
r(1− p)

p

∞∑
z=0

r+1+z−1Czp
r+1(1− p)z

=
r(1− p)

p

It follows that
E(X) = E(Y + r) = E(Y ) + r =

r

p
.

Similarly,

E(Y 2) =
∞∑
y=0

y2
r+y−1Cyp

r(1− p)y

=
r(1− p)

p

∞∑
y=1

y
(r + y − 1)!

(y − 1)!r!
pr+1(1− p)y−1

=
r(1− p)

p

∞∑
z=0

(z + 1)r+1+z−1Czp
r+1(1− p)z

=
r(1− p)

p
(E(Z) + 1)

where Z is the negative binomial random variable with parameters r+ 1 and
p. Using the formula for the expected value of a negative binomial random
variable gives that

E(Z) =
(r + 1)(1− p)

p

Thus,

E(Y 2) =
r2(1− p)2

p2
+
r(1− p)
p2

.
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The variance of Y is

Var(Y ) = E(Y 2)− [E(Y )]2 =
r(1− p)
p2

.

Since X = Y + r,

Var(X) = Var(Y ) =
r(1− p)
p2

.

Example 23.4
A person is conducting a phone survey. Suppose that 1 of 6 people contacted
will complete the survey. Define “success” as the event a person completes
the survey and let Y be the number of failures before the third success. Find
E(Y ) and Var(Y ).

Solution.
The expected value of Y is

E(Y ) =
r(1− p)

p
= 15

and the variance is

Var(Y ) =
r(1− p)
p2

= 90
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Practice Problems

Problem 23.1
Consider a biased coin with the probability of getting heads is 0.1. Let X be
the number of flips needed to get the 8th heads.
(a) What is the probability of getting the 8th heads on the 50th toss?
(b) Find the expected value and the standard deviation of X.

Problem 23.2
Recently it is found that the bottom of the mediterranean sea near Cyprus
has potential of oil discovery. Suppose that a well oil drilling has 20% chance
of striking oil. Find the probability that the third oil strike comes on the 5th

well drilled.

Problem 23.3
Consider a 52-card deck. Repeatedly draw a card with replacement and
record its face value. Let X be the number of trials needed to get three
kings.
(a) What is the distribution of X? (b) What is the probability that X = 39?

Problem 23.4
Repeatdly roll a fair die until the outcome 3 has accurred for the 4th time.
Let X be the number of times needed in order to achieve this goal. Find
E(X) and Var(X).

Problem 23.5
Find the probability of getting the fourth head on the ninth flip of a fair coin.

Problem 23.6
There is 75% chance to pass the written test for a driver’s license. What is
the probability that a person will pass the test on the second try?

Problem 23.7 ‡
A company takes out an insurance policy to cover accidents that occur at its
manufacturing plant. The probability that one or more accidents will occur
during any given month is 3

5
.

The number of accidents that occur in any given month is independent of
the number of accidents that occur in all other months.
Calculate the probability that there will be at least four months in which
no accidents occur before the fourth month in which at least one accident
occurs.
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Problem 23.8
Somehow waiters at a cafe are extremely distracted today and are mixing
orders giving customers decaf coffee when they ordered regular coffee. Sup-
pose that there is 60% chance of making such a mistake in the order. What
is the probability of getting the second decaf on the seventh order of regular
coffee?

Problem 23.9
A machine that produces computer chips produces 3 defective chips out of
100. Computer chips are delvered to retailers in packages of 20 chips each.
(a) A package is selected randomly. What is the probability that the package
will contain at least 2 defective chips?
(b) What is the probability that the tenth package selected is the third to
contain at least two defective chips?

Problem 23.10
Let X be a negative binomial distribution with r = 2 and p = 0.1. Find
E(X) and σX .

Problem 23.11
Suppose that the probability of a child exposed to the flu will catch the flu
is 0.40. What is the probability that the tenth child exposed to the flu will
be the third to catch it?

Problem 23.12
In rolling a fair die repeatedly (and independently on successive rolls), find
the probability of getting the third “3” on the nth roll.

Problem 23.13 ‡
Each time a hurricane arrives, a new home has a 0.4 probability of experi-
encing damage. The occurrences of damage in different hurricanes are inde-
pendent. Calculate the mode of the number of hurricanes it takes for the
home to experience damage from two hurricanes. Hint: The mode of X is
the number that maximizes the probability mass function of X.
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24 Hypergeometric Random Variable

Suppose we have a population of N objects which are divided into two types:
Type A and Type B. There are n objects of Type A and N − n objects of
Type B. For example, a standard deck of 52 playing cards can be divided in
many ways. Type A could be “Hearts” and Type B could be “All Others.”
Then there are 13 Hearts and 39 others in this population of 52 cards.
Suppose a random sample of size r is taken (without replacement) from the
entire population of N objects. The Hypergeometric random variable
X counts the total number of objects of Type A in the sample.
If r ≤ n then there could be at most r objects of Type A in the sample. If
r > n, then there can be at most n objects of Type A in the sample. Thus,
the value min{r, n} is the maximum possible number of objects of Type A
in the sample.
On the other hand, if r ≤ N − n, then all objects chosen may be of Type B.
But if r > N − n, then there must be at least r − (N − n) objects of Type
A chosen. Thus, the value max{0, r− (N − n)} is the least possible number
of objects of Type A in the sample.
What is the probability of having exactly k objects of Type A in the sample,
where max{0, r − (N − n)} ≤ k ≤ min{r, n}? This is a type of problem
that we have done before: In a group of N people there are n men (and
the rest women). If we appoint a committee of r persons from this group at
random, what is the probability there are exactly k men on it? The number
of susbets of the group with cardinality r is NCr. The number of subsets of
the men with cardinality k is nCk and the number of subsets of the women
with cardinality r− k is N−nCr−k. Thus, the probability of getting exactly k
men on the committee is

p(k) = Pr(X = k) =
nCk · N−nCr−k

NCr
, k = 0, 1, · · · , r.

This is the probability mass function of X. Note that p(k) ≥ 0 and

r∑
k=0

nCk · N−nCr−k
NCr

= 1

The proof of this result follows from
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Theorem 24.1 (Vendermonde’s identity)

n+mCr =
r∑

k=0

nCk · mCr−k.

Proof.
Suppose a committee consists of n men and m women. In how many ways
can a subcommittee of r members be formed? The answer is n+mCr. But on
the other hand, the answer is the sum over all possible values of k, of the
number of subcommittees consisting of k men and r − k women

Example 24.1
An urn contains 70 red marbles and 30 green marbles. If we draw out 20
without replacement, what is the probability of getting exactly 14 red mar-
bles?

Solution.
If X is the number of red marbles, then X is a hypergeometric random
variable with parameters N = 100, r = 20, n = 70. Thus,

Pr(X = 14) =
70C14 · 30C6

100C20

≈ 0.21

Example 24.2
A barn consists of 13 cows, 12 pigs and 8 horses. A group of 8 will be selected
to participate in the city fair. What is the probability that exactly 5 of the
group will be cows?

Solution.
Let X be the number of cows in the group. Then X is hypergeometric
random variable with parameters N = 33, r = 8, n = 13. Thus,

Pr(X = 5) =
13C5 · 20C3

33C8

≈ 0.10567

Next, we find the expected value of a hypergeometric random variable with
parameters N, n, r. Let k be a positive integer. Then

E(Xk) =
r∑
i=0

ikPr(X = i)

=
r∑
i=0

ik
nCi · N−nCr−i

NCr

Using the identities
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inCi = nn−1Ci−1 and rNCr = NN−1Cr−1

we obtain that

E(Xk) =
nr

N

r∑
i=1

ik−1 n−1Ci−1 · N−nCr−i
N−1Cr−1

=
nr

N

r−1∑
j=0

(j + 1)k−1 n−1Cj · (N−1)−(n−1)C(r−1)−j

N−1Cr−1

=
nr

N
E[(Y + 1)k−1]

where Y is a hypergeometric random variable with paramters N − 1, n− 1,
and r − 1. By taking k = 1 we find

E(X) =
nr

N
.

Now, by setting k = 2 we find

E(X2) =
nr

N
E(Y + 1) =

nr

N

(
(n− 1)(r − 1)

N − 1
+ 1

)
.

Hence,

V ar(X) =E(X2)− [E(X)]2 =
nr

N

[
(n− 1)(r − 1)

N − 1
+ 1− nr

N

]
=
nr

N
· N − r

N
· N − n
N − 1

.

Example 24.3
The faculty senate of a certain college has 20 members. Suppose there are
12 men and 8 women. A committee of 10 senators is selected at random.
(a) What is the probability that there will be 6 men and 4 women on the
committee?
(b) What is the expected number of men on this committee?
(c) What is the variance of the number of men on this committee?

Solution.
Let X be the number of men of the committee of 10 selected at random.
Then X is a hypergeometric random variable with N = 20, r = 10, and
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n = 12..
(a) Pr(X = 6) = 12C6·8C4

20C10
.

(b) E(X) = nr
N

= 12(10)
20

= 6
(c) Var(X) = n · r

N
· N−r

N
· N−n
N−1

= 1.263

Example 24.4
A package of 15 computer chips contains 6 defective chips and 9 nondefective.
Five chips are randomly selected without replacement.
(a) What is the probability that there are 2 defective and 3 nondefective
chips in the sample?
(b) What is the probability that there are at least 3 nondefective chips in
the sample?
(c) What is the expected number of defective chips in the sample?

Solution.
(a) Let X be the number of defective chips in the sample. Then, X has a hy-
pergeometric distribution with n = 6, N = 15, r = 5. The desired probability
is

Pr(X = 2) =
6C2 · 9C3

15C5

=
420

1001

(b) Note that the event that there are at least 3 nondefective chips in the
sample is equivalent to the event that there are at most 2 defective chips in
the sample, i.e. {X ≤ 2}. So, we have

Pr(X ≤ 2) =Pr(X = 0) + Pr(X = 1) + Pr(X = 2)

=
6C0 · 9C5

15C5

+
6C1 · 9C4

15C5

+
6C2 · 9C3

15C5

=
714

1001

(c) E(X) = rn
N

= 5 · 6
15

= 2
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Practice Problems

Problem 24.1
Five cards are drawn randomly and without replacement from a deck of 52
playing cards. Find the probability of getting exactly two black cards.

Problem 24.2
An urn contains 15 red marbles and 10 blue ones. Seven marbles were ran-
domly drawn without replacement. Find the probability of picking exactly 3
red marbles.

Problem 24.3
A lottery game consists of matching 6 numbers from the official six drawn
numbers out of 53 numbers. Let X equal the number of matches. Find the
probability distribution function.

Problem 24.4
A package of 20 computer chips contains 4 defective chips. Randomly select
10 chips without replacement. Compute the probability of obtaining exactly
3 defective chips.

Problem 24.5
A wallet contains 10 $50 bills and 190 $1 bills. You randomly choose 10 bills
without replacement. What is the probability that you will choose exactly 2
$50 bills?

Problem 24.6
A batch of 8 components contains 2 defective components and 6 good ones.
Randomly select four components without replacement.
(a) What is the probability that all four components are good?
(b) What are the mean and variance for the number of good components?

Problem 24.7
In Texas all vehicles are subject to annual inspection. A transportation
company has a fleet of 20 trucks in which 7 do not meet the standards for
passing inspection. Five trucks are randomly selected for inspection. What
is the probability of no more than 2 trucks that fail to have the standards
for passing inspection being selected?
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Problem 24.8
A recent study shows that in a certain city 2,477 cars out of 123,850 are
stolen. The city police are trying to find the stolen cars. Suppose that 100
randomly chosen cars are checked by the police. Find the expression that
gives the probability that exactly 3 of the chosen cars are stolen. You do not
need to give the numerical value of this expression.

Problem 24.9
Consider a suitcase with 7 shirts and 3 pants. Suppose we draw 4 items
without replacement from the suitcase. Let X be the total number of shirts
we get. Compute Pr(X ≤ 1).

Problem 24.10
A group consists of 4 women and 20 men. A committe of six is to be formed.
Using the appropriate hypergeometric distribution, what is the probability
that none of the women are on the committee?

Problem 24.11
A jar contains 10 white balls and 15 black balls. Let X denote the num-
ber of white balls in a sample of 10 balls selected at random and without
replacement. Find Var(X)

E(X)
.

Problem 24.12
Among the 48 applicants for an actuarial position, 30 have a college degree in
actuarial science. Ten of the applicants are randomly chosen for interviews.
Let X be the number of applicants among these ten who have a college degree
in actuarial science. Find Pr(X ≤ 8).



Cumulative and Survival
Distribution Functions

In this chapter, we study the properties of two important functions in prob-
ability theory related to random variables: the cumulative distribution func-
tion and the survival distribution function.

25 The Cumulative Distribution Function

In this section, we will discuss properties of the cumulative distribution func-
tion that are valid to a random variable of type discrete, continuous or mixed.
Recall from Section 14 that if X is a random variable then the cumulative
distribution function (abbreviated c.d.f) is the function

F (t) = Pr(X ≤ t).

First, we prove that probability is a continuous set function. In order to do
that, we need the following definitions.
A sequence of sets {En}∞n=1 is said to be increasing if

E1 ⊂ E2 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · ·

whereas it is said to be a decreasing sequence if

E1 ⊃ E2 ⊃ · · · ⊃ En ⊃ En+1 ⊃ · · ·

If {En}∞n=1 is an increasing sequence of events we define a new event

lim
n→∞

En =
∞⋃
n=1

En.

181
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For a decreasing sequence we define

lim
n→∞

En =
∞⋂
n=1

En.

Proposition 25.1
If {En}n≥1 is either an increasing or decreasing sequence of events then
(a)

lim
n→∞

Pr(En) = Pr( lim
n→∞

En)

that is

Pr

(
∞⋃
n=1

En

)
= lim

n→∞
Pr(En)

for an increasing sequence and
(b)

Pr

(
∞⋂
n=1

En

)
= lim

n→∞
Pr(En)

for a decreasing sequence.

Proof.
(a) Suppose first that En ⊂ En+1 for all n ≥ 1. Define the events

F1 =E1

Fn =En ∩ Ec
n−1, n > 1

Figure 25.1

These events are shown in the Venn diagram of Figure 25.1. Note that for
n > 1, Fn consists of those outcomes in En that are not in any of the earlier
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Ei, i < n. Clearly, for i 6= j we have Fi ∩ Fj = ∅. Also,
⋃∞
n=1 Fn =

⋃∞
n=1 En

and for n ≥ 1 we have
⋃n
i=1 Fi =

⋃n
i=1Ei. From these properties we have

Pr( lim
n→∞

En) =Pr(
∞⋃
n=1

En)

=Pr(
∞⋃
n=1

Fn)

=
∞∑
n=1

Pr(Fn)

= lim
n→∞

n∑
i=1

Pr(Fi)

= lim
n→∞

Pr(
n⋃
i=1

Fi)

= lim
n→∞

Pr(
n⋃
i=1

Ei)

= lim
n→∞

Pr(En)

(b) Now suppose that {En}n≥1 is a decreasing sequence of events. Then
{Ec

n}n≥1 is an increasing sequence of events. Hence, from part (a) we have

Pr(
∞⋃
n=1

Ec
n) = lim

n→∞
Pr(Ec

n)

By De Morgan’s Law we have
⋃∞
n=1E

c
n = (

⋂∞
n=1 En)

c
. Thus,

Pr

((
∞⋂
n=1

En

)c)
= lim

n→∞
Pr(Ec

n).

Equivalently,

1− Pr

(
∞⋂
n=1

En

)
= lim

n→∞
[1− Pr(En)] = 1− lim

n→∞
Pr(En)

or

Pr

(
∞⋂
n=1

En

)
= lim

n→∞
Pr(En)
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Proposition 25.2
F is a nondecreasing function; that is, if a < b then F (a) ≤ F (b).

Proof.
Suppose that a < b. Then {s : X(s) ≤ a} ⊆ {s : X(s) ≤ b}. This implies
that Pr(X ≤ a) ≤ Pr(X ≤ b). Hence, F (a) ≤ F (b)

Example 25.1
Determine whether the given values can serve as the values of a distribution
function of a random variable with the range x = 1, 2, 3, 4.

F (1) = 0.5, F (2) = 0.4, F (3) = 0.7, and F (4) = 1.0

Solution.
Since F (2) < F (1), F violates is not increasing and therefore F can not be
a cdf

Proposition 25.3
F is continuous from the right. That is, limt→b+ F (t) = F (b).

Proof.
Let {bn} be a decreasing sequence that converges to b with bn ≥ b for all
n. Define En = {s : X(s) ≤ bn}. Then {En}n≥1 is a decreasing sequence of
events such that

⋂∞
n=1En = {s : X(s) ≤ b}. By Proposition 25.1 we have

lim
n→∞

F (bn) = lim
n→∞

Pr(En) = Pr

(
∞⋂
n=1

En

)
= Pr(X ≤ b) = F (b)

Proposition 25.4
(a) limb→−∞ F (b) = 0
(b) limb→∞ F (b) = 1

Proof.
(a) Note that lim

x→−∞
F (x) = lim

n→∞
F (xn) where (xn) is a decreasing sequence

such that xn → −∞. Define En = {s ∈ S : X(s) ≤ xn}. Then we have the
nested chain E1 ⊇ E2 ⊇ E3 ⊇ · · · . Moreover,

∅ =
∞⋂
n=1

En.
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By Proposition 25.1, we find

lim
x→∞

F (x) = lim
n→−∞

F (xn) = lim
n→∞

Pr(En) = Pr

(
∞⋂
n=1

En

)
= Pr(∅) = 0.

(b) Note that lim
x→∞

F (x) = lim
n→∞

F (xn) where (xn) is an increasing sequence

such that xn → ∞. Define En = {s ∈ S : X(s) ≤ xn}. Then we have the
nested chain E1 ⊆ E2 ⊆ E3 ⊆ · · · . Moreover,

S =
∞⋃
n=1

En.

By Proposition 25.1, we find

lim
x→∞

F (x) = lim
n→∞

F (xn) = lim
n→∞

Pr(En) = Pr

(
∞⋃
n=1

En

)
= Pr(S) = 1

Example 25.2
Determine whether the given values can serve as the values of a distribution
function of a random variable with the range x = 1, 2, 3, 4.

F (1) = 0.3, F (2) = 0.5, F (3) = 0.8, and F (4) = 1.2

Solution.
No because F (4) exceeds 1

All probability questions can be answered in terms of the c.d.f.

Proposition 25.5
For any random variable X and any real number a, we have

Pr(X > a) = 1− F (a).

Proof.
Let A = {x ∈ S : X(s) ≤ a}. Then Ac = {s ∈ S : X(s) > a}. We have
Pr(X > a) = Pr(Ac) = 1− Pr(A) = 1− Pr(X ≤ a) = 1− F (a)

Example 25.3
Let X have probability mass function (pmf) Pr(x) = 1

8
for x = 1, 2, · · · , 8.

Find
(a) the cumulative distribution function (cdf) of X;
(b) Pr(X > 5).
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Solution.
(a) The cdf is given by

F (x) =


0 x < 1
bxc
8

1 ≤ x ≤ 8
1 x > 8

where [x] is the floor function of x.
(b) We have Pr(X > 5) = 1− F (5) = 1− 5

8
= 3

8

Proposition 25.6
For any random variable X and any real number a, we have

Pr(X < a) = lim
n→∞

F

(
a− 1

n

)
= F (a−).

Proof.
For each positive integer n, define En = {s ∈ S : X(s) ≤ a− 1

n
}. Then {En}

is an increasing sequence of sets such that

∞⋃
n=1

En = {s ∈ S : X(s) < a}.

We have

Pr(X < a) =Pr

(
lim
n→∞

{
X ≤ a− 1

n

})
= lim

n→∞
Pr

(
X ≤ a− 1

n

)
= lim

n→∞
F

(
a− 1

n

)
= F (a−)

Note that Pr(X < a) does not necessarily equal F (a), since F (a) also includes
the probability that X equals a.

Corollary 25.1

Pr(X ≥ a) = 1− lim
n→∞

F

(
a− 1

n

)
= 1− F (a−).
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Proposition 25.7
If a < b then Pr(a < X ≤ b) = F (b)− F (a).

Proof.
Let A = {s : X(s) > a} and B = {s : X(s) ≤ b}. Note that Pr(A ∪ B) = 1.
Then

Pr(a < X ≤ b) =Pr(A ∩B)

=Pr(A) + Pr(B)− Pr(A ∪B)

=(1− F (a)) + F (b)− 1 = F (b)− F (a)

Proposition 25.8
If a < b then Pr(a ≤ X < b) = F (b−)− F (a−).

Proof.
Let A = {s : X(s) ≥ a} and B = {s : X(s) < b}. Note that Pr(A ∪ B) = 1.
We have,

Pr(a ≤ X < b) =Pr(A ∩B)

=Pr(A) + Pr(B)− Pr(A ∪B)

=

(
1− lim

n→∞
F

(
a− 1

n

))
+ lim

n→∞
F

(
b− 1

n

)
− 1

= lim
n→∞

F

(
b− 1

n

)
− lim

n→∞
F

(
a− 1

n

)
=F (b−)− F (a−)

Proposition 25.9
If a < b then Pr(a ≤ X ≤ b) = F (b)− limn→∞ F

(
a− 1

n

)
= F (b)− F (a−).

Proof.
Let A = {s : X(s) ≥ a} and B = {s : X(s) ≤ b}. Note that Pr(A ∪ B) = 1.
Then

Pr(a ≤ X ≤ b) =Pr(A ∩B)

=Pr(A) + Pr(B)− Pr(A ∪B)

=

(
1− lim

n→∞
F

(
a− 1

n

))
+ F (b)− 1

=F (b)− F (a−)
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Example 25.4
Show that Pr(X = a) = F (a)− F (a−).

Solution.
Applying the previous result we can write

Pr(X = a) = Pr(a ≤ x ≤ a) = F (a)− F (a−)

Proposition 25.10
If a < b then Pr(a < X < b) = F (b−)− F (a).

Proof.
Let A = {s : X(s) > a} and B = {s : X(s) < b}. Note that Pr(A ∪ B) = 1.
Then

Pr(a < X < b) =Pr(A ∩B)

=Pr(A) + Pr(B)− Pr(A ∪B)

=(1− F (a)) + lim
n→∞

F

(
b− 1

n

)
− 1

= lim
n→∞

F

(
b− 1

n

)
− F (a)

=F (b−)− F (a)

Figure 25.2 illustrates a typical F for a discrete random variable X. Note
that for a discrete random variable the cumulative distribution function will
always be a step function with jumps at each value of x that has probability
greater than 0 and the size of the step at any of the values x1, x2, x3, · · · is
equal to the probability that X assumes that particular value.

Figure 25.2
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Example 25.5 (Mixed RV)
The distribution function of a random variable X, is given by

F (x) =


0, x < 0
x
2
, 0 ≤ x < 1

2
3
, 1 ≤ x < 2

11
12
, 2 ≤ x < 3

1, 3 ≤ x

(a) Graph F (x).
(b) Compute Pr(X < 3).
(c) Compute Pr(X = 1).
(d) Compute Pr(X > 1

2
)

(e) Compute Pr(2 < X ≤ 4).

Solution.
(a) The graph is given in Figure 25.3.
(b) Pr(X < 3) = lim

n→∞
Pr
({
X ≤ 3− 1

n

})
= lim

n→∞
F
(
3− 1

n

)
= 11

12
.

(c) Pr(X = 1) = Pr(X ≤ 1)−Pr(X < 1) = F (1)− lim
n→∞

F
(
1− 1

n

)
= 2

3
− 1

2
=

1
6
.

(d) Pr(X > 1
2
) = 1− Pr(X ≤ 1

2
) = 1− F (1

2
) = 3

4
.

(e) Pr(2 < X ≤ 4) = F (4)− F (2) = 1
12

Figure 25.3
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Example 25.6
If X has the cdf

F (x) =


0, x < −1
1
4
, −1 ≤ x < 1

1
2
, 1 ≤ x < 3

3
4
, 3 ≤ x < 5

1, x ≥ 5.

find
(a) Pr(X ≤ 3)
(b) Pr(X = 3)
(c) Pr(X < 3)
(d) Pr(X ≥ 1)
(e) Pr(−0.4 < X < 4)
(f) Pr(−0.4 ≤ X < 4)
(g) Pr(−0.4 < X ≤ 4)
(h) Pr(−0.4 ≤ X ≤ 4)
(i) Pr(X = 5).

Solution.
(a) Pr(X ≤ 3) = F (3) = 3

4
.

(b) Pr(X = 3) = F (3)− F (3−) = 3
4
− 1

2
= 1

4

(c) Pr(X < 3) = F (3−) = 1
2

(d) Pr(X ≥ 1) = 1− F (1−) = 1− 1
4

= 3
4

(e) Pr(−0.4 < X < 4) = F (4−)− F (−0.4) = 3
4
− 1

4
= 1

2

(f) Pr(−0.4 ≤ X < 4) = F (4−)− F (−0.4−) = 3
4
− 1

4
= 1

2

(g) Pr(−0.4 < X ≤ 4) = F (4)− F (−0.4) = 3
4
− 1

4
= 1

2

(h) Pr(−0.4 ≤ X ≤ 4) = F (4)− F (−0.4−) = 3
4
− 1

4
= 1

2

(i) Pr(X = 5) = F (5)− F (5−) = 1− 3
4

= 1
4



25 THE CUMULATIVE DISTRIBUTION FUNCTION 191

Practice Problems

Problem 25.1
In your pocket, you have 1 dime, 2 nickels, and 2 pennies. You select 2 coins
at random (without replacement). Let X represent the amount (in cents)
that you select from your pocket.
(a) Give (explicitly) the probability mass function for X.
(b) Give (explicitly) the cdf, F (x), for X.
(c) How much money do you expect to draw from your pocket?

Problem 25.2
We are inspecting a lot of 25 batteries which contains 5 defective batteries.
We randomly choose 3 batteries. Let X = the number of defective batteries
found in a sample of 3. Give the cumulative distribution function as a table.

Problem 25.3
Suppose that the cumulative distribution function is given by

F (x) =


0 x < 0
x
4

0 ≤ x < 1
1
2

+ x−1
4

1 ≤ x < 2
11
12

2 ≤ x < 3
1 3 ≤ x

(a) Find Pr(X = i), i = 1, 2, 3.
(b) Find Pr(1

2
< X < 3

2
).

Problem 25.4
If the cumulative distribution function is given by

F (x) =



0 x < 0
1
2

0 ≤ x < 1
3
5

1 ≤ x < 2
4
5

2 ≤ x < 3
9
10

3 ≤ x < 3.5
1 3.5 ≤ x

Calculate the probability mass function.
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Problem 25.5
Consider a random variable X whose distribution function (cdf ) is given by

F (x) =


0 x < −2

0.1 −2 ≤ x < 1.1
0.3 1.1 ≤ x < 2
0.6 2 ≤ x < 3
1 x ≥ 3

(a) Give the probability mass function, Pr(x), of X, explicitly.
(b) Compute Pr(2 < X < 3).
(c) Compute Pr(X ≥ 3).
(d) Compute Pr(X ≥ 3|X ≥ 0).

Problem 25.6
Consider a random variable X whose probability mass function is given by

Pr(x) =



p x = −1.9
0.1 x = −0.1
0.3 x = 20p
p x = 3
4p x = 4
0 otherwise

(a) What is p?
(b) Find F (x) and sketch its graph.
(c) What is F (0)? What is F (2)? What is F (F (3.1))?
(d) What is Pr(2X − 3 ≤ 4|X ≥ 2.0)?
(e) Compute E(F (X)).

Problem 25.7
The cdf of X is given by

F (x) =


0 x < −4

0.3 −4 ≤ x < 1
0.7 1 ≤ x < 4
1 x ≥ 4

(a) Find the probability mass function.
(b) Find the variance and the standard deviation of X.
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Problem 25.8
In the game of “dice-flip”, each player flips a coin and rolls one die. If the
coin comes up tails, his score is the number of dots showing on the die. If
the coin comes up heads, his score is twice the number of dots on the die.
(i.e., (tails,4) is worth 4 points, while (heads,3) is worth 6 points.) Let X be
the first player’s score.
(a) Find the probability mass function Pr(x).
(b) Compute the cdf F (x) for all numbers x.
(c) Find the probability that X < 4. Is this the same as F (4)?

Problem 25.9
A random variable X has cumulative distribution function

F (x) =


0 x ≤ 0
x2

4
0 ≤ x < 1

1+x
4

1 ≤ x < 2
1 x ≥ 2

(a) What is the probability that X = 0? What is the probability that X = 1?
What is the probability that X = 2?
(b) What is the probability that 1

2
< X ≤ 1?

(c) What is the probability that 1
2
≤ X < 1?

(d) What is the probability that X > 1.5?
Hint: You may find it helpful to sketch this function.

Problem 25.10
Let X be a random variable with the following cumulative distribution func-
tion:

F (x) =


0 x < 0
x2 0 ≤ x < 1

2

α x = 1
2

1− 2−2x x > 1
2

(a) Find Pr(X > 3
2
).

(b) Find Pr(1
4
< X ≤ 3

4
).

(c) Find α.
(d) Find Pr(X = 1

2
).

(e) Sketch the graph of F (x).
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26 The Survival Distribution Function

Another key function describing a random variable is the survival distribution
function.
The survival function (abbreviated SDF), also known as a reliability
function is a property of any random variable that maps a set of events,
usually associated with mortality or failure of some system, onto time. It
captures the probability that the system will survive beyond a specified time.
Thus, we define the survival distribution function by

S(x) = Pr(X > x) = 1− F (x).

It follows from the properties of the cumulative distribution function F (x),
that any random variable satisfies the properties: S(−∞) = 1, S(∞) = 0,
S(x) is right-continuous, and that S(x) is nonincreasing. These four condi-
tions are necessary and sufficient so that any nonnegative function S(x) that
satisfies these conditions serves as a survival function.

Remark 26.1
If X is the random variable representing the age of an individual when death
occurs, i.e., refer to X as the age-at-death then S(x) is the probability that
an indiviual survived past the age of x. Thus, the term “survival”.

Remark 26.2
For a discrete random variable, the survival function need not be left-continuous,
that is, it is possible for its graph to jump down. When it jumps, the value
is assigned to the bottom of the jump.

Example 26.1
Let X be a continuous random variable with survival distribution defined by
S(x) = e−0.34x for x ≥ 0 and 1 otherwise. Compute Pr(5 < X ≤ 10).

Solution.
We have

Pr(5 < X ≤ 10) = F (10)−F (5) = S(5)−S(10) = e−0.34×5−e−0.34×10 = 0.149

Example 26.2
Let X be the random variable representing the age of death of an individual.
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The survival distribution function for an individual is determined to be

S(x) =


1, x < 0

75−x
75

, 0 ≤ x ≤ 75
0, x > 75.

(a) Find the probability that the person dies before reaching the age of 18.
(b) Find the probability that the person lives more than 55 years.
(c) Find the probability that the person dies between the ages of 25 and 70.

Solution.
(a) We have

Pr(X < 18) = Pr(X ≤ 18) = F (18) = 1− S(18) = 0.24.

(b) We have
Pr(X > 55) = S(55) = 0.267.

(c) We have

Pr(25 < X < 70) = F (70)− F (25) = S(25)− S(70) = 0.60
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Practice Problems

Problem 26.1
Consider the random variable X with survival distribution defined by

S(x) =


1, x < 0

1
10

(100− x)
1
2 , 0 ≤ x ≤ 100

0, x > 100.

(a) Find the corresponding expression for the cumulative probability func-
tion.
(b) Compute Pr(65 < X ≤ 75).

Problem 26.2
Let X denote the age at death of an individual. The survival distribution is
given by

S(x) =


1, x < 0

1− x
100
, 0 ≤ x ≤ 100

0, x > 100.

(a) Find the probability that a person dies before reaching the age of 30.
(b) Find the probability that a person lives more than 70 years.

Problem 26.3
If X is a continuous random variable then the survival distribution function
is defined by

S(x) =

∫ ∞
x

f(t)dt

where f(t) is called the probability density function of X. Show that
F ′(x) = f(x).

Problem 26.4
Let X be a continuous random variable with cumulative distribution function

F (x) =

{
0, x ≤ 0

1− e−λx, x ≥ 0

where λ > 0. Find the probability density function f(x).
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Problem 26.5
Given the cumulative distribution function

F (x) =


0, x ≤ 0
x, 0 < x < 1
1, x ≥ 1.

Find S(x).



198 CUMULATIVE AND SURVIVAL DISTRIBUTION FUNCTIONS



Calculus Prerequisite

In this chapter, we collect concepts from calculus deemed necessary in the
understanding of the topics that follow later in this book.

27 Graphing Systems of Linear Inequalities in

Two Variables

When evaluating double integrals over a certain region, the region under
consideration is the solution to a system of linear inequalities in two variables.
The purpose of this section is to represent the solution graphically.
By a linear inequality in the variables x and y we mean anyone of the
following

ax+ by ≤ c, ax+ by ≥ c, ax+ by < c, ax+ by > c.

A pair of numbers (x, y) that satisfies a linear inequality is called a solution.
A solution set of a linear inquality is a half-plane in the Cartesian coordinates
system. The boundary of the region is graph of the line ax + by = c. The
boundary is represented by a dashed line in the case of inequalities involving
either < or > . Otherwise, the boundary is represented by a solid line to
show that the points on the line are included in the solution set.
To solve a linear inequality of the type above, one starts by drawing the
boundary line. This boundary line partition the Cartesian coordinates sys-
tem into two half-planes. One of them is the solution set. To determine
which of the two half-planes is the solution set, one picks a point, called a
test point, in one of the half-plane. If the chosen point is a solution to the
linear inequality then the half-plane containing the point is the solution set.
Otherwise, the half-plane not containing the point is the solution set.

199
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Example 27.1
Solve graphically each of the following inequalities:
(a) y ≤ x− 2
(b) y < x− 2
(c) y ≥ x− 2
(d) y > x− 2.

Solution.
(a) First, we graph the line y = x−2 as a solid line. The test point (0, 0) does
not satisfy the inequality so that the lower-half plane including the boundary
line is the solution set. See Figure 27.1(a).
(b) The boundary line is a dashed-line. As in (a), the solution set is the
lower-half plane. See Figure 27.1(b).
(c) The solution set is the upper-half plane together with the boundary line.
See Figure 27.1(c).
(d) The solution set is the upper-half plane. See Figure 27.1(d)

Figure 27.1

We next consider systems of linear inequalities. The solution set is the region
in the Cartesian coordinate system consisting of all pairs that simultaneously
satisfy all the inequalities in the system. The solution region is known as the
feasible region.
To find the feasible region, we solve graphically each linear inequality in the
system. The feasible region is the region where all the solution sets overlap.
The intersection of two boundary lines is called a corner point.

Example 27.2
Solve the linear system 

−3x+ 4y ≤ 12
x+ 2y < 6
−x+ 5y ≥ −5.
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Solution.
We graph the solution set to each linear inequality on the same set of axes.
The overlapping region is the triangle with corners (0, 3),

(
−80

11
,−27

11

)
,
(

40
7
, 1

7

)
as shown in Figure 27.2

Figure 27.2
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Practice Problems

Problem 27.1
Solve graphically 2x− 3y ≤ 6.

Problem 27.2
Solve graphically x > 3.

Problem 27.3
Solve graphically y ≤ 2.

Problem 27.4
Solve graphically 2x+ 5y > 20.

Problem 27.5
Solve the system of inequalities:

x− y < 1
2x+ 3y ≤ 12

x ≥ 0.

Problem 27.6
Solve the system of inequalities:

x+ 2y ≤ 3
−3x+ y < 5
−x+ 8y ≥ −23.

Problem 27.7
Solve the system of inequalities:{

y < 2x+ 1
x+ 2y ≥ −4.

Problem 27.8
Solve the system of inequalities:

x > −2
y ≤ 4

3x+ 4y ≤ 24.
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28 Improper Integrals

A very common mistake among students is when evaluating the integral∫ 1

−1
1
x
dx. A non careful student will just argue as follows∫ 1

−1

1

x
dx = [ln |x|]1−1 = 0.

Unfortunately, that’s not the right answer as we will see below. The impor-
tant fact ignored here is that the integrand is not continuous at x = 0. Infact,
f(x) = 1

x
has an infinite discontinuity at x = 0.

Up to this point, the definite integral
∫ b
a
f(x)dx only when (a) f(x) is con-

tinuous on [a, b],
(b) [a, b] is of finite length.

Improper integrals are integrals in which one or both of these conditions
are not met, i.e.,

(1) The interval of integration is infinite:

[a,∞), (−∞, b], (−∞,∞),

e.g.: ∫ ∞
1

1

x
dx.

(2) The integrand has an infinite discontinuity at some point c in the interval
[a, b], i.e. the integrand is unbounded near c :

lim
x→c

f(x) = ±∞.

e.g.: ∫ 1

0

1

x
dx.

An improper integral is defined in terms of limits so it may exist or may not
exist. If the limit exists, we say that the improper integral is convergent.
Otherwise, the integral is divergent.
We will consider only improper integrals with positive integrands since they
are the most common.
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Infinite Intervals of Integration
The first type of improper integrals arises when the domain of integration is
infinite but the integrand is still continuous in the domain of integration. In
case one of the limits of integration is infinite, we define∫ ∞

a

f(x)dx = lim
b→∞

∫ b

a

f(x)dx

or ∫ b

−∞
f(x)dx = lim

a→−∞

∫ b

a

f(x)dx.

If both limits are infinite, we write∫ ∞
−∞

f(x)dx = lim
R→∞

∫ c

−R
f(x)dx+ lim

R→∞

∫ R

c

f(x)dx.

Example 28.1
Does the integral

∫∞
1

1
x2
dx converge or diverge?

Solution.
We have∫ ∞

1

1

x2
dx = lim

b→∞

∫ b

1

1

x2
dx = lim

b→∞
[−1

x
]b1 = lim

b→∞
(−1

b
+ 1) = 1.

In terms of area, the given integral represents the area under the graph of
f(x) = 1

x2
from x = 1 and extending infinitely to the right. The above im-

proper integral says the following. Let b > 1 and obtain the area shown in
Figure 28.1.

Figure 28.1
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Then
∫ b

1
1
x2
dx is the area under the graph of f(x) from x = 1 to x = b. As b

gets larger and larger this area is close to 1

Example 28.2
Does the improper integral

∫∞
1

1√
x
dx converge or diverge?

Solution.
We have∫ ∞

1

1√
x
dx = lim

b→∞

∫ b

1

1√
x
dx = lim

b→∞
[2
√
x]b1 = lim

b→∞
(2
√
b− 2) =∞.

So the improper integral is divergent

The following example generalizes the results of the previous two examples.

Example 28.3
Determine for which values of p the improper integral

∫∞
1

1
xp
dx diverges.

Solution.
Suppose first that p = 1. Then

∫ ∞
1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx

= lim
b→∞

[ln |x|]b1 = lim
b→∞

ln b =∞

so the improper integral is divergent.
Now, suppose that p 6= 1. Then

∫ ∞
1

1

xp
dx = lim

b→∞

∫ b

1

x−pdx

= lim
b→∞

[
x−p+1

−p+ 1
]b1

= lim
b→∞

(
b−p+1

−p+ 1
− 1

−p+ 1
).
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If p < 1 then −p + 1 > 0 so that limb→∞ b
−p+1 = ∞ and therefore the im-

proper integral is divergent. If p > 1 then−p+1 < 0 so that limb→∞ b
−p+1 = 0

and hence the improper integral converges:∫ ∞
1

1

xp
dx =

−1

−p+ 1

Example 28.4
For what values of c is the improper integral

∫∞
0
ecxdx convergent?

Solution.
We have

∫ ∞
0

ecxdx = lim
b→∞

∫ b

0

ecxdx = lim
b→∞

1

c
ecx|b0

= lim
b→∞

1

c
(ecb − 1) = −1

c

provided that c < 0. Otherwise, i.e. if c ≥ 0, then the improper integral is
divergent.

Remark 28.1
The previous two results are very useful and you may want to memorize
them.

Example 28.5
Show that the improper integral

∫∞
−∞

1
1+x2

dx converges.

Solution.
We have ∫ ∞

−∞

1

1 + x2
dx = lim

a→∞

∫ c

−a

1

1 + x2
dx+ lim

a→∞

∫ a

c

1

1 + x2
dx

= lim
a→∞

tan−1 x
]c
−a + lim

a→∞
tan−1 x

]a
c

= lim
a→∞

[tan−1 a− tan−1−a]

= lim
a→∞

2 tan−1 a

=2
π

2
= π
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Integrands with infinite discontinuity
Suppose f(x) is unbounded at x = a, that is lim

x→a+
f(x) =∞. Then we define

∫ b

a

f(x)dx = lim
t→a+

∫ b

t

f(x)dx.

Similarly, if f(x) is unbounded at x = b, that is limx→b− f(x) =∞. Then we
define ∫ b

a

f(x)dx = lim
t→b−

∫ t

a

f(x)dx.

Now, if f(x) is unbounded at an interior point a < c < b then we define∫ b

a

f(x)dx = lim
t→c−

∫ t

a

f(x)dx+ lim
t→c+

∫ b

t

f(x)dx.

If both limits exist then the integral on the left-hand side converges. If one of
the limits does not exist then we say that the improper integral is divergent.

Example 28.6
Show that the improper integral

∫ 1

0
1√
x
dx converges.

Solution.
Indeed,

∫ 1

0

1√
x
dx = lim

t→0+

∫ 1

t

1√
x
dx = lim

t→0+
2
√
x|1t

= lim
t→0+

(2− 2
√
t) = 2.

In terms of area, we pick a t > 0 as shown in Figure 28.2. Then the shaded
area is

∫ 1

t
1√
x
dx. As t approaches 0 from the right, the area approaches the

value 2
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Figure 28.2

Example 28.7
Investigate the convergence of

∫ 2

0
1

(x−2)2
dx.

Solution.
We deal with this improper integral as follows

∫ 2

0

1

(x− 2)2
dx = lim

t→2−

∫ t

0

1

(x− 2)2
dx = lim

t→2−
− 1

(x− 2)
|t0

= lim
t→2−

(− 1

t− 2
− 1

2
) =∞.

So that the given improper integral is divergent

Example 28.8
Investigate the improper integral

∫ 1

−1
1
x
dx.

Solution.
We first write ∫ 1

−1

1

x
dx =

∫ 0

−1

1

x
dx+

∫ 1

0

1

x
dx.

On one hand we have,

∫ 0

−1

1

x
dx = lim

t→0−

∫ t

−1

1

x
dx = lim

t→0−
ln |x||t−1

= lim
t→0−

ln |t| =∞.
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This shows that the improper integral
∫ 0

−1
1
x
dx is divergent and therefore the

improper integral
∫ 1

−1
1
x
dx is divergent

Improper Integrals of Mixed Type
Now, if the interval of integration is unbounded and the integrand is un-
bounded at one or more points inside the interval of integration we can
evaluate the improper integral by decomposing it into a sum of an improper
integral with finite interval but where the integrand is unbounded and an
improper integral with an infinite interval. If each component integrals con-
verges, then we say that the original integral converges to the sum of the
values of the component integrals. If one of the component integrals diverges,
we say that the entire integral diverges.

Example 28.9
Investigate the convergence of

∫∞
0

1
x2
dx.

Solution.
Note that the interval of integration is infinite and the function is undefined
at x = 0. So we write∫ ∞

0

1

x2
dx =

∫ 1

0

1

x2
dx+

∫ ∞
1

1

x2
dx.

But ∫ 1

0

1

x2
dx = lim

t→0+

∫ 1

t

1

x2
dx = lim

t→0+
−1

x
|1t = lim

t→0+
(
1

t
− 1) =∞.

Thus,
∫ 1

0
1
x2
dx diverges and consequently the improper integral

∫∞
0

1
x2
dx di-

verges

Comparison Tests for Improper Integrals
Sometimes it is difficult to find the exact value of an improper integral by
antidifferentiation, for instance the integral

∫∞
0
e−x

2
dx. However, it is still

possible to determine whether an improper integral converges or diverges.
The idea is to compare the integral to one whose behavior we already know,
such us
• the p-integral

∫∞
1

1
xp
dx which converges for p > 1 and diverges otherwise;

• the integral
∫∞

0
ecxdx which converges for c < 0 and diverges for c ≥ 0;

• the integral
∫ 1

0
1
xp
dx which converges for p < 1 and diverges otherwise.
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The comparison method consists of the following:

Theorem 28.1
Suppose that f and g are continuous and 0 ≤ g(x) ≤ f(x) for all x ≥ a. Then

(a) if
∫∞
a
f(x)dx is convergent, so is

∫∞
a
g(x)dx

(b) if
∫∞
a
g(x)dx is divergent, so is

∫∞
a
f(x)dx.

This is only common sense: if the curve y = g(x) lies below the curve y =
f(x), and the area of the region under the graph of f(x) is finite, then of
course so is the area of the region under the graph of g(x). Similar results
hold for the other types of improper integrals.

Example 28.10
Determine whether

∫∞
1

1√
x3+5

dx converges.

Solution.
For x ≥ 1 we have that x3 + 5 ≥ x3 so that

√
x3 + 5 ≥

√
x3. Thus, 1√

x3+5
≤

1√
x3
. Letting f(x) = 1√

x3
and g(x) = 1√

x3+5
then we have that 0 ≤ g(x) ≤

f(x). From the previous section we know that
∫∞

1
1

x
3
2
dx is convergent, a p-

integral with p = 3
2
> 1. By the comparison test,

∫∞
1

1√
x3+5

dx is convergent

Example 28.11
Investigate the convergence of

∫∞
4

dx
lnx−1

.

Solution.
For x ≥ 4 we know that ln x− 1 < lnx < x. Thus, 1

lnx−1
> 1

x
. Let g(x) = 1

x

and f(x) = 1
lnx−1

. Thus, 0 < g(x) ≤ f(x). Since
∫∞

4
1
x
dx =

∫∞
1

1
x
dx−

∫ 4

1
1
x
dx

and the integral
∫∞

1
1
x
dx is divergent being a p-integral with p = 1, the

integral
∫∞

4
1
x
dx is divergent. By the comparison test

∫∞
4

dx
lnx−1

is divergent
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Practice Problems

Problem 28.1
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 0

−∞

dx√
3− x

.

Problem 28.2
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 1

−1

ex

ex − 1
dx.

Problem 28.3
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 4

1

dx

x− 2
.

Problem 28.4
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 10

1

dx√
10− x

.

Problem 28.5
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ ∞

−∞

dx

ex + e−x
.

Problem 28.6
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ ∞

0

dx

x2 + 4
.
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Problem 28.7
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 0

−∞
exdx.

Problem 28.8
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ ∞

0

dx

(x− 5)
1
3

.

Problem 28.9
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 2

0

dx

(x− 1)2
.

Problem 28.10
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ ∞

−∞

x

x2 + 9
dx.

Problem 28.11
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 1

0

4dx√
1− x2

.

Problem 28.12
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ ∞

0

xe−xdx.

Problem 28.13
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 1

0

x2

√
1− x3

dx.
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Problem 28.14
Determine if the following integral is convergent or divergent. If it is conver-
gent find its value. ∫ 2

1

x

x− 1
dx.

Problem 28.15
Investigate the convergence of

∫∞
4

dx
lnx−1

.

Problem 28.16
Investigate the convergence of the improper integral

∫∞
1

sinx+3√
x
dx.

Problem 28.17
Investigate the convergence of

∫∞
1
e−

1
2
x2dx.
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29 Iterated Double Integrals

In this section, we see how to compute double integrals exactly using one-
variable integrals.
Going back to the definition of the integral over a region as the limit of a
double Riemann sum:

∫
R

f(x, y)dxdy = lim
m,n→∞

m∑
j=1

n∑
i=1

f(x∗i , y
∗
j )∆x∆y

= lim
m,n→∞

m∑
j=1

(
n∑
i=1

f(x∗i , y
∗
j )∆x

)
∆y

= lim
m,n→∞

m∑
j=1

∆y

(
n∑
i=1

f(x∗i , y
∗
j )∆x

)

= lim
m→∞

m∑
j=1

∆y

∫ b

a

f(x, y∗j )dx

We now let

F (y∗j ) =

∫ b

a

f(x, y∗j )dx

and, substituting into the expression above, we obtain

∫
R

f(x, y)dxdy = lim
m→∞

m∑
j=1

F (y∗j )∆y =

∫ d

c

F (y)dy =

∫ d

c

∫ b

a

f(x, y)dxdy.

Thus, if f is continuous over a rectangle R then the integral of f over R can
be expressed as an iterated integral. To evaluate this iterated integral,
first perform the inside integral with respect to x, holding y constant, then
integrate the result with respect to y.

Example 29.1
Compute

∫ 16

0

∫ 8

0

(
12− x

4
− y

8

)
dxdy.
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Solution.
We have∫ 16

0

∫ 8

0

(
12− x

4
− y

8

)
dxdy =

∫ 16

0

(∫ 8

0

(
12− x

4
− y

8

)
dx

)
dy

=

∫ 16

0

[
12x− x2

8
− xy

8

]8

0

dy

=

∫ 16

0

(88− y)dy = 88y − y2

2

∣∣∣∣16

0

= 1280

We note, that we can repeat the argument above for establishing the iterated
integral, reversing the order of the summation so that we sum over j first
and i second (i.e. integrate over y first and x second) so the result has the
order of integration reversed. That is we can show that∫

R

f(x, y)dxdy =

∫ b

a

∫ d

c

f(x, y)dydx.

Example 29.2
Compute

∫ 8

0

∫ 16

0

(
12− x

4
− y

8

)
dydx.

Solution.
We have∫ 8

0

∫ 16

0

(
12− x

4
− y

8

)
dydx =

∫ 8

0

(∫ 16

0

(
12− x

4
− y

8

)
dy

)
dx

=

∫ 8

0

[
12y − xy

4
− y2

16

]16

0

dx

=

∫ 8

0

(176− 4x)dx = 176x− 2x2
∣∣8
0

= 1280

Iterated Integrals Over Non-Rectangular Regions
So far we looked at double integrals over rectangular regions. The problem
with this is that most of the regions are not rectangular so we need to now
look at the following double integral,∫

R

f(x, y)dxdy
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where R is any region. We consider the two types of regions shown in Figure
29.1.

Figure 29.1

In Case 1, the iterated integral of f over R is defined by∫
R

f(x, y)dxdy =

∫ b

a

∫ g2(x)

g1(x)

f(x, y)dydx

This means, that we are integrating using vertical strips from g1(x) to g2(x)
and moving these strips from x = a to x = b.
In case 2, we have∫

R

f(x, y)dxdy =

∫ d

c

∫ h2(y)

h1(y)

f(x, y)dxdy

so we use horizontal strips from h1(y) to h2(y). Note that in both cases, the
limits on the outer integral must always be constants.

Remark 29.1
Chosing the order of integration will depend on the problem and is usually
determined by the function being integrated and the shape of the region R.
The order of integration which results in the “simplest” evaluation of the
integrals is the one that is preferred.

Example 29.3
Let f(x, y) = xy. Integrate f(x, y) for the triangular region bounded by the
x−axis, the y−axis, and the line y = 2− 2x.
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Solution.
Figure 29.2 shows the region of integration for this example.

Figure 29.2

Graphically integrating over y first is equivalent to moving along the x axis
from 0 to 1 and integrating from y = 0 to y = 2− 2x. That is, summing up
the vertical strips as shown in Figure 29.3(I).

∫
R

xydxdy =

∫ 1

0

∫ 2−2x

0

xydydx

=

∫ 1

0

xy2

2

∣∣∣∣2−2x

0

dx =
1

2

∫ 1

0

x(2− 2x)2dx

=2

∫ 1

0

(x− 2x2 + x3)dx = 2

[
x2

2
− 2

3
x3 +

x4

4

]1

0

=
1

6

If we choose to do the integral in the opposite order, then we need to invert
the y = 2− 2x i.e. express x as function of y. In this case we get x = 1− 1

2
y.

Integrating in this order corresponds to integrating from y = 0 to y = 2
along horizontal strips ranging from x = 0 to x = 1− 1

2
y, as shown in Figure
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29.3(II) ∫
R

xydxdy =

∫ 2

0

∫ 1− 1
2
y

0

xydxdy

=

∫ 2

0

x2y

2

∣∣∣∣1− 1
2
y

0

dy =
1

2

∫ 2

0

y(1− 1

2
y)2dy

=
1

2

∫ 2

0

(y − y2 +
y3

4
)dy =

y2

4
− y3

6
+
y4

32

∣∣∣∣2
0

=
1

6

Figure 29.3

Example 29.4
Find

∫
R

(4xy− y3)dxdy where R is the region bounded by the curves y =
√
x

and y = x3.

Solution.
A sketch of R is given in Figure 29.4. Using horizontal strips we can write∫

R

(4xy − y3)dxdy =

∫ 1

0

∫ 3
√
y

y2
(4xy − y3)dxdy

=

∫ 1

0

2x2y − xy3
∣∣ 3
√
y

y2
dy =

∫ 1

0

(
2y

5
3 − y

10
3 − y5

)
dy

=
3

4
y

8
3 − 3

13
y

13
3 − 1

6
y6

∣∣∣∣1
0

=
55

156
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Figure 29.4

Example 29.5

Sketch the region of integration of
∫ 2

0

∫ √4−x2
−
√

4−x2 xydydx

Solution.
A sketch of the region is given in Figure 29.5.

Figure 29.5
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Practice Problems

Problem 29.1
Set up a double integral of f(x, y) over the region given by 0 < x < 1;x <
y < x+ 1.

Problem 29.2
Set up a double integral of f(x, y) over the part of the unit square 0 ≤ x ≤
1; 0 ≤ y ≤ 1, on which y ≤ x

2
.

Problem 29.3
Set up a double integral of f(x, y) over the part of the unit square on which
both x and y are greater than 0.5.

Problem 29.4
Set up a double integral of f(x, y) over the part of the unit square on which
at least one of x and y is greater than 0.5.

Problem 29.5
Set up a double integral of f(x, y) over the part of the region given by 0 <
x < 50− y < 50 on which both x and y are greater than 20.

Problem 29.6
Set up a double integral of f(x, y) over the set of all points (x, y) in the first
quadrant with |x− y| ≤ 1.

Problem 29.7
Evaluate

∫ ∫
R
e−x−ydxdy, where R is the region in the first quadrant in which

x+ y ≤ 1.

Problem 29.8
Evaluate

∫ ∫
R
e−x−2ydxdy, where R is the region in the first quadrant in

which x ≤ y.

Problem 29.9
Evaluate

∫ ∫
R

(x2 + y2)dxdy, where R is the region 0 ≤ x ≤ y ≤ L.

Problem 29.10
Write as an iterated integral

∫ ∫
R
f(x, y)dxdy, where R is the region inside

the unit square in which both coordinates x and y are greater than 0.5.
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Problem 29.11
Evaluate

∫ ∫
R

(x − y + 1)dxdy, where R is the region inside the unit square
in which x+ y ≥ 0.5.

Problem 29.12
Evaluate

∫ 1

0

∫ 1

0
xmax(x, y)dydx.
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Continuous Random Variables

Continuous random variables are random quantities that are measured on
a continuous scale. They can usually take on any value over some interval,
which distinguishes them from discrete random variables, which can take
on only a sequence of values, usually integers. Typically random variables
that represent, for example, time or distance will be continuous rather than
discrete.

30 Distribution Functions

We say that a random variable is continuous if there exists a nonnega-
tive function f (not necessarily continuous) defined for all real numbers and
having the property that for any set B of real numbers we have

Pr(X ∈ B) =

∫
B

f(x)dx.

We call the function f the probability density function (abbreviated pdf)
of the random variable X.
If we let B = (−∞,∞) then∫ ∞

−∞
f(x)dx = P [X ∈ (−∞,∞)] = 1.

Now, if we let B = [a, b] then

Pr(a ≤ X ≤ b) =

∫ b

a

f(x)dx.

That is, areas under the probability density function represent probabilities
as illustrated in Figure 30.1.

223
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Figure 30.1

Now, if we let a = b in the previous formula we find

Pr(X = a) =

∫ a

a

f(x)dx = 0.

It follows from this result that

Pr(a ≤ X < b) = Pr(a < X ≤ b) = Pr(a < X < b) = Pr(a ≤ X ≤ b).

and

Pr(X ≤ a) = Pr(X < a) and Pr(X ≥ a) = Pr(X > a).

The cumulative distribution function or simply the distribution func-
tion (abbreviated cdf) F (t) of the random variable X is defined as follows

F (t) = Pr(X ≤ t)

i.e., F (t) is equal to the probability that the variable X assumes values,
which are less than or equal to t. From this definition we can write

F (t) =

∫ t

−∞
f(y)dy.

Geometrically, F (t) is the area under the graph of f to the left of t.

Example 30.1
Find the distribution functions corresponding to the following density func-
tions:
(a) f(x) = 1

π(1+x2)
, −∞ < x <∞

(b) f(x) = e−x

(1+e−x)2
, −∞ < x <∞

(c) f(x) = a−1
(1+x)a

, 0 < x <∞
(d) f(x) = kαxα−1e−kx

α
, 0 < x <∞, k > 0, α > 0.
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Solution.
(a)

F (x) =

∫ x

−∞

1

π(1 + y2)
dy

=

[
1

π
arctan y

]x
−∞

=
1

π
arctanx− 1

π
· −π

2

=
1

π
arctanx+

1

2

(b)

F (x) =

∫ x

−∞

e−y

(1 + e−y)2
dy

=

[
1

1 + e−y

]x
−∞

=
1

1 + e−x

(c) For x ≥ 0

F (x) =

∫ x

−∞

a− 1

(1 + y)a
dy

=

[
− 1

(1 + y)a−1

]x
0

=1− 1

(1 + x)a−1

For x < 0 it is obvious that F (x) = 0, so we could write the result in full as

F (x) =

{
0 x < 0

1− 1
(1+x)a−1 x ≥ 0.

(d) For x ≥ 0

F (x) =

∫ x

0

kαyα−1e−ky
α

dy

=
[
−e−kyα

]x
0

=1− e−kxα
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For x < 0 we have F (x) = 0 so that

F (x) =

{
0 x < 0

1− ke−kxα x ≥ 0

Next, we list the properties of the cumulative distribution function F (t) for
a continuous random variable X.

Theorem 30.1
The cumulative distribution function of a continuous random variable X sat-
isfies the following properties:
(a) 0 ≤ F (t) ≤ 1.
(b) F (t) is a non-decreasing function, i.e. if a < b then F (a) ≤ F (b).
(c) F (t)→ 0 as t→ −∞ and F (t)→ 1 as t→∞.
(d) Pr(a < X ≤ b) = F (b)− F (a).
(e) F is continuous.
(f) F ′(t) = f(t) whenever the derivative exists.

Proof.
Properties (a) − (d) were established in Section 25. For part (e), we know
that F is right continuous (See Proposition 25.3). Left-continuity follows
from Example 25.4 and the fact that Pr(X = a) = 0. Part (f) is the result
of applying the Second Fundamental Theorem of Calculus to the function
F (x) =

∫ x
−∞ f(t)dt

Figure 30.2 illustrates a representative cdf.

Figure 30.2

Remark 30.1
It is important to keep in mind that a pdf does not represent a probability.
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However, it can be used as a measure of how likely it is that the random
variable will be near a. To see this, let ε > 0 be a small positive number.
Then

Pr(a ≤ X ≤ a+ ε) = F (a+ ε)− F (a) =

∫ a+ε

a

f(t)dt ≈ εf(a)

In particular,

Pr
(
a− ε

2
≤ X ≤ a+

ε

2

)
= εf(a).

This means that the probability that X will be contained in an interval of
length ε around the point a is approximately εf(a).

Remark 30.2
By Theorem 30.1 (c) and (f), limt→−∞ f(t) = 0 = limt→∞ f(t). This follows
from the fact that the graph of F (t) levels off when t → ±∞. That is,
limt→±∞ F

′(t) = 0.

Example 30.2
Suppose that the function f(t) defined below is the density function of some
random variable X.

f(t) =

{
e−t t ≥ 0,
0 t < 0.

Compute Pr(−10 ≤ X ≤ 10).

Solution.

Pr(−10 ≤ X ≤ 10) =

∫ 10

−10

f(t)dt

=

∫ 0

−10

f(t)dt+

∫ 10

0

f(t)dt

=

∫ 10

0

e−tdt

= −e−t
∣∣10

0
= 1− e−10

A pdf need not be continuous, as the following example illustrates.
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Example 30.3
(a) Determine the value of c so that the following function is a pdf.

f(x) =


15
64

+ x
64
−2 ≤ x ≤ 0

3
8

+ cx 0 < x ≤ 3
0 otherwise

(b) Determine Pr(−1 ≤ X ≤ 1).
(c) Find F (x).

Solution.
(a) Observe that f is discontinuous at the points −2 and 0, and is potentially
also discontinuous at the point 3. We first find the value of c that makes f
a pdf.

1 =

∫ 0

−2

(
15

64
+

x

64

)
dx+

∫ 3

0

(
3

8
+ cx

)
dx

=

[
15

64
x+

x2

128

]0

−2

+

[
3

8
x+

cx2

2

]3

0

=
30

64
− 2

64
+

9

8
+

9c

2

=
100

64
+

9c

2

Solving for c we find c = −1
8
.

(b) The probability Pr(−1 ≤ X ≤ 1) is calculated as follows.

Pr(−1 ≤ X ≤ 1) =

∫ 0

−1

(
15

64
+

x

64

)
dx+

∫ 1

0

(
3

8
− x

8

)
dx =

69

128

(c) For −2 ≤ x ≤ 0 we have

F (x) =

∫ x

−2

(
15

64
+

t

64

)
dt =

x2

128
+

15

64
x+

7

16

and for 0 < x ≤ 3

F (x) =

∫ 0

−2

(
15

64
+

x

64

)
dx+

∫ x

0

(
3

8
− t

8

)
dt =

7

16
+

3

8
x− 1

16
x2.
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Hence the full cdf is

F (x) =


0 x < −2

x2

128
+ 15

64
x+ 7

16
−2 ≤ x ≤ 0

7
16

+ 3
8
x− 1

16
x2 0 < x ≤ 3

1 x > 3

Observe that at all points of discontinuity of the pdf, the cdf is continuous.
That is, even when the pdf is discontinuous, the cdf is continuous
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Practice Problems

Problem 30.1
Determine the value of c so that the following function is a pdf.

f(x) =

{ c
(x+1)3

if x ≥ 0

0 otherwise

Problem 30.2
Let X denote the length of time (in minutes) of using a computer at a public
library with pdf given by

f(x) =

{
1
5
e−

x
5 if x ≥ 0

0 otherwise

(a) What is the probability of using a computer for more than 10 minutes.
(b) Find the probability of using a computer between 5 and 10 minutes.
(c) Find the cumulative distribution function of X.

Problem 30.3
A probability student is always late to class and arrives within ten minutes
after the start of the class. Let X be the time that elapses between the
start of the class and the time the student arrives to class with a probability
density function

f(x) =

{
kx2 0 ≤ x ≤ 10
0 otherwise

where k > 0 is a constant. Compute the value of k and then find the
probability that the student arrives less than 3 minutes after the start of the
class.

Problem 30.4
The lifetime X of a battery (in hours) has a density function given by

f(x) =


2x 0 ≤ x < 1

2
3
4

2 < x < 3
0 otherwise

Find the probability that a battery will last for more than 15 minutes?
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Problem 30.5
Let F : R→ R be a function defined by

F (x) =


0 x < 0
x/2 0 ≤ x < 1

(x+ 2)/6 1 ≤ x < 4
1 x ≥ 4

(a) Show that F satisfies conditions (a),(b),(c), and (e) of Theorem 30.1.
(b) Find the probability density function f(x).

Problem 30.6
The amount of time X (in minutes) it takes a person standing in line at a
post office to reach the counter is described by the continuous probability
function:

f(x) =

{
kxe−x x > 0

0 otherwise

where k is a constant.
(a) Dtermine the value of k.
(b) What is the probability that a person takes more than 1 minute to reach
the counter?

Problem 30.7
A random variable X has the cumulative distribution function

F (x) =
ex

ex + 1
.

(a) Find the probability density function.
(b) Find Pr(0 ≤ X ≤ 1).

Problem 30.8
A commercial water distributor supplies an office with gallons of water once
a week. Suppose that the weekly supplies in tens of gallons is a random
variable with pdf

f(x) =

{
5(1− x)4 0 < x < 1

0 otherwise

Approximately, how many gallons should be delivered in one week so that
the probability of the supply is 0.1?
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Problem 30.9 ‡
The loss due to a fire in a commercial building is modeled by a random
variable X with density function

f(x) =

{
0.005(20− x) 0 < x < 20

0 otherwise

Given that a fire loss exceeds 8, what is the probability that it exceeds 16 ?

Problem 30.10 ‡
The lifetime of a machine part has a continuous distribution on the interval
(0, 40) with probability density function f, where f(x) is proportional to
(10 + x)−2.
Calculate the probability that the lifetime of the machine part is less than 6.

Problem 30.11 ‡
A group insurance policy covers the medical claims of the employees of a
small company. The value, V, of the claims made in one year is described by

V = 100000Y

where Y is a random variable with density function

f(x) =

{
k(1− y)4 0 < y < 1

0 otherwise

where k is a constant.
What is the conditional probability that V exceeds 40,000, given that V
exceeds 10,000?

Problem 30.12 ‡
An insurance company insures a large number of homes. The insured value,
X, of a randomly selected home is assumed to follow a distribution with
density function

f(x) =

{
3x−4 x > 1

0 otherwise

Given that a randomly selected home is insured for at least 1.5, what is the
probability that it is insured for less than 2 ?



30 DISTRIBUTION FUNCTIONS 233

Problem 30.13 ‡
An insurance policy pays for a random loss X subject to a deductible of
C, where 0 < C < 1. The loss amount is modeled as a continuous random
variable with density function

f(x) =

{
2x 0 < x < 1
0 otherwise

Given a random loss X, the probability that the insurance payment is less
than 0.5 is equal to 0.64 . Calculate C.

Problem 30.14
LetX1, X2, X3 be three independent, identically distributed random variables
each with density function

f(x) =

{
3x2 0 ≤ x ≤ 1
0 otherwise

Let Y = max{X1, X2, X3}. Find Pr(Y > 1
2
).

Problem 30.15
Let X have the density function

f(x) =

{
3x2

θ3
0 < x < θ

0otherwise

If Pr(X > 1) = 7
8
, find the value of θ.
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31 Expectation and Variance

As with discrete random variables, the expected value of a continuous ran-
dom variable is a measure of location. It defines the balancing point of the
distribution.
Suppose that a continuous random variable X has a density function f(x)
defined in [a, b]. Let’s try to estimate E(X) by cutting [a, b] into n equal subin-

tervals, each of width ∆x, so ∆x = (b−a)
n
. Let xi = a + i∆x, i = 0, 1, ..., n,

be the partition points between the subintervals. Then, the probability of X
assuming a value in [xi, xi+1] is

Pr(xi ≤ X ≤ xi+1) =

∫ xi+1

xi

f(x)dx ≈ ∆xf

(
xi + xi+1

2

)
where we used the midpoint rule to estimate the integral. An estimate of the
desired expectation is approximately

E(X) ≈
n−1∑
i=0

(
xi + xi+1

2

)
∆xf

(
xi + xi+1

2

)
.

A better estimate is obtained by letting n→∞. Thus, we obtain

E(X) =

∫ b

a

xf(x)dx.

The above argument applies if either a or b are infinite. In this case, one has
to make sure that all improper integrals in question converge.
Since the domain of f consists of all real numbers, we define the expected
value of X by the improper integral

E(X) =

∫ ∞
−∞

xf(x)dx

provided that the improper integral converges.

Example 31.1
Find E(X) when the density function of X is

f(x) =

{
2x if 0 ≤ x ≤ 1
0 otherwise.



31 EXPECTATION AND VARIANCE 235

Solution.
Using the formula for E(X) we find

E(X) =

∫ ∞
−∞

xf(x)dx =

∫ 1

0

2x2dx =
2

3

Example 31.2
A continuous random variable has the pdf

f(x) =

{
600
x2
, 100 < x < 120

0, otherwise.

(a) Determine the mean and variance of X.
(c) Find Pr(X > 110).

Solution.
(a) We have

E(X) =

∫ 120

100

x · 600x−2dx = 600 ln x|120
100 ≈ 109.39

and

σ2
X = E(X2)− (E(X))2 =

∫ 120

100

x2 · 600x−2dx− 109.392 ≈ 33.19.

(b) The desired probability is

Pr(X > 110) =

∫ 120

110

600x−2dx =
5

11

Sometimes for technical purposes the following theorem is useful. It expresses
the expectation in terms of an integral of probabilities. It is most often used
for random variables X that have only positive values; in that case the second
term is of course zero.

Theorem 31.1
Let X be a continuous random variable with probability density function f.
Then

E(X) =

∫ ∞
0

Pr(X > y)dy −
∫ 0

−∞
Pr(X < y)dy.
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Proof.
From the definition of E(X) we have

E(X) =

∫ ∞
0

xf(x)dx+

∫ 0

−∞
xf(x)dx

=

∫ ∞
0

∫ y=x

y=0

dyf(x)dx−
∫ 0

−∞

∫ y=0

y=x

dyf(x)dx

Interchanging the order of integration as shown in Figure 31.1 we can write∫ ∞
0

∫ y=x

y=0

dyf(x)dx =

∫ ∞
0

∫ ∞
y

f(x)dxdy

and ∫ 0

−∞

∫ y=0

y=x

dyf(x)dx =

∫ 0

−∞

∫ y

−∞
f(x)dxdy.

The result follows by putting the last two equations together and recalling
that ∫∞

y
f(x)dx = Pr(X > y) and

∫ y
−∞ f(x)dx = Pr(X < y)

Figure 31.1

Note that if X is a continuous random variable and g is a function defined
for the values of X and with real values, then Y = g(X) is also a random
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variable. The following theorem is particularly important and convenient. If
a random variable Y = g(X) is expressed in terms of a continuous random
variable, then this theorem gives the expectation of Y in terms of probabilities
associated to X.

Theorem 31.2
If X is continuous random variable with a probability density function f(x),
and if Y = g(X) is a function of the random variable, then the expected
value of the function g(X) is

E(g(X)) =

∫ ∞
−∞

g(x)f(x)dx.

Proof.
By the previous theorem we have

E(g(X)) =

∫ ∞
0

P [g(X) > y]dy −
∫ 0

−∞
P [g(X) < y]dy.

If we let By = {x : g(x) > y} then from the definition of a continuous random
variable we can write

P [g(X) > y] =

∫
By

f(x)dx =

∫
{x:g(x)>y}

f(x)dx.

Thus,

E(g(X)) =

∫ ∞
0

[∫
{x:g(x)>y}

f(x)dx

]
dy −

∫ 0

−∞

[∫
{x:g(x)<y}

f(x)dx

]
dy.

Now we can interchange the order of integration to obtain

E(g(X)) =

∫
{x:g(x)>0}

∫ g(x)

0

f(x)dydx−
∫
{x:g(x)<0}

∫ 0

g(x)

f(x)dydx

=

∫
{x:g(x)>0}

g(x)f(x)dx+

∫
{x:g(x)<0}

g(x)f(x)dx =

∫ ∞
−∞

g(x)f(x)dx.

Figure 31.2 helps understanding the process of interchanging the order of
integration that we used in the proof above
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Figure 31.2

Example 31.3
Let T be a continuous random variable with pdf

f(t) =

{
1
10
e−

t
10 , t ≥ 0

0, otherwise.

Define the continuous random variable by

X =


100 0 < T ≤ 1
50 1 < T ≤ 3
0 T > 3.

Find E(X).

Solution.
By Theorem 31.2, we have

E(X) =

∫ 1

0

100
1

10
e−

t
10dt+

∫ 3

1

50
1

10
e−

t
10dt

=100(1− e−
1
10 ) + 50(e−

1
10 − e−

3
10 )

=100− 50e−
1
10 − 50e−

3
10

Example 31.4 ‡
An insurance policy reimburses a loss up to a benefit limit of 10 . The
policyholder’s loss, X, follows a distribution with density function:

f(x) =

{
2
x3

x > 1
0 otherwise.

What is the expected value of the benefit paid under the insurance policy?
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Solution.
Let Y denote the claim payments. Then

Y =

{
X 1 < X ≤ 10
10 X ≥ 10

It follows that

E(Y ) =

∫ 10

1

x
2

x3
dx+

∫ ∞
10

10
2

x3
dx

= −2

x

∣∣∣∣10

1

−10

x2

∣∣∣∣∞
10

= 1.9

As a first application of Theorem 31.2, we have

Corollary 31.1
For any constants a and b

E(aX + b) = aE(X) + b.

Proof.
Let g(x) = ax+ b in Theorem 31.2 to obtain

E(aX + b) =

∫ ∞
−∞

(ax+ b)f(x)dx

=a

∫ ∞
−∞

xf(x)dx+ b

∫ ∞
−∞

f(x)dx

=aE(X) + b

Example 31.5 ‡
Claim amounts for wind damage to insured homes are independent random
variables with common density function

f(x) =

{
3
x4

x > 1
0 otherwise

where x is the amount of a claim in thousands.
Suppose 3 such claims will be made, what is the expected value of the largest
of the three claims?
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Solution.
Note for any of the random variables the cdf is given by

F (x) =

∫ x

1

3

t4
dt = 1− 1

x3
, x > 1

Next, let X1, X2, and X3 denote the three claims made that have this distri-
bution. Then if Y denotes the largest of these three claims, it follows that
the cdf of Y is given by

FY (y) =P [(X1 ≤ y) ∩ (X2 ≤ y) ∩ (X3 ≤ y)]

=Pr(X1 ≤ y)Pr(X2 ≤ y)Pr(X3 ≤ y)

=

(
1− 1

y3

)3

, y > 1

The pdf of Y is obtained by differentiating FY (y)

fY (y) = 3

(
1− 1

y3

)2(
3

y4

)
=

(
9

y4

)(
1− 1

y3

)2

.

Finally,

E(Y ) =

∫ ∞
1

(
9

y3

)(
1− 1

y3

)2

dy =

∫ ∞
1

(
9

y3

)(
1− 2

y3
+

1

y6

)
dy

=

∫ ∞
1

(
9

y3
− 18

y6
+

9

y9

)
dy =

[
− 9

2y2
+

18

5y5
− 9

8y8

]∞
1

=9

[
1

2
− 2

5
+

1

8

]
≈ 2.025 (in thousands)

Example 31.6 ‡
A manufacturer’s annual losses follow a distribution with density function

f(x) =

{
2.5(0.6)2.5

x3.5
x > 0.6

0 otherwise.

To cover its losses, the manufacturer purchases an insurance policy with an
annual deductible of 2.
What is the mean of the manufacturer’s annual losses not paid by the insur-
ance policy?
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Solution.
Let Y denote the manufacturer’s retained annual losses. Then

Y =

{
X 0.6 < X ≤ 2
2 X > 2

Therefore,

E(Y ) =

∫ 2

0.6

x

[
2.5(0.6)2.5

x3.5

]
dx+

∫ ∞
2

2

[
2.5(0.6)2.5

x3.5

]
dx

=

∫ 2

0.6

[
2.5(0.6)2.5

x2.5

]
dx− 2(0.6)2.5

x2.5

∣∣∣∣∞
2

=− 2.5(0.6)2.5

1.5x1.5

∣∣∣∣2
0.6

+
2(0.6)2.5

22.5

=− 2.5(0.6)2.5

1.5(2)1.5
+

2.5(0.6)2.5

1.5(0.6)1.5
+

2(0.6)2.5

22.5
≈ 0.9343

The variance of a random variable is a measure of the “spread” of the
random variable about its expected value. In essence, it tells us how much
variation there is in the values of the random variable from its mean value.
The variance of the random variable X, is determined by calculating the
expectation of the function g(X) = (X − E(X))2. That is,

Var(X) = E
[
(X − E(X))2

]
.

Theorem 31.3
(a) An alternative formula for the variance is given by

Var(X) = E(X2)− [E(X)]2.

(b) For any constants a and b, Var(aX + b) = a2Var(X).

Proof.
(a) By Theorem 31.2 we have

Var(X) =

∫ ∞
−∞

(x− E(X))2f(x)dx

=

∫ ∞
−∞

(x2 − 2xE(X) + (E(X))2)f(x)dx

=

∫ ∞
−∞

x2f(x)dx− 2E(X)

∫ ∞
−∞

xf(x)dx+ (E(X))2

∫ ∞
−∞

f(x)dx

=E(X2)− (E(X))2
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(b) We have

Var(aX+ b) = E[(aX+ b−E(aX+ b))2] = E[a2(X−E(X))2] = a2Var(X)

Example 31.7
Let X be a random variable with probability density function

f(x) =

{
2− 4|x| −1

2
< x < 1

2
,

0 otherwise.

(a) Find the variance of X.
(b) Find the c.d.f. F (x) of X.

Solution.
(a) Since the function xf(x) is odd in −1

2
< x < 1

2
, we have E(X) = 0. Thus,

Var(X) =E(X2) =

∫ 0

− 1
2

x2(2 + 4x)dx+

∫ 1
2

0

x2(2− 4x)dx

=
1

24
.

(b) Since the range of f is the interval (−1
2
, 1

2
), we have F (x) = 0 for x ≤ −1

2

and F (x) = 1 for x ≥ 1
2
. Thus it remains to consider the case when −1

2
<

x < 1
2
. For −1

2
< x ≤ 0,

F (x) =

∫ x

− 1
2

(2 + 4t)dt = 2x2 + 2x+
1

2
.

For 0 ≤ x < 1
2
, we have

F (x) =

∫ 0

− 1
2

(2 + 4t)dt+

∫ x

0

(2− 4t)dt = −2x2 + 2x+
1

2
.

Combining these cases, we get

F (x) =


0 x < −1

2

2x2 + 2x+ 1
2
−1

2
≤ x < 0

−2x2 + 2x+ 1
2

0 ≤ x < 1
2

1 x ≥ 1
2
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Example 31.8
Let X be a continuous random variable with pdf

f(x) =

{
4xe−2x, x > 0

0 otherwise.

For this example, you might find the identity
∫∞

0
tne−tdt = n! useful.

(a) Find E(X).
(b) Find the variance of X.
(c) Find the probability that X < 1.

Solution.
(a) Using the substitution t = 2x we find

E(X) =

∫ ∞
0

4x2e−2xdx =
1

2

∫ ∞
0

t2e−tdt =
2!

2
= 1.

(b) First, we find E(X2). Again, letting t = 2x we find

E(X2) =

∫ ∞
0

4x3e−2xdx =
1

4

∫ ∞
0

t3e−tdt =
3!

4
=

3

2
.

Hence,

Var(X) = E(X2)− (E(X))2 =
3

2
− 1 =

1

2
.

(c) We have

Pr(X < 1) =Pr(X ≤ 1) =

∫ 1

0

4xe−2xdx =

∫ 2

0

te−tdt

= −(t+ 1)e−t
∣∣2
0

= 1− 3e−2

As in the case of discrete random variable, it is easy to establish the formula

Var(aX) = a2Var(X)

Example 31.9
Let X be the random variable representing the cost of maintaining a car.
Suppose that E(X) = 200 and Var(X) = 260. If a tax of 20% is introduced
on all items associated with the maintenance of the car, what will the variance
of the cost of maintaining a car be?
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Solution.
The new cost is 1.2X, so its variance is Var(1.2X) = 1.22Var(X) = (1.44)(260) =
374.

Finally, we define the standard deviation X to be the square root of the
variance.

Example 31.10
A random variable has a Pareto distribution with parameters α > 0 and
x0 > 0 if its density function has the form

f(x) =

{
αxα0
xα+1 x > x0

0 otherwise.

(a) Show that f(x) is indeed a density function.
(b) Find E(X) and Var(X).

Solution.
(a) By definition f(x) > 0. Also,∫ ∞

x0

f(x)dx =

∫ ∞
x0

αxα0
xα+1

dx = −
(x0

x

)∣∣∣∞
x0

= 1

(b) We have

E(X) =

∫ ∞
x0

xf(x)dx =

∫ ∞
x0

αxα0
xα

dx =
α

1− α

(
xα0
xα−1

)∣∣∣∣∞
x0

=
αx0

α− 1

provided α > 1. Similarly,

E(X2) =

∫ ∞
x0

x2f(x)dx =

∫ ∞
x0

αxα0
xα−1

dx =
α

2− α

(
xα0
xα−2

)∣∣∣∣∞
x0

=
αx2

0

α− 2

provided α > 2. Hence,

Var(X) =
αx2

0

α− 2
− α2x2

0

(α− 1)2
=

αx2
0

(α− 2)(α− 1)2
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Practice Problems

Problem 31.1
Let X have the density function given by

f(x) =


0.2 −1 < x ≤ 0

0.2 + cx 0 < x ≤ 1
0 otherwise.

(a) Find the value of c.
(b) Find F (x).
(c) Find Pr(0 ≤ x ≤ 0.5).
(d) Find E(X).

Problem 31.2
The density function of X is given by

f(x) =

{
a+ bx2 0 ≤ x ≤ 1

0 otherwise

Suppose that E(X) = 3
5
.

(a) Find a and b.
(b) Determine the cdf, F (x), explicitly.

Problem 31.3
Compute E(X) if X has the density function given by
(a)

f(x) =

{
1
4
xe−

x
2 x > 0

0 otherwise.

(b)

f(x) =

{
c(1− x2) −1 < x < 1

0 otherwise.

(c)

f(x) =

{
5
x2

x > 5
0 otherwise.

Problem 31.4
A continuous random variable has a pdf

f(x) =

{
1− x

2
0 < x < 2

0 otherwise

Find the expected value and the variance.
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Problem 31.5
Let X denote the lifetime (in years) of a computer chip. Let the probability
density function be given by

f(x) =

{
4(1 + x)−5 x ≥ 0

0 otherwise.

(a) Find the mean and the standard deviation.
(b) What is the probability that a randomly chosen computer chip expires
in less than a year?

Problem 31.6
Let X be a continuous random variable with pdf

f(x) =

{
1
x

1 < x < e
0 otherwise.

Find E(lnX).

Problem 31.7
Let X have a cdf

F (x) =

{
1− 1

x6
x ≥ 1

0 otherwise.

Find Var(X).

Problem 31.8
Let X have a pdf

f(x) =

{
1 1 < x < 2
0 otherwise.

Find the expected value and variance of Y = X2.

Problem 31.9 ‡
Let X be a continuous random variable with density function

f(x) =

{ |x|
10
−2 ≤ x ≤ 4

0 otherwise.

Calculate the expected value of X.
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Problem 31.10 ‡
An auto insurance company insures an automobile worth 15,000 for one year
under a policy with a 1,000 deductible. During the policy year there is a
0.04 chance of partial damage to the car and a 0.02 chance of a total loss of
the car. If there is partial damage to the car, the amount X of damage (in
thousands) follows a distribution with density function

f(x) =

{
0.5003e−0.5x 0 < x < 15

0 otherwise.

What is the expected claim payment?

Problem 31.11 ‡
An insurance company’s monthly claims are modeled by a continuous, pos-
itive random variable X, whose probability density function is proportional
to (1 + x)−4, where 0 < x <∞ and 0 otherwise.
Determine the company’s expected monthly claims.

Problem 31.12 ‡
A random variable X has the cumulative distribution function

F (x) =


0 x < 1

x2−2x+2
2

1 ≤ x < 2
1 x ≥ 2.

Calculate the variance of X.

Problem 31.13 ‡
A company agrees to accept the highest of four sealed bids on a property. The
four bids are regarded as four independent random variables with common
cumulative distribution function

F (x) =
1

2
(1 + sin πx),

3

2
≤ x ≤ 5

2

and 0 otherwise. What is the expected value of the accepted bid?

Problem 31.14 ‡
An insurance policy on an electrical device pays a benefit of 4000 if the
device fails during the first year. The amount of the benefit decreases by
1000 each successive year until it reaches 0 . If the device has not failed by
the beginning of any given year, the probability of failure during that year
is 0.4.
What is the expected benefit under this policy?
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Problem 31.15
Let X have the density function

f(x) =

{
λ2x
k2

0 ≤ x ≤ k
0 otherwise.

For what value of k is the variance of X equal to 2?

Problem 31.16 ‡
A man purchases a life insurance policy on his 40th birthday. The policy will
pay 5000 only if he dies before his 50th birthday and will pay 0 otherwise.
The length of lifetime, in years, of a male born the same year as the insured
has the cumulative distribution function

F (t) =

{
1− e 1−1.1t

1000 , t > 0
0 t ≤ 0

Calculate the expected payment to the man under this policy.
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32 Median, Mode, and Percentiles

In addition to the information provided by the mean and variance of a dis-
tribution, some other metrics such as the median, the mode, the percentile,
and the quantile provide useful information.

Median of a Random Variable
In probability theory, median is described as the numerical value separat-
ing the higher half of a probability distribution, from the lower half. Thus,
the median of a discrete random variable X is the number M such that
Pr(X ≤M) ≥ 0.50 and Pr(X ≥M) ≥ 0.50.

Example 32.1
Given the pmf of a discrete random variable X.

x 0 1 2 3 4 5
p(x) 0.35 0.20 0.15 0.15 0.10 0.05

Find the median of X.

Solution.
Since Pr(X ≤ 1) = 0.55 and Pr(X ≥ 1) = 0.65, 1 is the median of X

In the case of a continuous random variable X, the median is the number
M such that Pr(X ≤ M) = Pr(X ≥ M) = 0.5. Generally, M is found by
solving the equation F (M) = 0.5 where F is the cdf of X.

Example 32.2
Let X be a continuous random variable with pdf f(x) = 1

b−a for a < x < b
and 0 otherwise. Find the median of X.

Solution.
We must find a number M such that

∫M
a

dx
b−a = 0.5. This leads to the equation

M−a
b−a = 0.5. Solving this equation we find M = a+b

2

Remark 32.1
A discrete random variable might have many medians. For example, let X
be the discrete random variable with pmf given by p(x) =

(
1
2

)x
, x = 1, 2, · · ·

and 0 otherwise. Then any number 1 < M < 2 satisfies Pr(X ≤ M) =
Pr(X ≥M) = 0.5.
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Mode of a Random Variable
The mode is defined as the value that maximizes the probability mass func-
tion p(x) (discrete case) or the probability density function f(x) (continuous
case.) In the discrete case, the mode is the value that is most likely to be
sampled. In the continuous case, the mode is where f(x) is at its peak.

Example 32.3
Let X be the discrete random variable with pmf given by p(x) =

(
1
2

)x
, x =

1, 2, · · · and 0 otherwise. Find the mode of X.

Solution.
The value of x that maximizes p(x) is x = 1. Thus, the mode of X is 1

Example 32.4
Let X be the continuous random variable with pdf given by f(x) = 0.75(1−
x2) for −1 ≤ x ≤ 1 and 0 otherwise. Find the mode of X.

Solution.
The pdf is maximum for x = 0. Thus, the mode of X is 0

Percentiles and Quantiles
In statistics, a percentile is the value of a variable below which a certain per-
cent of observations fall. For example, if a score is in the 85th percentile, it is
higher than 85% of the other scores. For a random variable X and 0 < p < 1,
the 100pth percentile (or the pth quantile) is the number x such

Pr(X < x) ≤ p ≤ Pr(X ≤ x).

For a continuous random variable, this is the solution to the equation F (x) =
p. The 25th percentile is also known as the first quartile, the 50th percentile
as the median or second quartile, and the 75th percentile as the third quartile.

Example 32.5
A loss random variable X has the density function

f(x) =

{
2.5(200)2.5

x3.5
x > 200

0 otherwise.

Calculate the difference between the 25th and 75th percentiles of X.
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Solution.
First, the cdf is given by

F (x) =

∫ x

200

2.5(200)2.5

t3.5
dt.

If Q1 is the 25th percentile then it satisfies the equation

F (Q1) =
1

4

or equivalently

1− F (Q1) =
3

4
.

This leads to

3

4
=

∫ ∞
Q1

2.5(200)2.5

t3.5
dt = −

(
200

t

)2.5
∣∣∣∣∣
∞

Q1

=

(
200

Q1

)2.5

.

Solving for Q1 we find Q1 = 200(4/3)0.4 ≈ 224.4. Similarly, the third quartile
(i.e. 75th percentile) is given by Q3 = 348.2, The interquartile range
(i.e., the difference between the 25th and 75th percentiles) is Q3 − Q1 =
348.2− 224.4 = 123.8

Example 32.6
Let X be the random variable with pdf f(x) = 1

b−a for a < x < b and 0

otherwise. Find the pth quantile of X.

Solution.
We have

p = Pr(X ≤ x) =

∫ x

a

dt

b− a
=
x− a
b− a

.

Solving this equation for x, we find x = a+ (b− a)p

Example 32.7
What percentile is 0.63 quantile?

Solution.
0.63 quantile is 63rd percentile
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Example 32.8 ‡
An insurance company sells an auto insurance policy that covers losses in-
curred by a policyholder, subject to a deductible of 100 . Losses incurred
follow an exponential distribution with mean 300.
What is the 95th percentile of actual losses that exceed the deductible?

Solution.
The main difficulty here is the correct interpretation of the “95th percentile of
actual losses that exceed the deductible.” The proper interpretation involves
a conditional probability: we seek the value x such that the conditional
probability that the loss is at most x, given that it exceeds the deductible,
is 0.95, i.e., Pr(X ≤ x|X ≥ 100) = 0.95, where X denotes the loss, or
equivalently

Pr(100 ≤ X ≤ x)

Pr(X ≥ 100)
= 0.95.

The above implies
FX(x)− FX(100)

1− FX(100)
= 0.95

where FX(x) = 1 − e− 1
300

x. Simple algebra leads to the equation 0.95 = 1 −
e

1
3 e−

x
300 . Solving this equation for x we find x = −300 ln 0.05e−

1
3 ≈ 998.72
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Practice Problems

Problem 32.1
Suppose the random variable X has pmf

Pr(n) =
1

3

(
2

3

)n
, n = 0, 1, 2, · · ·

Find the median and the 70th percentile.

Problem 32.2
Suppose the random variable X has pdf

f(x) =

{
e−x x ≥ 0
0 otherwise

Find the 50th percentile.

Problem 32.3
Let Y be a continuous random variable with cumulative distribution function

F (y) =

{
0 y ≤ a

1− e− 1
2

(y−a)2 otherwise

where a is a constant. Find the 75th percentile of Y.

Problem 32.4
Let X be a randon variable with density function

f(x) =

{
λe−λx x > 0

0 otherwise

Find λ if the median of X is 1
3
.

Problem 32.5
People are dispersed on a linear beach with a density function f(y) =
4y3, 0 < y < 1, and 0 elsewhere. An ice cream vendor wishes to locate
her cart at the median of the locations (where half of the people will be on
each side of her). Where will she locate her cart?
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Problem 32.6 ‡
An automobile insurance company issues a one-year policy with a deductible
of 500. The probability is 0.8 that the insured automobile has no accident and
0.0 that the automobile has more than one accident. If there is an accident,
the loss before application of the deductible is exponentially distributed with
mean 3000.
Calculate the 95th percentile of the insurance company payout on this policy.

Problem 32.7
Using words, explain the meaning of F (1120) = 0.2 in terms of percentiles
and quantiles.

Problem 32.8
LetX be a discrete random variable with pmf p(n) = (n−1)(0.4)2(0.6)n−2, n ≥
2 and 0 otherwise. Find the mode of X.

Problem 32.9
Let X be a continuous random variable with density function

f(x) =

{
λ1

9
x(4− x) 0 < x < 3

0 otherwise

Find the mode of X.

Problem 32.10
Find the pth quantile of the exponential distribution defined by the distri-
bution function F (x) = 1− e−x for x ≥ 0 and 0 otherwise.

Problem 32.11
A continuous random variable has the pdf f(x) = 1

2
e−|x| for x ∈ R. Find the

pth quantile of X.

Problem 32.12
Let X be a loss random variable with cdf

F (x) =

{
1−

(
θ

θ+x

)α
, x ≥ 0

0, x < 0.

The 10th percentile is θ − k. The 90th percentile is 5θ − 3k. Determine the
value of α.
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Problem 32.13
Let X be a random variable with density function f(x) = 4x

(1+x2)3
for x > 0

and 0 otherwise. Calculate the mode of X.

Problem 32.14
Let X be a random variable with pdf f(x) =

(
3

5000

) (
5000
x

)4
for x > 5000 and

0 otherwise. Determine the median of X.

Problem 32.15
Let X be a random variable with cdf

F (x) =


0, x < 0
x3

27
, 0 ≤ x ≤ 3

1, x > 3.

Find the median of X.

Problem 32.16
A distribution has a pdf f(x) = 3

x4
for x > 1 and 0 otherwise. Calculate the

0.95th quantile of this distribution.
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33 The Uniform Distribution Function

The simplest continuous distribution is the uniform distribution. A continu-
ous random variable X is said to be uniformly distributed over the interval
a ≤ x ≤ b if its pdf is given by

f(x) =

{
1
b−a if a ≤ x ≤ b

0 otherwise.

Since F (x) =
∫ x
−∞ f(t)dt, the cdf is given by

F (x) =


0 if x ≤ a
x−a
b−a if a < x < b

1 if x ≥ b.

Figure 33.1 presents a graph of f(x) and F (x).

Figure 33.1

If a = 0 and b = 1 then X is called the standard uniform random variable.

Remark 33.1
The values at the two boundaries a and b are usually unimportant because
they do not alter the value of the integral of f(x) over any interval. Some-
times they are chosen to be zero, and sometimes chosen to be 1

b−a . Our

definition above assumes that f(a) = f(b) = f(x) = 1
b−a . In the case

f(a) = f(b) = 0 then the pdf becomes

f(x) =

{
1
b−a if a < x < b

0 otherwise
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Because the pdf of a uniform random variable is constant, if X is uniform,
then the probability X lies in any interval contained in (a, b) depends only
on the length of the interval-not location. That is, for any x and d such that
[x, x+ d] ⊆ [a, b] we have ∫ x+d

x

f(x)dx =
d

b− a
.

Hence uniformity is the continuous equivalent of a discrete sample space in
which every outcome is equally likely.

Example 33.1
Find the survival function of a uniform distribution X on the interval [a, b].

Solution.
The survival function is given by

S(x) =


1 if x ≤ a
b−x
b−a if a < x < b

0 if x ≥ b

Example 33.2
Let X be a continuous uniform random variable on [0, 25]. Find the pdf and
cdf of X.

Solution.
The pdf is

f(x) =

{
1
25

0 ≤ x ≤ 25
0 otherwise

and the cdf is

F (x) =


0 if x < 0
x
25

if 0 ≤ x ≤ 25
1 if x > 25

Example 33.3
Suppose that X has a uniform distribution on the interval (0, a), where a > 0.
Find Pr(X > X2).
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Solution.
If a ≤ 1 then Pr(X > X2) =

∫ a
0

1
a
dx = 1. If a > 1 then Pr(X > X2) =∫ 1

0
1
a
dx = 1

a
. Thus, Pr(X > X2) = min{1, 1

a
}

The expected value of X is

E(X) =

∫ b

a

xf(x) =

∫ b

a

x

b− a
dx

=
x2

2(b− a)

∣∣∣∣b
a

=
b2 − a2

2(b− a)

=
a+ b

2

and so the expected value of a uniform random variable is halfway between
a and b.
The second moment about the origin is

E(X2) =

∫ b

a

x2

b− a
dx =

x3

3(b− a)

∣∣∣∣b
a

=
b3 − a3

3(b− a)
=
a2 + b2 + ab

3
.

The variance of X is

Var(X) = E(X2)− (E(X))2 =
a2 + b2 + ab

3
− (a+ b)2

4
=

(b− a)2

12
.
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Practice Problems

Problem 33.1
Let X be the total time to process a passport application by the state depart-
ment. It is known that X is uniformly distributed between 3 and 7 weeks.
(a) Find f(x).
(b) What is the probability that an application will be processed in fewer
than 3 weeks ?
(c) What is the probability that an application will be processed in 5 weeks
or less ?

Problem 33.2
In a sushi bar, customers are charged for the amount of sushi they consume.
Suppose that the amount of sushi consumed is uniformly distributed between
5 ounces and 15 ounces. Let X be the random variable representing a plate
filling weight.
(a) Find the probability density function of X.
(b) What is the probability that a customer will take between 12 and 15
ounces of sushi?
(c) Find E(X) and Var(X).

Problem 33.3
Suppose that X has a uniform distribution over the interval (0, 1). Find
(a) F (x).
(b) Show that Pr(a ≤ X ≤ a+ b) for a, b ≥ 0, a+ b ≤ 1 depends only on b.

Problem 33.4
Let X be uniform on (0,1). Compute E(Xn) where n is a positive integer.

Problem 33.5
Let X be a uniform random variable on the interval (1,2) and let Y = 1

X
.

Find E[Y ].

Problem 33.6
A commuter train arrives at a station at some time that is uniformly dis-
tributes between 10:00 AM and 10:30 AM. Let X be the waiting time (in
minutes) for the train. What is the probability that you will have to wait
longer than 10 minutes?
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Problem 33.7 ‡
An insurance policy is written to cover a loss, X, where X has a uniform
distribution on [0, 1000].
At what level must a deductible be set in order for the expected payment to
be 25% of what it would be with no deductible?

Problem 33.8 ‡
The warranty on a machine specifies that it will be replaced at failure or
age 4, whichever occurs first. The machine’s age at failure, X, has density
function

f(x) =

{
1
5

0 < x < 5
0 otherwise

Let Y be the age of the machine at the time of replacement. Determine the
variance of Y.

Problem 33.9 ‡
The owner of an automobile insures it against damage by purchasing an
insurance policy with a deductible of 250 . In the event that the automobile
is damaged, repair costs can be modeled by a uniform random variable on
the interval (0, 1500).
Determine the standard deviation of the insurance payment in the event that
the automobile is damaged.

Problem 33.10
Let X be a random variable distributed uniformly over the interval [−1, 1].
(a) Compute E(e−X).
(b) Compute Var(e−X).

Problem 33.11
Let X be a random variable with a continuous uniform distribution on the
interval (1, a), a > 1. If E(X) = 6Var(X), what is the value of a?

Problem 33.12
Let X be a random variable with a continuous uniform distribution on the
interval (0, 10). What is Pr(X + 10

X
> 7)?
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34 Normal Random Variables

A normal random variable with parameters µ and σ2 has a pdf

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 , −∞ < x <∞.

This density function is a bell-shaped curve that is symmetric about µ (See
Figure 34.1).

Figure 34.1

The normal distribution is used to model phenomenon such as a person’s
height at a certain age or the measurement error in an experiment. Observe
that the distribution is symmetric about the point µ−hence the experiment
outcome being modeled should be equaly likely to assume points above µ
as points below µ. The normal distribution is probably the most important
distribution because of a result we will disuss in Section 51, known as the
central limit theorem.
To prove that the given f(x) is indeed a pdf we must show that the area
under the normal curve is 1. That is,∫ ∞

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx = 1.

First note that using the substitution y = x−µ
σ

we have∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx =
1√
2π

∫ ∞
−∞

e−
y2

2 dy.
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Toward this end, let I =
∫∞
−∞ e

− y
2

2 dy. Then

I2 =

∫ ∞
−∞

e−
y2

2 dy

∫ ∞
−∞

e−
x2

2 dx =

∫ ∞
−∞

∫ ∞
−∞

e−
x2+y2

2 dxdy

=

∫ ∞
0

∫ 2π

0

e−
r2

2 rdθdr = 2π

∫ ∞
0

re−
r2

2 dr = 2π.

Thus, I =
√

2π and the result is proved. Note that in the process above, we
used the polar substitution x = r cos θ, y = r sin θ, and dydx = rdrdθ.

Example 34.1
Let X be a normal random variable with mean 950 and standard deviation
10. Find Pr(947 ≤ X ≤ 950).

Solution.
We have

Pr(947 ≤ X ≤ 950) =
1

10
√

2π

∫ 950

947

e−
(x−950)2

200 dx ≈ 0.118

where the value of the integral is found by using a calculator

Theorem 34.1
If X is a normal distribution with parameters (µ, σ2) then Y = aX + b is a
normal distribution with paramaters (aµ+ b, a2σ2).

Proof.
We prove the result when a > 0. The proof is similar for a < 0. Let FY
denote the cdf of Y. Then

FY (x) =Pr(Y ≤ x) = Pr(aX + b ≤ x)

=P

(
X ≤ x− b

a

)
= FX

(
x− b
a

)
.

Differentiating both sides to obtain

fY (x) =
1

a
fX

(
x− b
a

)
=

1√
2πaσ

exp

[
−(
x− b
a
− µ)2/(2σ2)

]
=

1√
2πaσ

exp
[
−(x− (aµ+ b))2/2(aσ)2

]
which shows that Y is normal with parameters (aµ+ b, a2σ2)
Note that if Z = X−µ

σ
then this is a normal distribution with parameters (0,1).

Such a random variable is called the standard normal random variable.
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Theorem 34.2
If X is a normal random variable with parameters (µ, σ2) then
(a) E(X) = µ
(b) Var(X) = σ2.

Proof.
(a) Let Z = X−µ

σ
be the standard normal distribution. Then

E(Z) =
∫∞
−∞ xfZ(x)dx = 1√

2π

∫∞
−∞ xe

−x
2

2 dx = − 1√
2π
e−

x2

2

∣∣∣∞
−∞

= 0.

Thus,

E(X) = E(σZ + µ) = σE(Z) + µ = µ.

(b)

Var(Z) = E(Z2) =
1√
2π

∫ ∞
−∞

x2e−
x2

2 dx.

Using integration by parts with u = x and dv = xe−
x2

2 we find

Var(Z) = 1√
2π

[
−xe−x

2

2

∣∣∣∞
−∞

+
∫∞
−∞ e

−x
2

2 dx

]
= 1√

2π

∫∞
−∞ e

−x
2

2 dx = 1.

Thus,

Var(X) = Var(σZ + µ) = σ2Var(Z) = σ2

Figure 34.2 shows different normal curves with the same µ and different σ.

Figure 34.2
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It is traditional to denote the cdf of Z by Φ(x). That is,

Φ(x) =
1√
2π

∫ x

−∞
e−

y2

2 dy.

Now, since fZ(x) = Φ′(x) = 1√
2π
e−

x2

2 , fZ(x) is an even function. This implies

that Φ′(−x) = Φ′(x). Integrating we find that Φ(x) = −Φ(−x) + C. Letting
x = 0 we find that C = 2Φ(0) = 2(0.5) = 1. Thus,

Φ(x) = 1− Φ(−x), −∞ < x <∞. (34.1)

This implies that
Pr(Z ≤ −x) = Pr(Z > x).

Now, Φ(x) is the area under the standard curve to the left of x. The values of
Φ(x) for x ≥ 0 are given in Table 34.1 below. Equation 34.1 is used for x < 0.

Example 34.2
Let X be a normal random variable with parameters µ = 24 and σ2

X = 9.
(a) Find Pr(X > 27) using Table 34.1.
(b) Solve S(x) = 0.05 where S(x) is the survival function of X.

Solution.
(a) The desired probability is given by

Pr(X > 27) =P

(
X − 24

3
>

27− 24

3

)
= Pr(Z > 1)

=1− Pr(Z ≤ 1) = 1− Φ(1) = 1− 0.8413 = 0.1587.

(b) The equation Pr(X > x) = 0.05 is equivalent to Pr(X ≤ x) = 0.95. Note
that

Pr(X ≤ x) = P

(
X − 24

3
<
x− 24

3

)
= P

(
Z <

x− 24

3

)
= 0.95

From Table 34.1 we find Pr(Z ≤ 1.65) = 0.95. Thus, we set x−24
3

= 1.65 and
solve for x we find x = 28.95
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From the above example, we see that probabilities involving normal random
variables can be reduced to the ones involving standard normal variable. For
example

Pr(X ≤ a) = P

(
X − µ
σ

≤ a− µ
σ

)
= Φ

(
a− µ
σ

)
.

Example 34.3
Let X be a normal random variable with parameters µ and σ2. Find
(a)Pr(µ− σ ≤ X ≤ µ+ σ).
(b)Pr(µ− 2σ ≤ X ≤ µ+ 2σ).
(c)Pr(µ− 3σ ≤ X ≤ µ+ 3σ).

Solution.
(a) We have

Pr(µ− σ ≤ X ≤ µ+ σ) =Pr(−1 ≤ Z ≤ 1)

=Φ(1)− Φ(−1)

=2(0.8413)− 1 = 0.6826.

Thus, 68.26% of all possible observations lie within one standard deviation
to either side of the mean.
(b) We have

Pr(µ− 2σ ≤ X ≤ µ+ 2σ) =Pr(−2 ≤ Z ≤ 2) = Φ(2)− Φ(−2)

=2(0.9772)− 1 = 0.9544.

Thus, 95.44% of all possible observations lie within two standard deviations
to either side of the mean.
(c) We have

Pr(µ− 3σ ≤ X ≤ µ+ 3σ) =Pr(−3 ≤ Z ≤ 3) = Φ(3)− Φ(−3)

=2(0.9987)− 1 = 0.9974.

Thus, 99.74% of all possible observations lie within three standard deviations
to either side of the mean. See Figure 34.3
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Figure 34.3
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Table 34.1: Area under the Standard Normal Curve from −∞ to x

x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
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Practice Problems

Problem 34.1
The scores on a statistics test are Normally distributed with parameters
µ = 80 and σ2 = 196. Find the probability that a randomly chosen score is
(a) no greater than 70
(b) at least 95
(c) between 70 and 95.
(d) Approximately, what is the raw score corresponding to a percentile score
of 72%?

Problem 34.2
Let X be a normal random variable with parameters µ = 0.381 and σ2 =
0.0312. Compute the following:
(a) Pr(X > 0.36).
(b) Pr(0.331 < X < 0.431).
(c) Pr(|X − .381| > 0.07).

Problem 34.3
Assume the time required for a cyclist to travel a distance d follows a normal
distribution with mean 4 minutes and variance 4 seconds.
(a) What is the probability that this cyclist with travel the distance in less
than 4 minutes?
(b) What is the probability that this cyclist will travel the distance in between
3min55sec and 4min5sec?

Problem 34.4
It has been determined that the lifetime of a certain light bulb has a normal
distribution with µ = 2000 hours and σ = 200 hours.
(a) Find the probability that a bulb will last between 2000 and 2400 hours.
(b) What is the probability that a light bulb will last less than 1470 hours?

Problem 34.5
Let X be a normal random variable with mean 100 and standard deviation
15. Find Pr(X > 130) given that Φ(2) = .9772.

Problem 34.6
The lifetime X of a randomly chosen battery is normally distributed with
mean 50 and standard devaition 5.
(a) Find the probability that the battery lasts at least 42 hours.
(b) Find the probability that the battery will last between 45 to 60 hours.
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Problem 34.7 ‡
For Company A there is a 60% chance that no claim is made during the com-
ing year. If one or more claims are made, the total claim amount is normally
distributed with mean 10,000 and standard deviation 2,000 .
For Company B there is a 70% chance that no claim is made during the com-
ing year. If one or more claims are made, the total claim amount is normally
distributed with mean 9,000 and standard deviation 2,000 .
Assuming that the total claim amounts of the two companies are indepen-
dent, what is the probability that, in the coming year, Company B’s total
claim amount will exceed Company A’s total claim amount?

Problem 34.8
Let X be a normal random variable with Pr(X < 500) = 0.5 and Pr(X >
650) = 0.0227. Find the standard deviation of X.

Problem 34.9
Suppose that X is a normal random variable with parameters µ = 5, σ2 = 49.
Using the table of the normal distribution , compute: (a) Pr(X > 5.5), (b)
Pr(4 < X < 6.5), (c) Pr(X < 8), (d) Pr(|X − 7| ≥ 4).

Problem 34.10
Let X be a normal random variable with mean 1 and variance 4. Find
Pr(X2 − 2X ≤ 8).

Problem 34.11
Let X be a normal random variable with mean 360 and variance 16.
(a) Calculate Pr(X < 355).
(b) Suppose the variance is kept at 16 but the mean is to be adjusted so that
Pr(X < 355) = 0.025. Find the adjusted mean.

Problem 34.12
The length of time X (in minutes) it takes to go from your home to donwtown
is normally distributed with µ = 30 minutes and σX = 5 minutes. What is
the latest time that you should leave home if you want to be over 99% sure
of arriving in time for a job interview taking place in downtown at 2pm?
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35 The Normal Approximation to the Bino-

mial Distribution

When the number of trials in a binomial distribution is very large, the use
of the probability distribution formula p(x) =n Cxp

xqn−x becomes tedious.
An attempt was made to approximate this distribution for large values of n.
The approximating distribution is the normal distribution.
Historically, the normal distribution was discovered by De Moivre as an ap-
proximation to the binomial distribution. The result is the so-called De
Moivre-Laplace theorem.

Theorem 35.1
Let Sn denote the number of successes that occur with n independent Bernoulli
trials, each with probability p of success. Then, for a < b,

lim
n→∞

P

[
a ≤ Sn − np√

np(1− p)
≤ b

]
= Φ(b)− Φ(a)

where Φ(x) is the cdf of the standard normal distribution.

Proof.
This result is a special case of the central limit theorem, which will be dis-
cussed in Section 51. Consequently, we will defer the proof of this result until
then

Remark 35.1
How large should n be so that a normal approximation to the binomial
distribution is adequate? A rule-of-thumb for the normal distribution to
be a good approximation to the binomial distribution is to have np > 5 and
nq > 5.

Remark 35.2 (continuity correction)
Suppose we are approximating a binomial random variable with a normal
random variable. Say we want to find Pr(8 ≤ X ≤ 10) where X is a binomial
distribution. According to Figure 35.1, the probability in question is the area
of the two rectangles centered at 8 and 9. When using the normal distribution
to approximate the binomial distribution, the area under the pdf from 7.5 to
10.5 must be found. That is,

Pr(8 ≤ X ≤ 10) = Pr(7.5 ≤ N ≤ 10.5)
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where N is the corresponding normal variable. In practice, then, we apply a
continuity correction, when approximating a discrete random variable with
a continuous random variable.

Figure 35.1

Example 35.1
In a box of 100 light bulbs, 10 are found to be defective. What is the
probability that the number of defectives exceeds 13?

Solution.
Let X be the number of defective items. Then X is binomial with n = 100
and p = 0.1. Since np = 10 > 5 and nq = 9 > 5 we can use the normal
approximation to the binomial with µ = np = 10 and σ2 = np(1 − p) = 9.
We want Pr(X > 13). Using continuity correction we find

Pr(X > 13) =Pr(X ≥ 14)

=Pr(
X − 10√

9
≥ 13.5− 10√

9
)

≈1− Φ(1.17) = 1− 0.8790 = 0.121

Example 35.2
In a small town, it was found that out of every 6 people 1 is left-handed. Con-
sider a random sample of 612 persons from the town, estimate the probability
that the number of lefthanded persons is strictly between 90 and 150.
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Solution.
Let X be the number of left-handed people in the sample. Then X is a
binomial random variable with n = 612 and p = 1

6
. Since np = 102 > 5 and

n(1 − p) = 510 > 5 we can use the normal approximation to the binomial
with µ = np = 102 and σ2 = np(1− p) = 85. Using continuity correction we
find

Pr(90 < X < 150) =Pr(91 ≤ X ≤ 149) =

=Pr

(
90.5− 102√

85
≤ X − 102√

85
≤ 149.5− 102√

85

)
=Pr(−1.25 ≤ Z ≤ 5.15) ≈ 0.8943

Example 35.3
There are 90 students in a statistics class. Suppose each student has a stan-
dard deck of 52 cards of his/her own, and each of them selects 13 cards at
random without replacement from his/her own deck independent of the oth-
ers. What is the chance that there are more than 50 students who got at
least 2 aces ?

Solution.
Let X be the number of students who got at least 2 aces or more, then clearly
X is a binomial random variable with n = 90 and

p =
4C2 · 48C11

52C13

+
4C3 · 48C10

52C13

+
4C4 · 48C9

52C13

≈ 0.2573

Since np ≈ 23.157 > 5 and n(1−p) ≈ 66.843 > 5, X can be approximated by
a normal random variable with µ = 23.157 and σ =

√
np(1− p) ≈ 4.1473.

Thus,

Pr(X > 50) =1− Pr(X ≤ 50) = 1− Φ

(
50.5− 23.157

4.1473

)
≈1− Φ(6.59)
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Practice Problems

Problem 35.1
Suppose that 25% of all the students who took a given test fail. Let X be
the number of students who failed the test in a random sample of 50.
(a) What is the probability that the number of students who failed the test
is at most 10?
(b) What is the probability that the number of students who failed the test
is between 5 and 15 inclusive?

Problem 35.2
A vote on whether to allow the use of medical marijuana is being held. A
polling company will survey 200 individuals to measure support for the new
law. If in fact 53% of the population oppose the new law, use the normal
approximation to the binomial, with a continuity correction, to approximate
the probability that the poll will show a majority in favor?

Problem 35.3
A company manufactures 50,000 light bulbs a day. For every 1,000 bulbs
produced there are 50 bulbs defective. Consider testing a random sample
of 400 bulbs from today’s production. Find the probability that the sample
contains
(a) At least 14 and no more than 25 defective bulbs.
(b) At least 33 defective bulbs.

Problem 35.4
Suppose that the probability of a family with two children is 0.25 that the
children are boys. Consider a random sample of 1,000 families with two
children. Find the probability that at most 220 families have two boys.

Problem 35.5
A survey shows that 10% of the students in a college are left-handed. In a
random sample of 818, what is the probability that at most 100 students are
left-handed?
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36 Exponential Random Variables

An exponential random variable with parameter λ > 0 is a random variable
with pdf

f(x) =

{
λe−λx if x ≥ 0

0 if x < 0.

Note that ∫ ∞
0

λe−λxdx = −e−λx
∣∣∞
0

= 1.

The graph of the probability density function is shown in Figure 36.1

Figure 36.1

Exponential random variables are often used to model arrival times, waiting
times, and equipment failure times.
The expected value of X can be found using integration by parts with u = x
and dv = λe−λxdx :

E(X) =

∫ ∞
0

xλe−λxdx

=
[
−xe−λx

]∞
0

+

∫ ∞
0

e−λxdx

=
[
−xe−λx

]∞
0

+

[
−1

λ
e−λx

]∞
0

=
1

λ
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Furthermore, using integration by parts again, we may also obtain that

E(X2) =

∫ ∞
0

λx2e−λxdx =

∫ ∞
0

x2d(−e−λx)

=
[
−x2e−λx

]∞
0

+ 2

∫ ∞
o

xe−λxdx

=
2

λ2

Thus,

Var(X) = E(X2)− (E(X))2 =
2

λ2
− 1

λ2
=

1

λ2
.

Example 36.1
The time between calls received by a 911 operator has an exponential distri-
bution with an average of 3 calls per hour.
(a) Find the expected time between calls.
(b) Find the probability that the next call is received within 5 minutes.

Solution.
Let X denote the time (in hours) between calls. We are told that λ = 3.
(a) We have E(X) = 1

λ
= 1

3
.

(b) Pr(X < 1
12

) =
∫ 1

12

0
3e−3xdx ≈ 0.2212

Example 36.2
The time between hits to my website is an exponential distribution with an
average of 2 minutes between hits. Suppose that a hit has just occurred to
my website. Find the probability that the next hit won’t happen within the
next 5 minutes.

Solution.
Let X denote the time (in minutes) between two hits. Then X is an expo-
nential distribution with paramter λ = 1

2
= 0.5. Thus,

Pr(X > 5) =

∫ ∞
5

0.5e−0.5xdx ≈ 0.082085

The cumulative distribution function of an exponential random variable X
is given by

F (x) = Pr(X ≤ x) =

∫ x

0

λe−λudu = −e−λu |x0 = 1− e−λx

for x ≥ 0, and 0 otherwise.
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Example 36.3
Suppose that the waiting time (in minutes) at a post office is an exponential
random variable with mean 10 minutes. If someone arrives immediately
ahead of you at the post office, find the probability that you have to wait
(a) more than 10 minutes
(b) between 10 and 20 minutes.

Solution.
Let X be the time you must wait in line at the post office. Then X is an
exponential random variable with parameter λ = 0.1.
(a) We have Pr(X > 10) = 1− F (10) = 1− (1− e−1) = e−1 ≈ 0.3679.
(b) We have Pr(10 ≤ X ≤ 20) = F (20)− F (10) = e−1 − e−2 ≈ 0.2325

The most important property of the exponential distribution is known as
the memoryless property:

Pr(X > s+ t|X > s) = Pr(X > t), s, t ≥ 0.

This says that the probability that we have to wait for an additional time t
(and therefore a total time of s + t) given that we have already waited for
time s is the same as the probability at the start that we would have had
to wait for time t. So the exponential distribution “forgets” that it is larger
than s.
To see why the memoryless property holds, note that for all t ≥ 0, we have

Pr(X > t) =

∫ ∞
t

λe−λxdx = −e−λx |∞t = e−λt.

It follows that

Pr(X > s+ t|X > s) =
Pr(X > s+ t and X > s)

Pr(X > s)

=
Pr(X > s+ t)

Pr(X > s)

=
e−λ(s+t)

e−λs

=e−λt = Pr(X > t)

Example 36.4
Suppose that the timeX (in hours) required to repair a car has an exponential



36 EXPONENTIAL RANDOM VARIABLES 277

distribution with parameter λ = 0.25. Find
(a) the cumulative distribution function of X.
(b) Pr(X > 4).
(c) Pr(X > 10|X > 8).

Solution.
(a) It is easy to see that the cumulative distribution function is

F (x) =

{
1− e−x4 x ≥ 0

0 elsewhere

(b) Pr(X > 4) = 1− Pr(X ≤ 4) = 1− F (4) = 1− (1− e− 4
4 ) = e−1 ≈ 0.368.

(c) By the memoryless property, we find

Pr(X > 10|X > 8) =Pr(X > 8 + 2|X > 8) = Pr(X > 2)

=1− Pr(X ≤ 2) = 1− F (2)

=1− (1− e−
1
2 ) = e−

1
2 ≈ 0.6065

Example 36.5
The time between hits to my website is an exponential distribution with an
average of 5 minutes between hits.
(a) What is the probability that there are no hits in a 20-minute period?
(b) What is the probability that the first observed hit occurs between 15 and
20 minutes?
(c) Given that there are no hits in the first 5 minutes observed, what is the
probability that there are no hits in the next 15 minutes?

Solution.
Let X denote the time between two hits. Then, X is an exponential random
variable with µ = 1

E(X
) = 1

5
= 0.2 hit/minute.

(a)

Pr(X > 20) =

∫ ∞
20

0.2e−0.2xdx = −e−0.2x
∣∣∞
20

= e−4 ≈ 0.01831.

(b)

Pr(15 < X < 20) =

∫ 20

15

0.2e−0.2xdx = −e−0.2x
∣∣20

15
≈ 0.03147.

(c) By the memoryless property, we have

Pr(X > 15+5|X > 5) = Pr(X > 15) =

∫ ∞
15

0.2e−0.2xdx = −e−0.2x
∣∣∞
15
≈ 0.04979
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The exponential distribution is the only named continuous distribution that
possesses the memoryless property. To see this, suppose thatX is memoryless
continuous random variable. Let g(x) = Pr(X > x). Since X is memoryless,
we have

Pr(X > t) = Pr(X > s+t|X > s) =
Pr(X > s+ t and X > s)

Pr(X > s)
=

Pr(X > s+ t)

Pr(X > s)

and this implies

Pr(X > s+ t) = Pr(X > s)Pr(X > t)

Hence, g satisfies the equation

g(s+ t) = g(s)g(t).

Theorem 36.1
The only solution to the functional equation g(s + t) = g(s)g(t) which is
continuous from the right is g(x) = e−λx for some λ > 0.

Proof.
Let c = g(1). Then g(2) = g(1 + 1) = g(1)2 = c2 and g(3) = c3 so by simple
induction we can show that g(n) = cn for any positive integer n.
Now, let n be a positive integer, then

[
g
(

1
n

)]n
= g

(
1
n

)
g
(

1
n

)
· · · g

(
1
n

)
=

g
(
n
n

)
= c. Thus, g

(
1
n

)
= c

1
n .

Next, let m and n be two positive integers. Then g
(
m
n

)
= g

(
m · 1

n

)
=

g
(

1
n

+ 1
n

+ · · ·+ 1
n

)
=
[
g
(

1
n

)]m
= c

m
n .

Now, if t is a positive real number then we can find a sequence tn of posi-
tive rational numbers such that limn→∞ tn = t. (This is known as the density
property of the real numbers and is a topic discussed in a real analysis course).
Since g(tn) = ctn , the right-continuity of g implies g(t) = ct, t ≥ 0.
Finally, let λ = − ln c. Since 0 < c < 1, we have λ > 0. Moreover, c = e−λ

and therefore g(t) = e−λt, t ≥ 0

It follows from the previous theorem that F (x) = Pr(X ≤ x) = 1− e−λx and
hence f(x) = F ′(x) = λe−λx which shows that X is exponentially distributed.

Example 36.6
Very often, credit card customers are placed on hold when they call for
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inquiries. Suppose the amount of time until a service agent assists a customer
has an exponential distribution with mean 5 minutes. Given that a customer
has already been on hold for 2 minutes, what is the probability that he/she
will remain on hold for a total of more than 5 minutes?

Solution.
Let X represent the total time on hold. Then X is an exponential random
variable with λ = 1

5
. Thus,

Pr(X > 3 + 2|X > 2) = Pr(X > 3) = 1− F (3) = e−
3
5
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Practice Problems

Problem 36.1
Let X have an exponential distribution with a mean of 40. Compute Pr(X <
36).

Problem 36.2
Let X be an exponential function with mean equals to 5. Graph f(x) and
F (x).

Problem 36.3
A continuous random variable X has the following pdf:

f(x) =

{
1

100
e−

x
100 x ≥ 0

0 otherwise

Compute Pr(0 ≤ X ≤ 50).

Problem 36.4
Let X be an exponential random variable with mean equals to 4. Find
Pr(X ≤ 0.5).

Problem 36.5
The life length X (in years) of a dvd player is exponentially distributed with
mean 5 years. What is the probability that a more than 5-year old dvd would
still work for more than 3 years?

Problem 36.6
Suppose that the spending time X (in minutes) of a customer at a bank has
an exponential distribution with mean 3 minutes.
(a) What is the probability that a customer spends more than 5 minutes in
the bank?
(b) Under the same conditions, what is the probability of spending between
2 and 4 minutes?

Problem 36.7
The waiting time X (in minutes) of a train arrival to a station has an expo-
nential distribution with mean 3 minutes.
(a) What is the probability of having to wait 6 or more minutes for a train?
(b) What is the probability of waiting between 4 and 7 minutes for a train?
(c) What is the probability of having to wait at least 9 more minutes for the
train given that you have already waited 3 minutes?
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Problem 36.8 ‡
Ten years ago at a certain insurance company, the size of claims under home-
owner insurance policies had an exponential distribution. Furthermore, 25%
of claims were less than $1000. Today, the size of claims still has an expo-
nential distribution but, owing to inflation, every claim made today is twice
the size of a similar claim made 10 years ago. Determine the probability that
a claim made today is less than $1000.

Problem 36.9
The lifetime (in hours) of a battery installed in a radio is an exponentially dis-
tributed random variable with parameter λ = 0.01. What is the probability
that the battery is still in use one week after it is installed?

Problem 36.10 ‡
The number of days that elapse between the beginning of a calendar year
and the moment a high-risk driver is involved in an accident is exponentially
distributed. An insurance company expects that 30% of high-risk drivers will
be involved in an accident during the first 50 days of a calendar year.
What portion of high-risk drivers are expected to be involved in an accident
during the first 80 days of a calendar year?

Problem 36.11 ‡
The lifetime of a printer costing 200 is exponentially distributed with mean 2
years. The manufacturer agrees to pay a full refund to a buyer if the printer
fails during the first year following its purchase, and a one-half refund if it
fails during the second year.
If the manufacturer sells 100 printers, how much should it expect to pay in
refunds?

Problem 36.12 ‡
A device that continuously measures and records seismic activity is placed
in a remote region. The time, T, to failure of this device is exponentially
distributed with mean 3 years. Since the device will not be monitored during
its first two years of service, the time to discovery of its failure is X =
max (T, 2).
Determine E[X].

Problem 36.13 ‡
A piece of equipment is being insured against early failure. The time from
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purchase until failure of the equipment is exponentially distributed with mean
10 years. The insurance will pay an amount x if the equipment fails during
the first year, and it will pay 0.5x if failure occurs during the second or third
year. If failure occurs after the first three years, no payment will be made.
At what level must x be set if the expected payment made under this insur-
ance is to be 1000 ?

Problem 36.14 ‡
An insurance policy reimburses dental expense, X, up to a maximum benefit
of 250 . The probability density function for X is:

f(x) =

{
ce−0.004x x ≥ 0

0 otherwise

where c is a constant. Calculate the median benefit for this policy.

Problem 36.15 ‡
The time to failure of a component in an electronic device has an exponential
distribution with a median of four hours.
Calculate the probability that the component will work without failing for
at least five hours.

Problem 36.16
Let X be an exponential random variable such that Pr(X ≤ 2) = 2Pr(X >
4). Find the variance of X.

Problem 36.17 ‡
The cumulative distribution function for health care costs experienced by a
policyholder is modeled by the function

F (x) =

{
1− e− x

100 , for x > 0
0, otherwise.

The policy has a deductible of 20. An insurer reimburses the policyholder
for 100% of health care costs between 20 and 120 less the deductible. Health
care costs above 120 are reimbursed at 50%. Let G be the cumulative distri-
bution function of reimbursements given that the reimbursement is positive.
Calculate G(115).
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37 Gamma Distribution

We start this section by introducing the Gamma function defined by

Γ(α) =

∫ ∞
0

e−yyα−1dy, α > 0.

For example,

Γ(1) =

∫ ∞
0

e−ydy = −e−y |∞0 = 1.

For α > 1 we can use integration by parts with u = yα−1 and dv = e−ydy to
obtain

Γ(α) =− e−yyα−1 |∞0 +

∫ ∞
0

e−y(α− 1)yα−2dy

=(α− 1)

∫ ∞
0

e−yyα−2dy

=(α− 1)Γ(α− 1)

If n is a positive integer greater than 1 then by applying the previous relation
repeatedly we find

Γ(n) =(n− 1)Γ(n− 1)

=(n− 1)(n− 2)Γ(n− 2)

...

=(n− 1)(n− 2) · · · 3 · 2 · Γ(1) = (n− 1)!

Example 37.1
Show that Γ

(
1
2

)
=
√
π.

Solution.
Using the substitution y = z2

2
, we find

Γ

(
1

2

)
=

∫ ∞
0

y−
1
2 e−ydy =

√
2

∫ ∞
0

e−
z2

2 dz

=

√
2

2

√
2π

[
1√
2π

∫ ∞
−∞

e−
z2

2 dz

]
=
√
π
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where we used the fact that Z is the standard normal distribution with

1√
2π

∫ ∞
−∞

e−
z2

2 dz = 1

A Gamma random variable with parameters α > 0 and λ > 0 has a pdf

f(x) =

{
λe−λx(λx)α−1

Γ(α)
if x ≥ 0

0 if x < 0.

We call α the shape parameter because changing α changes the shape of
the density function. We call λ the scale parameter because if X is a
gamma distribution with parameters (α, λ) then cX is also a gamma distri-
bution with parameters (α, λ

c
) where c > 0 is a constant. See Problem 37.1.

The parameter λ rescales the density function without changing its shape.

To see that f(t) is indeed a probability density function we have

Γ(α) =

∫ ∞
0

e−xxα−1dx

1 =

∫ ∞
0

e−xxα−1

Γ(α)
dx

1 =

∫ ∞
0

λe−λy(λy)α−1

Γ(α)
dy

where we used the substitution x = λy.
The gamma distribution is skewed right as shown in Figure 37.1

Figure 37.1

Note that the above computation involves a Γ(α) integral. Thus, the origin
of the name of the random variable.
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The cdf of the gamma distribution is

F (x) =
λα

Γ(α)

∫ x

0

yα−1e−λydy.

The following reduction formula is useful when computing F (x) :∫
xne−λxdx = −1

λ
xne−λx +

n

λ

∫
xn−1e−λxdx. (37.1)

Example 37.2
Let X be a gamma random variable with α = 4 and λ = 1

2
. Compute

Pr(2 < X < 4).

Solution.
We have

Pr(2 < X < 4) =

∫ 4

2

1

24Γ(4)
x3e−

x
2 dx

=
1

96

∫ 4

2

x3e−
x
2 dx ≈ 0.124

where we used the reduction formula (37.1)

The next result provides formulas for the expected value and the variance of
a gamma distribution.

Theorem 37.1
If X is a Gamma random variable with parameters (λ, α) then
(a) E(X) = α

λ

(b) V ar(X) = α
λ2
.

Solution.
(a)

E(X) =
1

Γ(α)

∫ ∞
0

λxe−λx(λx)α−1dx

=
1

λΓ(α)

∫ ∞
0

λe−λx(λx)αdx

=
Γ(α + 1)

λΓ(α)

=
α

λ
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(b)

E(X2) =
1

Γ(α)

∫ ∞
0

x2e−λxλαxα−1dx

=
1

Γ(α)

∫ ∞
0

xα+1λαe−λxdx

=
Γ(α + 2)

λ2Γ(α)

∫ ∞
0

xα+1λα+2e−λx

Γ(α + 2)
dx

=
Γ(α + 2)

λ2Γ(α)

where the last integral is the integral of the pdf of a Gamma random variable
with parameters (α + 2, λ). Thus,

E(X2) =
Γ(α + 2)

λ2Γ(α)
=

(α + 1)Γ(α + 1)

λ2Γ(α)
=
α(α + 1)

λ2
.

Finally,

V ar(X) = E(X2)− (E(X))2 =
α(α + 1)

λ2
− α2

λ2
=

α

λ2

Example 37.3
In a certain city, the daily consumption of water (in millions of liters) can be
treated as a random variable having a gamma distribution with α = 3 and
λ = 0.5.
(a) What is the random variable? What is the expected daily consumption?
(b) If the daily capacity of the city is 12 million liters, what is the proba-
bility that this water supply will be inadequate on a given day? Set up the
appropriate integral but do not evaluate.
(c) What is the variance of the daily consumption of water?

Solution.
(a) The random variable is the daily consumption of water in millions of liters.
The expected daily consumption is the expected value of a gamma distributed
variable with parameters α = 3 and λ = 1

2
which is E(X) = α

λ
= 6.

(b) The probability is 1
23Γ(3)

∫∞
12
x2e−

x
2 dx = 1

16

∫∞
12
x2e−

x
2 dx.

(c) The variance is

Var(X) =
3

0.52
= 12
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It is easy to see that when the parameter set is restricted to (α, λ) = (1, λ)
the gamma distribution becomes the exponential distribution. Another in-
teresting special case is when the parameter set is (α, λ) =

(
n
2
, 1

2

)
where n is

a positive integer. This distribution is called the chi-squared distribution
with degrees of freedom n.. The chi-squared random variable is usually
denoted by χ2

n.

The gamma random variable can be used to model the waiting time required
for α events to occur, given that the events occur randomly in a Poisson
process with mean time between events equals to λ−1.

Example 37.4
On average, it takes you 35 minutes to hunt a duck. Suppose that you want
to bring home exactly 3 ducks. What is the probability you will need between
1 and 2 hours to hunt them?

Solution.
Let X be the time in minutes to hunt the 3 ducks. Then X is a gamma
random variable with λ = 1

35
duck per minute and α = 3 ducks. Thus,

Pr(60 < X < 120) =
∫ 120

60
1

85750
e−

x
35x2dx ≈ 0.419 where we used (37.1)
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Practice Problems

Problem 37.1
Let X be a gamma distribution with parameters (α, λ). Let Y = cX with
c > 0. Show that

FY (y) =
(λ/c)α

Γ(α)

∫ y

0

zα−1e−λ
z
c dz.

Hence, Y is a gamma distribution with parameters
(
α, λ

c

)
.

Problem 37.2
If X has a probability density function given by

f(x) =

{
4x2e−2x x > 0

0 otherwise

Find the mean and the variance.

Problem 37.3
Let X be a gamma random variable with λ = 1.8 and α = 3. Compute
Pr(X > 3).

Problem 37.4
Suppose the time (in hours) taken by a technician to fix a computer is a
random variable X having a gamma distribution with parameters α = 3
and λ = 0.5. What is the probability that it takes at most 1 hour to fix a
computer?

Problem 37.5
Suppose the continuous random variable X has the following pdf:

f(x) =

{
1
16
x2e−

x
2 if x > 0

0 otherwise

Find E(X3).

Problem 37.6
Let X be the standard normal distribution. Show that X2 is a gamma
distribution with α = λ = 1

2
.
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Problem 37.7
Let X be a gamma random variable with parameter (α, λ). Find E(etX).

Problem 37.8
Show that the gamma density function with parameters α > 1 and λ > 0
has a relative maximum at x = 1

λ
(α− 1).

Problem 37.9
Let X be a gamma distribution with parameters α = 3, and λ = 1

6
.

(a) Give the density function, as well as the mean and standard deviation of
X.
(b) Find E(3X2 +X − 1).

Problem 37.10
Find the pdf, mean and variance of the chi-squared distribution with dgrees
of freedom n.
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38 The Distribution of a Function of a Random

Variable

Let X be a continuous random variable. Let g(x) be a function. Then g(X)
is also a random variable. In this section we are interested in finding the
probability density function of g(X).
The following example illustrates the method of finding the probability den-
sity function by finding first its cdf.

Example 38.1
If the probability density of X is given by

f(x) =

{
6x(1− x) 0 < x < 1

0 otherwise

find the probability density of Y = X3.

Solution.
We have

F (y) =Pr(Y ≤ y) = Pr(X3 ≤ y) = Pr(X ≤ y
1
3 )

=

∫ y
1
3

0

6x(1− x)dx = 3y
2
3 − 2y

Hence, f(y) = F ′(y) = 2(y−
1
3 − 1), for 0 < y < 1 and 0 otherwise

Example 38.2
Let X be a random variable with probability density f(x). Find the proba-
bility density function of Y = |X|.

Solution.
Clearly, FY (y) = 0 for y ≤ 0. So assume that y > 0. Then

FY (y) =Pr(Y ≤ y) = Pr(|X| ≤ y)

=Pr(−y ≤ X ≤ y) = FX(y)− FX(−y)

Thus, fY (y) = F ′Y (y) = fX(y) + fX(−y) for y > 0 and 0 otherwise

The following theorem provides a formula for finding the probability den-
sity of g(X) for monotone g without the need for finding the distribution
function.
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Theorem 38.1
Let X be a continuous random variable with pdf fX . Let g(x) be a monotone
and differentiable function of x. Suppose that g−1(Y ) = X. Then the random
variable Y = g(X) has a pdf given by

fY (y) = fX [g−1(y)]

∣∣∣∣ ddyg−1(y)

∣∣∣∣ .
Proof.
Suppose first that g(·) is increasing. Then

FY (y) =Pr(Y ≤ y) = Pr(g(X) ≤ y)

=Pr(X ≤ g−1(y)) = FX(g−1(y))

Differentiating and using the chain rule, we find

fY (y) =
dFY (y)

dy
= fX [g−1(y)]

d

dy
g−1(y).

Now, suppose that g(·) is decreasing. Then

FY (y) =Pr(Y ≤ y) = Pr(g(X) ≤ y)

=Pr(X ≥ g−1(y)) = 1− FX(g−1(y))

Differentiating we find

fY (y) =
dFY (y)

dy
= −fX [g−1(y)]

d

dy
g−1(y)

Example 38.3
Let X be a continuous random variable with pdf fX . Find the pdf of Y = −X.

Solution.
By the previous theorem we have

fY (y) = fX(−y)

Example 38.4
Let X be a continuous random variable with pdf fX . Find the pdf of Y =
aX + b, a > 0.
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Solution.
Let g(x) = ax+ b. Then g−1(y) = y−b

a
. By the previous theorem, we have

fY (y) =
1

a
fX

(
y − b
a

)
Example 38.5
Suppose X is a random variable with the following density :

f(x) =
1

π(x2 + 1)
, −∞ < x <∞.

(a) Find the cdf of |X|.
(b) Find the pdf of X2.

Solution.
(a) |X| takes values in [0,∞). Thus, F|X|(x) = 0 for x ≤ 0. Now, for x > 0
we have

F|X|(x) = Pr(|X| ≤ x) =

∫ x

−x

1

π(x2 + 1)
dx =

2

π
tan−1 x.

Hence,

F|X|(x) =

{
0 x ≤ 0

2
π

tan−1 x x > 0.

(b) X2 also takes only nonnegative values, so the density fX2(x) = 0 for
x ≤ 0. Furthermore, FX2(x) = Pr(X2 ≤ x) = Pr(|X| ≤

√
x) = 2

π
tan−1

√
x.

So by differentiating we get

fX2(x) =

{
0 x ≤ 0
1

π
√
x(1+x)

x > 0

Remark 38.1
In general, if a function does not have a unique inverse, we must sum over
all possible inverse values.

Example 38.6
Let X be a continuous random variable with pdf fX . Find the pdf of Y = X2.
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Solution.
Let g(x) = x2. Then g−1(y) = ±√y. Thus,

FY (y) = Pr(Y ≤ y) = Pr(X2 ≤ y) = Pr(−√y ≤ X ≤ √y) = FX(
√
y)−FX(−√y).

Differentiate both sides to obtain,

fY (y) =
fX(
√
y)

2
√
y

+
fX(−√y)

2
√
y
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Practice Problems

Problem 38.1

Suppose fX(x) = 1√
2π
e−

(x−µ)2
2 and let Y = aX + b. Find fY (y).

Problem 38.2
Let X be a continuous random variable with pdf

f(x) =

{
2x 0 ≤ x ≤ 1
0 otherwise

Find probability density function for Y = 3X − 1.

Problem 38.3
Let X be a random variable with density function

f(x) =

{
2x 0 ≤ x ≤ 1
0 otherwise

Find the density function of Y = 8X3.

Problem 38.4
Suppose X is an exponential random variable with density function

f(x) =

{
λe−λx x ≥ 0

0 otherwise

What is the density function of Y = eX?

Problem 38.5
Gas molecules move about with varying velocity which has, according to the
Maxwell- Boltzmann law, a probability density given by

f(v) = cv2e−βv
2

, v ≥ 0

The kinetic energy is given by Y = E = 1
2
mv2 where m is the mass. What

is the density function of Y ?

Problem 38.6
Let X be a random variable that is uniformly distributed in (0,1). Find the
probability density function of Y = − lnX.
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Problem 38.7
Let X be a uniformly distributed function over [−π, π]. That is

f(x) =

{
1

2π
−π ≤ x ≤ π

0 otherwise

Find the probability density function of Y = cosX.

Problem 38.8
Suppose X has the uniform distribution on (0, 1). Compute the probability
density function and expected value of:
(a) Xα, α > 0 (b) lnX (c) eX (d) sin πX

Problem 38.9 ‡
The time, T, that a manufacturing system is out of operation has cumulative
distribution function

F (t) =

{
1−

(
2
t

)2
t > 2

0 otherwise

The resulting cost to the company is Y = T 2. Determine the density function
of Y, for y > 4.

Problem 38.10 ‡
An investment account earns an annual interest rate R that follows a uni-
form distribution on the interval (0.04, 0.08). The value of a 10,000 initial
investment in this account after one year is given by V = 10, 000eR.
Determine the cumulative distribution function, FV (v) of V.

Problem 38.11 ‡
An actuary models the lifetime of a device using the random variable Y =
10X0.8, where X is an exponential random variable with mean 1 year.
Determine the probability density function fY (y), for y > 0, of the random
variable Y.

Problem 38.12 ‡
Let T denote the time in minutes for a customer service representative to
respond to 10 telephone inquiries. T is uniformly distributed on the interval
with endpoints 8 minutes and 12 minutes. Let R denote the average rate, in
customers per minute, at which the representative responds to inquiries.
Find the density function fR(r) of R.
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Problem 38.13 ‡
The monthly profit of Company A can be modeled by a continuous random
variable with density function fA. Company B has a monthly profit that is
twice that of Company A.
Determine the probability density function of the monthly profit of Company
B.

Problem 38.14
Let X have normal distribution with mean 1 and standard deviation 2.
(a) Find Pr(|X| ≤ 1).
(b) Let Y = eX . Find the probability density function fY (y) of Y.

Problem 38.15
Let X be a uniformly distributed random variable on the interval (−1, 1).
Show that Y = X2 is a beta random variable with paramters (1

2
, 1).

Problem 38.16
Let X be a random variable with density function

f(x) =

{
3
2
x2 −1 ≤ x ≤ 1
0 otherwise.

(a) Find the pdf of Y = 3X.
(b) Find the pdf of Z = 3−X.
Problem 38.17
Let X be a continuous random variable with density function

f(x) =

{
1− |x| −1 < x < 1

0 otherwise.

Find the density function of Y = X2.

Problem 38.18
If f(x) = xe−

x2

2 , for x > 0 and Y = lnX, find the density function for Y.

Problem 38.19
Let X be a continuous random variable with pdf

f(x) =

{
2(1− x) 0 ≤ x ≤ 1

0 otherwise.

(a) Find the pdf of Y = 10X − 2.
(b) Find the expected value of Y.
(c) Find Pr(Y < 0).



Joint Distributions

There are many situations which involve the presence of several random vari-
ables and we are interested in their joint behavior. This chapter is concerned
with the joint probability structure of two or more random variables defined
on the same sample space.

39 Jointly Distributed Random Variables

Suppose that X and Y are two random variables defined on the same sample
space S. The joint cumulative distribution function of X and Y is the
function

FXY (x, y) = Pr(X ≤ x, Y ≤ y) = Pr({e ∈ S : X(e) ≤ x and Y (e) ≤ y}).

Example 39.1
Consider the experiment of throwing a fair coin and a fair die simultaneously.
The sample space is

S = {(H, 1), (H, 2), · · · , (H, 6), (T, 1), (T, 2), · · · , (T, 6)}.

Let X be the number of head showing on the coin, X ∈ {0, 1}. Let Y be
the number showing on the die, Y ∈ {1, 2, 3, 4, 5, 6}. Thus, if e = (H, 1) then
X(e) = 1 and Y (e) = 1. Find FXY (1, 2).

Solution.

FXY (1, 2) =Pr(X ≤ 1, Y ≤ 2)

=Pr({(H, 1), (H, 2), (T, 1), (T, 2)})

=
4

12
=

1

3

297
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In what follows, individual cdfs will be referred to as marginal distribu-
tions. These cdfs are obtained from the joint cumulative distribution as
follows

FX(x) =Pr(X ≤ x)

=Pr(X ≤ x, Y <∞)

=Pr( lim
y→∞
{X ≤ x, Y ≤ y})

= lim
y→∞

Pr(X ≤ x, Y ≤ y)

= lim
y→∞

FXY (x, y) = FXY (x,∞).

In a similar way, one can show that

FY (y) = lim
x→∞

FXY (x, y) = FXY (∞, y).

It is easy to see that

FXY (∞,∞) = Pr(X <∞, Y <∞) = 1.

Also,

FXY (−∞, y) = 0.

This follows from

0 ≤ FXY (−∞, y) = Pr(X < −∞, Y ≤ y) ≤ Pr(X < −∞) = FX(−∞) = 0.

Similarly,

FXY (x,−∞) = 0.

All joint probability statements about X and Y can be answered in terms of
their joint distribution functions. For example,

Pr(X > x, Y > y) =1− Pr({X > x, Y > y}c)
=1− Pr({X > x}c ∪ {Y > y}c)
=1− [Pr({X ≤ x} ∪ {Y ≤ y})
=1− [Pr(X ≤ x) + Pr(Y ≤ y)− Pr(X ≤ x, Y ≤ y)]

=1− FX(x)− FY (y) + FXY (x, y).
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Also, if a1 < a2 and b1 < b2 then

Pr(a1 < X ≤ a2, b1 < Y ≤ b2) =Pr(X ≤ a2, Y ≤ b2)− Pr(X ≤ a2, Y ≤ b1)

−Pr(X ≤ a1, Y ≤ b2) + Pr(X ≤ a1, Y ≤ b1)

=FXY (a2, b2)− FXY (a1, b2)− FXY (a2, b1) + FXY (a1, b1).

This is clear if you use the concept of area shown in Figure 39.1

Figure 39.1

If X and Y are both discrete random variables, we define the joint proba-
bility mass function of X and Y by

pXY (x, y) = Pr(X = x, Y = y).

The marginal probability mass function of X can be obtained from pXY (x, y)
by

pX(x) = Pr(X = x) =
∑

y:pXY (x,y)>0

pXY (x, y).

Similarly, we can obtain the marginal pmf of Y by

pY (y) = Pr(Y = y) =
∑

x:pXY (x,y)>0

pXY (x, y).

This simply means that to find the probability thatX takes on a specific value
we sum across the row associated with that value. To find the probability
that Y takes on a specific value we sum the column associated with that
value as illustrated in the next example.
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Example 39.2
A fair coin is tossed 4 times. Let the random variable X denote the number of
heads in the first 3 tosses, and let the random variable Y denote the number
of heads in the last 3 tosses.
(a) What is the joint pmf of X and Y ?
(b) What is the probability 2 or 3 heads appear in the first 3 tosses and 1 or
2 heads appear in the last three tosses?
(c) What is the joint cdf of X and Y ?
(d) What is the probability less than 3 heads occur in both the first and last
3 tosses?
(e) Find the probability that one head appears in the first three tosses.

Solution.
(a) The joint pmf is given by the following table

X\Y 0 1 2 3 pX(.)
0 1/16 1/16 0 0 2/16
1 1/16 3/16 2/16 0 6/16
2 0 2/16 3/16 1/16 6/16
3 0 0 1/16 1/16 2/16
pY (.) 2/16 6/16 6/16 2/16 1

(b) Pr((X, Y ) ∈ {(2, 1), (2, 2), (3, 1), (3, 2)}) = Pr(2, 1) + Pr(2, 2) + Pr(3, 1) +
Pr(3, 2) = 3

8

(c) The joint cdf is given by the following table

X\Y 0 1 2 3
0 1/16 2/16 2/16 2/16
1 2/16 6/16 8/16 8/16
2 2/16 8/16 13/16 14/16
3 2/16 8/16 14/16 1

(d) Pr(X < 3, Y < 3) = F (2, 2) = 13
16

(e) Pr(X = 1) = Pr((X, Y ) ∈ {(1, 0), (1, 1), (1, 2), (1, 3)}) = 1/16 + 3/16 +
2/16 = 3

8

Example 39.3
Suppose two balls are chosen from a box containing 3 white, 2 red and 5 blue
balls. Let X = the number of white balls chosen and Y = the number of
blue balls chosen. Find the joint pmf of X and Y.
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Solution.

pXY (0, 0) =
2C2

10C2

=
1

45

pXY (0, 1) =
2C1 · 5C1

10C2

=
10

45

pXY (0, 2) =
5C2

10C2

=
10

45

pXY (1, 0) =
2C1 · 3C1

10C2

=
6

45

pXY (1, 1) =
5C1 · 3C1

10C2

=
15

45

pXY (1, 2) =0

pXY (2, 0) =
3C2

10C2

=
3

45

pXY (2, 1) =0

pXY (2, 2) =0

The pmf of X is

pX(0) =Pr(X = 0) =
∑

y:pXY (0,y)>0

pXY (0, y) =
1 + 10 + 10

45
=

21

45

pX(1) =Pr(X = 1) =
∑

y:pXY (1,y)>0

pXY (1, y) =
6 + 15

45
=

21

45

pX(2) =Pr(X = 2) =
∑

y:pXY (2,y)>0

pXY (2, y) =
3

45
=

3

45

The pmf of y is

pY (0) =Pr(Y = 0) =
∑

x:pXY (x,0)>0

pXY (x, 0) =
1 + 6 + 3

45
=

10

45

pY (1) =Pr(Y = 1) =
∑

x:pXY (x,1)>0

pXY (x, 1) =
10 + 15

45
=

25

45

pY (2) =Pr(Y = 2) =
∑

x:pXY (x,2)>0

pXY (x, 2) =
10

45
=

10

45
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Two random variables X and Y are said to be jointly continuous if there
exists a function fXY (x, y) ≥ 0 with the property that for every subset C of
R2 we have

Pr((X, Y ) ∈ C) =

∫∫
(x,y)∈C

fXY (x, y)dxdy

The function fXY (x, y) is called the joint probability density function
of X and Y.
If A and B are any sets of real numbers then by letting C = {(x, y) : x ∈
A, y ∈ B} we have

Pr(X ∈ A, Y ∈ B) =

∫
B

∫
A

fXY (x, y)dxdy

As a result of this last equation we can write

FXY (x, y) =Pr(X ∈ (−∞, x], Y ∈ (−∞, y])

=

∫ y

−∞

∫ x

−∞
fXY (u, v)dudv

It follows upon differentiation that

fXY (x, y) =
∂2

∂y∂x
FXY (x, y)

whenever the partial derivatives exist.

Example 39.4
The cumulative distribution function for the joint distribution of the contin-
uous random variables X and Y is FXY (x, y) = 0.2(3x3y + 2x2y2), 0 ≤ x ≤
1, 0 ≤ y ≤ 1. Find fXY (1

2
, 1

2
).

Solution.
Since

fXY (x, y) =
∂2

∂y∂x
FXY (x, y) = 0.2(9x2 + 8xy)

we find fXY (1
2
, 1

2
) = 17

20
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Now, if X and Y are jointly continuous then they are individually continuous,
and their probability density functions can be obtained as follows:

Pr(X ∈ A) =Pr(X ∈ A, Y ∈ (−∞,∞))

=

∫
A

∫ ∞
−∞

fXY (x, y)dydx

=

∫
A

fX(x)dx

where

fX(x) =

∫ ∞
−∞

fXY (x, y)dy

is thus the probability density function of X. Similarly, the probability den-
sity function of Y is given by

fY (y) =

∫ ∞
−∞

fXY (x, y)dx.

Example 39.5
Let X and Y be random variables with joint pdf

fXY (x, y) =

{
1
4
−1 ≤ x, y ≤ 1

0 Otherwise

Determine
(a) Pr(X2 + Y 2 < 1),
(b) Pr(2X − Y > 0),
(c) Pr(|X + Y | < 2).

Solution.
(a)

Pr(X2 + Y 2 < 1) =

∫ 2π

0

∫ 1

0

1

4
rdrdθ =

π

4
.

(b)

Pr(2X − Y > 0) =

∫ 1

−1

∫ 1

y
2

1

4
dxdy =

1

2
.

Note that Pr(2X − Y > 0) is the area of the region bounded by the lines
y = 2x, x = −1, x = 1, y = −1 and y = 1. A graph of this region will help
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you understand the integration process used above.
(c) Since the square with vertices (1, 1), (1,−1), (−1, 1), (−1,−1) is com-
pletely contained in the region −2 < x+ y < 2, we have

Pr(|X + Y | < 2) = 1

Remark 39.1
Joint pdfs and joint cdfs for three or more random variables are obtained as
straightforward generalizations of the above definitions and conditions.
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Practice Problems

Problem 39.1
A security check at an airport has two express lines. Let X and Y denote the
number of customers in the first and second line at any given time. The joint
probability function of X and Y, pXY (x, y), is summarized by the following
table

X\Y 0 1 2 3 pX(.)
0 0.1 0.2 0 0 0.3
1 0.2 0.25 0.05 0 0.5
2 0 0.05 0.05 0.025 0.125
3 0 0 0.025 0.05 0.075
pY (.) 0.3 0.5 0.125 0.075 1

(a) Show that pXY (x, y) is a joint probability mass function.
(b) Find the probability that more than two customers are in line.
(c) Find Pr(|X − Y | = 1).
(d) Find pX(x).

Problem 39.2
Given:

X\Y 1 2 3 pX(.)
1 0.1 0.05 0.02 0.17
2 0.1 0.35 0.05 0.50
3 0.03 0.1 0.2 0.33
pY (.) 0.23 0.50 0.27 1

Find Pr(X ≥ 2, Y ≥ 3).

Problem 39.3
Given:

X\Y 0 1 2 pX(.)
0 0.4 0.12 0.08 0.6
1 0.15 0.08 0.03 0.26
2 0.1 0.03 0.01 0.14
pY (.) 0.65 0.23 0.12 1
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Find the following: (a) Pr(X = 0, Y = 2).
(b) Pr(X > 0, Y ≤ 1).
(c) Pr(X ≤ 1).
(d) Pr(Y > 0).
(e) Pr(X = 0).
(f) Pr(Y = 0).
(g) Pr(X = 0, Y = 0).

Problem 39.4
Given:

X\Y 15 16 pX(.)
129 0.12 0.08 0.2
130 0.4 0.30 0.7
131 0.06 0.04 0.1
pY (.) 0.58 0.42 1

(a) Find Pr(X = 130, Y = 15).
(b) Find Pr(X ≥ 130, Y ≥ 15).

Problem 39.5
Suppose the random variables X and Y have a joint pdf

fXY (x, y) =

{
20−x−y

375
0 ≤ x, y ≤ 5

0 otherwise.

Find Pr(1 ≤ X ≤ 2, 2 ≤ Y ≤ 3).

Problem 39.6
Assume the joint pdf of X and Y is

fXY (x, y) =

{
xye−

x2+y2

2 0 < x, y
0 otherwise.

(a) Find FXY (x, y).
(b) Find fX(x) and fY (y).

Problem 39.7
Show that the following function is not a joint probability density function?

fXY (x, y) =

{
xay1−a 0 ≤ x, y ≤ 1

0 otherwise
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where 0 < a < 1. What factor should you multiply fXY (x, y) to make it a
joint probability density function?

Problem 39.8 ‡
A device runs until either of two components fails, at which point the de-
vice stops running. The joint density function of the lifetimes of the two
components, both measured in hours, is

fXY (x, y) =

{
x+y

8
0 < x, y < 2

0 otherwise

What is the probability that the device fails during its first hour of operation?

Problem 39.9 ‡
An insurance company insures a large number of drivers. Let X be the
random variable representing the company’s losses under collision insurance,
and let Y represent the company’s losses under liability insurance. X and Y
have joint density function

fXY (x, y) =

{
2x+2−y

4
0 < x < 1, 0 < y < 2

0 otherwise

What is the probability that the total loss is at least 1 ?

Problem 39.10 ‡
A car dealership sells 0, 1, or 2 luxury cars on any day. When selling a car,
the dealer also tries to persuade the customer to buy an extended warranty
for the car. Let X denote the number of luxury cars sold in a given day, and
let Y denote the number of extended warranties sold. Given the following
information

Pr(X = 0, Y = 0) =
1

6

Pr(X = 1, Y = 0) =
1

12

Pr(X = 1, Y = 1) =
1

6

Pr(X = 2, Y = 0) =
1

12

Pr(X = 2, Y = 1) =
1

3

Pr(X = 2, Y = 2) =
1

6
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What is the variance of X?

Problem 39.11 ‡
A company is reviewing tornado damage claims under a farm insurance pol-
icy. Let X be the portion of a claim representing damage to the house and
let Y be the portion of the same claim representing damage to the rest of
the property. The joint density function of X and Y is

fXY (x, y) =

{
6[1− (x+ y)] x > 0, y > 0, x+ y < 1

0 otherwise.

Determine the probability that the portion of a claim representing damage
to the house is less than 0.2.

Problem 39.12 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
15y x2 ≤ y ≤ x
0 otherwise.

Find the marginal density function of Y.

Problem 39.13 ‡
Let X represent the age of an insured automobile involved in an accident.
Let Y represent the length of time the owner has insured the automobile at
the time of the accident. X and Y have joint probability density function

fXY (x, y) =

{
1
64

(10− xy2) 2 ≤ x ≤ 10, 0 ≤ y ≤ 1
0 otherwise.

Calculate the expected age of an insured automobile involved in an accident.

Problem 39.14 ‡
A device contains two circuits. The second circuit is a backup for the first,
so the second is used only when the first has failed. The device fails when
and only when the second circuit fails.
Let X and Y be the times at which the first and second circuits fail, respec-
tively. X and Y have joint probability density function

fXY (x, y) =

{
6e−xe−2y 0 < x < y <∞

0 otherwise.

What is the expected time at which the device fails?
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Problem 39.15 ‡
The future lifetimes (in months) of two components of a machine have the
following joint density function:

fXY (x, y) =

{
6

125000
(50− x− y) 0 < x < 50− y < 50

0 otherwise.

What is the probability that both components are still functioning 20 months
from now?

Problem 39.16
Suppose the random variables X and Y have a joint pdf

fXY (x, y) =

{
x+ y 0 ≤ x, y ≤ 1

0 otherwise.

Find Pr(X >
√
Y ).

Problem 39.17 ‡
Let X and Y be random losses with joint density function

fXY (x, y) = e−(x+y), x > 0, y > 0

and 0 otherwise. An insurance policy is written to reimburse X + Y.
Calculate the probability that the reimbursement is less than 1.

Problem 39.18
Let X and Y be continuous random variables with joint cumulative distri-
bution FXY (x, y) = 1

250
(20xy − x2y − xy2) for 0 ≤ x ≤ 5 and 0 ≤ y ≤ 5.

Compute Pr(X > 2).

Problem 39.19
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
xy 0 ≤ x ≤ 2, 0 ≤ y ≤ 1
0 otherwise.

Find Pr(X
2
≤ Y ≤ X).
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Problem 39.20
Let X and Y be random variables with common range {1, 2} and such that
Pr(X = 1) = 0.7,Pr(X = 2) = 0.3,Pr(Y = 1) = 0.4,Pr(Y = 2) = 0.6, and
Pr(X = 1, Y = 1) = 0.2.
(a) Find the joint probability mass function pXY (x, y).
(b) Find the joint cumulative distribution function FXY (x, y).

Problem 39.21 ‡
A device contains two components. The device fails if either component fails.
The joint density function of the lifetimes of the components, measured in
hours, is f(s, t), where 0 < s < 1 and 0 < t < 1.
What is the probability that the device fails during the first half hour of
operation?

Problem 39.22 ‡
A client spends X minutes in an insurance agent’s waiting room and Y
minutes meeting with the agent. The joint density function of X and Y can
be modeled by

f(x, y) =

{
1

800
e
x
40

+ y
20 for x > 0, y > 0

0 otherwise.

Find the probability that a client spends less than 60 minutes at the agent’s
office. You do NOT have to evaluate the integrals.
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40 Independent Random Variables

Let X and Y be two random variables defined on the same sample space S.
We say that X and Y are independent random variables if and only if for
any two sets of real numbers A and B we have

Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A)Pr(Y ∈ B). (40.1)

That is, the events E = {X ∈ A} and F = {Y ∈ B} are independent.
The following theorem expresses independence in terms of pdfs.

Theorem 40.1
If X and Y are discrete random variables, then X and Y are independent if
and only if

pXY (x, y) = pX(x)pY (y)

where pX(x) and pY (y) are the marginal pmfs of X and Y respectively.
Similar result holds for continuous random variables where sums are replaced
by integrals and pmfs are replaced by pdfs.

Proof.
Suppose that X and Y are independent. Then by letting A = {x} and
B = {y} in Equation 40.1 we obtain

Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y)

that is
pXY (x, y) = pX(x)pY (y).

Conversely, suppose that pXY (x, y) = pX(x)pY (y). Let A and B be any sets
of real numbers. Then

Pr(X ∈ A, Y ∈ B) =
∑
y∈B

∑
x∈A

pXY (x, y)

=
∑
y∈B

∑
x∈A

pX(x)pY (y)

=
∑
y∈B

pY (y)
∑
x∈A

pX(x)

=Pr(Y ∈ B)Pr(X ∈ A)

and thus equation 40.1 is satisfied. That is, X and Y are independent
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Example 40.1
A month of the year is chosen at random (each with probability 1

12
). Let X

be the number of letters in the month’s name, and let Y be the number of
days in the month (ignoring leap year).
(a) Write down the joint pdf of X and Y. From this, compute the pdf of X
and the pdf of Y.
(b) Find E(Y ).
(c) Are the events “X ≤ 6” and “Y = 30” independent?
(d) Are X and Y independent random variables?

Solution.
(a) The joint pdf is given by the following table

Y\ X 3 4 5 6 7 8 9 pY (y)
28 0 0 0 0 0 1

12
0 1

12

30 0 1
12

1
12

0 0 1
12

1
12

4
12

31 1
12

1
12

1
12

1
12

2
12

1
12

0 7
12

pX(x) 1
12

2
12

2
12

1
12

2
12

3
12

1
12

1

(b) E(Y ) =
(

1
12

)
× 28 +

(
4
12

)
× 30 +

(
7
12

)
× 31 = 365

12

(c) We have Pr(X ≤ 6) = 6
12

= 1
2
, Pr(Y = 30) = 4

12
= 1

3
, Pr(X ≤ 6, Y =

30) = 2
12

= 1
6
. Since, Pr(X ≤ 6, Y = 30) = Pr(X ≤ 6)Pr(Y = 30), the two

events are independent.
(d) Since pXY (5, 28) = 0 6= pX(5)pY (28) = 1

6
× 1

12
, X and Y are dependent

Example 40.2 ‡
Automobile policies are separated into two groups: low-risk and high-risk.
Actuary Rahul examines low-risk policies, continuing until a policy with a
claim is found and then stopping. Actuary Toby follows the same procedure
with high-risk policies. Each low-risk policy has a 10% probability of having
a claim. Each high-risk policy has a 20% probability of having a claim. The
claim statuses of polices are mutually independent.
Calculate the probability that Actuary Rahul examines fewer policies than
Actuary Toby.

Solution.
Let R be the random variable denoting the number of policies examined by
Rahul until a claim is found. Then R is a geometric random variable with
pmf pR(r) = 0.1(0.9)r−1. Likewise, let T be the random variable denoting the
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number of policies examined by Toby until a claim is found. Then T is a ge-
ometric random variable with pmf pT (t) = 0.2(0.8)t−1. The joint distribution
is given by

pRT (r, t) = 0.02(0.9)r−1(0.8)t−1.

We want to find Pr(R < T ). We have

Pr(R < T ) =
∞∑
r=1

∞∑
t=r+1

0.02(0.9)r−1(0.8)t−1

=
∞∑
r=1

0.02(0.9)r−1 0.8r

1− 0.8

=
0.02

0.2

1

0.9

∞∑
r=1

(0.72)r

=
1

9

0.72

1− 0.72
= 0.2857

In the jointly continuous case the condition of independence is equivalent to

fXY (x, y) = fX(x)fY (y).

It follows from the previous theorem, that if you are given the joint pdf of
the random variables X and Y, you can determine whether or not they are
independent by calculating the marginal pdfs of X and Y and determining
whether or not the relationship fXY (x, y) = fX(x)fY (y) holds.

Example 40.3
The joint pdf of X and Y is given by

fXY (x, y) =

{
4e−2(x+y) 0 < x <∞, 0 < y <∞

0 Otherwise.

Are X and Y independent?

Solution.
Marginal density fX(x) is given by

fX(x) =

∫ ∞
0

4e−2(x+y)dy = 2e−2x

∫ ∞
0

2e−2ydy = 2e−2x, x > 0.
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Similarly, the mariginal density fY (y) is given by

fY (y) =

∫ ∞
0

4e−2(x+y)dx = 2e−2y

∫ ∞
0

2e−2xdx = 2e−2y, y > 0.

Now since

fXY (x, y) = 4e−2(x+y) = [2e−2x][2e−2y] = fX(x)fY (y)

X and Y are independent

Example 40.4
The joint pdf of X and Y is given by

fXY (x, y) =

{
3(x+ y) 0 ≤ x+ y ≤ 1, 0 ≤ x, y <∞

0 Otherwise.

Are X and Y independent?

Solution.
For the limit of integration see Figure 40.1 below.

Figure 40.1

The marginal pdf of X is

fX(x) =

∫ 1−x

0

3(x+ y)dy = 3xy +
3

2
y2

∣∣∣∣1−x
0

=
3

2
(1− x2), 0 ≤ x ≤ 1.

The marginal pdf of Y is

fY (y) =

∫ 1−y

0

3(x+ y)dx =
3

2
x2 + 3xy

∣∣∣∣1−y
0

=
3

2
(1− y2), 0 ≤ y ≤ 1.

But

fXY (x, y) = 3(x+ y) 6= 3

2
(1− x2)

3

2
(1− y2) = fX(x)fY (y)

so that X and Y are dependent

The following theorem provides a necessary and sufficient condition for two
random variables to be independent.
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Theorem 40.2
Two continuous random variables X and Y are independent if and only if
their joint probability density function can be expressed as

fXY (x, y) = h(x)g(y), −∞ < x <∞,−∞ < y <∞.

The same result holds for discrete random variables.

Proof.
Suppose first that X and Y are independent. Then fXY (x, y) = fX(x)fY (y).
Let h(x) = fX(x) and g(y) = fY (y).
Conversely, suppose that fXY (x, y) = h(x)g(y). Let C =

∫∞
−∞ h(x)dx and

D =
∫∞
−∞ g(y)dy. Then

CD =

(∫ ∞
−∞

h(x)dx

)(∫ ∞
−∞

g(y)dy

)
=

∫ ∞
−∞

∫ ∞
−∞

h(x)g(y)dxdy =

∫ ∞
−∞

∫ ∞
−∞

fXY (x, y)dxdy = 1.

Furthermore,

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
−∞

h(x)g(y)dy = h(x)D

and

fY (y) =

∫ ∞
−∞

fXY (x, y)dx =

∫ ∞
−∞

h(x)g(y)dx = g(y)C.

Hence,
fX(x)fY (y) = h(x)g(y)CD = h(x)g(y) = fXY (x, y).

This proves that X and Y are independent

Example 40.5
The joint pdf of X and Y is given by

fXY (x, y) =

{
xye−

(x2+y2)
2 0 ≤ x, y <∞

0 Otherwise.

Are X and Y independent?
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Solution.
We have

fXY (x, y) = xye−
(x2+y2)

2 = xe−
x2

2 ye−
y2

2

By the previous theorem, X and Y are independent

Example 40.6
The joint pdf of X and Y is given by

fXY (x, y) =

{
x+ y 0 ≤ x, y < 1

0 Otherwise.

Are X and Y independent?

Solution.
Let

I(x, y) =

{
1 0 ≤ x < 1, 0 ≤ y < 1
0 otherwise.

Then

fXY (x, y) = (x+ y)I(x, y)

which clearly does not factor into a part depending only on x and another
depending only on y. Thus, by the previous theoremX and Y are dependent

Example 40.7 (Order statistics)
Let X and Y be two independent random variables with X having a normal
distribution with mean µ and variance 1 and Y being the standard normal
distribution.
(a) Find the density of Z = min{X, Y }.
(b) For each t ∈ R calculate Pr(max(X, Y )−min(X, Y ) > t).

Solution.
(a) Fix a real number z. Then

FZ(z) =Pr(Z ≤ z) = 1− Pr(min(X, Y ) > z)

=1− Pr(X > z)Pr(Y > z) = 1− (1− Φ(z − µ))(1− Φ(z)).

Hence,

fZ(z) = (1− Φ(z − µ))φ(z) + (1− Φ(z))φ(z − µ)
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where φ(z) is the pdf of the standard normal distribution.
(b) If t ≤ 0 then Pr(max(X, Y )−min(X, Y ) > t) = 1. If t > 0 then

Pr(max(X, Y )−min(X, Y ) > t) =Pr(|X − Y | > t)

=1− Φ

(
t− µ√

2

)
+ Φ

(
−t− µ√

2

)
Note that X − Y is normal with mean µ and variance 2

Example 40.8 (Order statistics)
Suppose X1, · · · , Xn are independent and identically distributed random
variables with cdf FX(x). Define U and L as

U =max{X1, X2, · · · , Xn}
L =min{X1, X2, · · · , Xn}

(a) Find the cdf of U.
(b) Find the cdf of L.
(c) Are U and L independent?

Solution.
(a) First note the following equivalence of events

{U ≤ u} ⇔ {X1 ≤ u,X2 ≤ u, · · · , Xn ≤ u}.

Thus,

FU(u) =Pr(U ≤ u) = Pr(X1 ≤ u,X2 ≤ u, · · · , Xn ≤ u)

=Pr(X1 ≤ u)Pr(X2 ≤ u) · · ·Pr(Xn ≤ u) = (FX(x))n

(b) Note the following equivalence of events

{L > l} ⇔ {X1 > l,X2 > l, · · · , Xn > l}.

Thus,

FL(l) =Pr(L ≤ l) = 1− Pr(L > l)

=1− Pr(X1 > l,X2 > l, · · · , Xn > l)

=1− Pr(X1 > l)Pr(X2 > l) · · ·Pr(Xn > l)

=1− (1− FX(x))n



318 JOINT DISTRIBUTIONS

(c) No. First note that Pr(L > l) = 1 − FL(l). From the definition of cdf
there must be a number l0 such that FL(l0) 6= 1. Thus, Pr(L > l0) 6= 0. But
Pr(L > l0|U ≤ u) = 0 for any u < l0. This shows that Pr(L > l0|U ≤ u) 6=
Pr(L > l0)

Remark 40.1
L defined in the previous example is referred to as the first order statistics.
U is referred to as the nth order statistics.
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Practice Problems

Problem 40.1
Let X and Y be random variables with joint pdf given by

fXY (x, y) =

{
e−(x+y) 0 ≤ x, y

0 otherwise.

(a) Are X and Y independent?
(b) Find Pr(X < Y ).
(c) Find Pr(X < a).

Problem 40.2
The random vector (X, Y ) is said to be uniformly distributed over a region
R in the plane if, for some constant c, its joint pdf is

fXY (x, y) =

{
c (x, y) ∈ R
0 otherwise

(a) Show that c = 1
A(R)

where A(R) is the area of the region R.

(b) Suppose that R = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}. Show that X and
Y are independent, with each being distributed uniformly over (−1, 1).
(c) Find Pr(X2 + Y 2 ≤ 1).

Problem 40.3
Let X and Y be random variables with joint pdf given by

fXY (x, y) =

{
6(1− y) 0 ≤ x ≤ y ≤ 1

0 otherwise.

(a) Find Pr(X ≤ 3
4
, Y ≥ 1

2
).

(b) Find fX(x) and fY (y).
(c) Are X and Y independent?

Problem 40.4
Let X and Y have the joint pdf given by

fXY (x, y) =

{
kxy 0 ≤ x, y ≤ 1

0 otherwise.

(a) Find k.
(b) Find fX(x) and fY (y).
(c) Are X and Y independent?
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Problem 40.5
Let X and Y have joint density

fXY (x, y) =

{
kxy2 0 ≤ x, y ≤ 1

0 otherwise.

(a) Find k.
(b) Compute the marginal densities of X and of Y .
(c) Compute Pr(Y > 2X).
(d) Compute Pr(|X − Y | < 0.5).
(e) Are X and Y independent?

Problem 40.6
Suppose the joint density of random variables X and Y is given by

fXY (x, y) =

{
kx2y−3 1 ≤ x, y ≤ 2

0 otherwise.

(a) Find k.
(b) Are X and Y independent?
(c) Find Pr(X > Y ).

Problem 40.7
Let X and Y be continuous random variables, with the joint probability
density function

fXY (x, y) =

{
3x2+2y

24
0 ≤ x, y ≤ 2

0 otherwise.

(a) Find fX(x) and fY (y).
(b) Are X and Y independent?
(c) Find Pr(X + 2Y < 3).

Problem 40.8
Let X and Y have joint density

fXY (x, y) =

{
4
9

x ≤ y ≤ 3− x, 0 ≤ x
0 otherwise.

(a) Compute the marginal densities of X and Y.
(b) Compute Pr(Y > 2X).
(c) Are X and Y independent?
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Problem 40.9 ‡
A study is being conducted in which the health of two independent groups
of ten policyholders is being monitored over a one-year period of time. In-
dividual participants in the study drop out before the end of the study with
probability 0.2 (independently of the other participants).
What is the probability that at least 9 participants complete the study in
one of the two groups, but not in both groups?

Problem 40.10 ‡
The waiting time for the first claim from a good driver and the waiting time
for the first claim from a bad driver are independent and follow exponential
distributions with means 6 years and 3 years, respectively.
What is the probability that the first claim from a good driver will be filed
within 3 years and the first claim from a bad driver will be filed within 2
years?

Problem 40.11 ‡
An insurance company sells two types of auto insurance policies: Basic and
Deluxe. The time until the next Basic Policy claim is an exponential random
variable with mean two days. The time until the next Deluxe Policy claim
is an independent exponential random variable with mean three days.
What is the probability that the next claim will be a Deluxe Policy claim?

Problem 40.12 ‡
Two insurers provide bids on an insurance policy to a large company. The
bids must be between 2000 and 2200 . The company decides to accept the
lower bid if the two bids differ by 20 or more. Otherwise, the company will
consider the two bids further. Assume that the two bids are independent
and are both uniformly distributed on the interval from 2000 to 2200.
Determine the probability that the company considers the two bids further.

Problem 40.13 ‡
A family buys two policies from the same insurance company. Losses under
the two policies are independent and have continuous uniform distributions
on the interval from 0 to 10. One policy has a deductible of 1 and the other
has a deductible of 2. The family experiences exactly one loss under each
policy.
Calculate the probability that the total benefit paid to the family does not
exceed 5.
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Problem 40.14 ‡
In a small metropolitan area, annual losses due to storm, fire, and theft are
assumed to be independent, exponentially distributed random variables with
respective means 1.0, 1.5, and 2.4 .
Determine the probability that the maximum of these losses exceeds 3.

Problem 40.15 ‡
A device containing two key components fails when, and only when, both
components fail. The lifetimes, X and Y , of these components are inde-
pendent with common density function f(t) = e−t, t > 0. The cost, Z, of
operating the device until failure is 2X + Y.
Find the probability density function of Z.

Problem 40.16 ‡
A company offers earthquake insurance. Annual premiums are modeled by
an exponential random variable with mean 2. Annual claims are modeled
by an exponential random variable with mean 1. Premiums and claims are
independent. Let X denote the ratio of claims to premiums.
What is the density function of X?

Problem 40.17
Let X and Y be independent continuous random variables with common
density function

fX(x) = fY (x) =

{
1 0 < x < 1
0 otherwise.

What is Pr(X2 ≥ Y 3)?

Problem 40.18
Suppose that discrete random variables X and Y each take only the values 0
and 1. It is known that Pr(X = 0|Y = 1) = 0.6 and Pr(X = 1|Y = 0) = 0.7.
Is it possible that X and Y are independent? Justify your conclusion.

Problem 40.19
Let X and Y be two discrete random variables with joint distribution given
by the following table.

Y\ X 1 5
2 θ1 + θ2 θ1 + 2θ2

4 θ1 + 2θ2 θ1 + θ2
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We assume that −0.25 ≤ θ1 ≤ 2.5 and 0 ≤ θ2 ≤ 0.35. Find θ1 and θ2 when
X and Y are independent.
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41 Sum of Two Independent Random Vari-

ables: Discrete Case

In this section we turn to the important question of determining the distribu-
tion of a sum of independent random variables in terms of the distributions of
the individual constituents. In this section, we consider only sums of discrete
random variables, reserving the case of continuous random variables for the
next section. We consider here only discrete random variables whose values
are nonnegative integers. Their distribution mass functions are then defined
on these integers.
Suppose X and Y are two independent discrete random variables with pmf
pX(x) and pY (y) respectively. We would like to determine the pmf of the
random variable X + Y. To do this, we note first that for any nonnegative
integer n we have

{X + Y = n} =
n⋃
k=0

Ak

where Ak = {X = k} ∩ {Y = n− k}. Note that Ai ∩ Aj = ∅ for i 6= j. Since
the Ai’s are pairwise disjoint and X and Y are independent, we have

Pr(X + Y = n) =
n∑
k=0

Pr(X = k)Pr(Y = n− k).

Thus,

pX+Y (n) = pX(n) ∗ pY (n)

where pX(n) ∗ pY (n) is called the convolution of pX and pY .

Example 41.1
A die is rolled twice. Let X and Y be the outcomes, and let Z = X + Y be
the sum of these outcomes. Find the probability mass function of Z.

Solution. Note that X and Y have the common pmf :

x 1 2 3 4 5 6
pX 1/6 1/6 1/6 1/6 1/6 1/6
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The probability mass function of Z is then the convolution of pX with itself.
Thus,

Pr(Z = 2) =pX(1)pX(1) =
1

36

Pr(Z = 3) =pX(1)pX(2) + pX(2)pX(1) =
2

36

Pr(Z = 4) =pX(1)pX(3) + pX(2)pX(2) + pX(3)pX(1) =
3

36

Continuing in this way we would find Pr(Z = 5) = 4/36,Pr(Z = 6) =
5/36,Pr(Z = 7) = 6/36,Pr(Z = 8) = 5/36,Pr(Z = 9) = 4/36,Pr(Z = 10) =
3/36,Pr(Z = 11) = 2/36, and Pr(Z = 12) = 1/36

Example 41.2
Let X and Y be two independent Poisson random variables with respective
parameters λ1 and λ2. Compute the pmf of X + Y.

Solution.
For every positive integer we have

{X + Y = n} =
n⋃
k=0

Ak

where Ak = {X = k, Y = n − k} for 0 ≤ k ≤ n. Moreover, Ai ∩ Aj = ∅ for
i 6= j. Thus,

pX+Y (n) =Pr(X + Y = n) =
n∑
k=0

Pr(X = k, Y = n− k)

=
n∑
k=0

Pr(X = k)Pr(Y = n− k)

=
n∑
k=0

e−λ1
λk1
k!
e−λ2

λn−k2

(n− k)!

=e−(λ1+λ2)

n∑
k=0

λk1λ
n−k
2

k!(n− k)!

=
e−(λ1+λ2)

n!

n∑
k=0

n!

k!(n− k)!
λk1λ

n−k
2

=
e−(λ1+λ2)

n!
(λ1 + λ2)n
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Thus, X + Y is a Poisson random variable with parameter λ1 + λ2

Example 41.3
Let X and Y be two independent binomial random variables with respective
parameters (n, p) and (m, p). Compute the pmf of X + Y.

Solution.
X represents the number of successes in n independent trials, each of which
results in a success with probability p; similarly, Y represents the number
of successes in m independent trials, each of which results in a success with
probability p. Hence, as X and Y are assumed to be independent, it follows
that X + Y represents the number of successes in n+m independent trials,
each of which results in a success with probability p. So X + Y is a binomial
random variable with parameters (n+m, p)

Example 41.4
Two bias coins are being flipped repeatedly. The probability that coin 1
comes up heads is 1

4
, while that of coin 2 is 3

4
. Each coin is being flipped until

a head comes up. What is the pmf of the total number of flips until both
coins come up heads?

Solution.
Let X and Y be the number of flips of coins 1 and 2 to come up heads for
the first time. Then, X+Y is the total number of flips until both coins come
up heads for the first time. The random variables X and Y are independent
geometric random variables with parameters 1/4 and 3/4, respectively. By
convolution, we have

pX+Y (n) =
n−1∑
k=1

1

4

(
3

4

)k−1
3

4

(
1

4

)n−k−1

=
1

4n

n−1∑
k=1

3k =
3

2

3n−1 − 1

4n
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Practice Problems

Problem 41.1
Let X and Y be two independent discrete random variables with probabil-
ity mass functions defined in the tables below. Find the probability mass
function of Z = X + Y.

x 0 1 2 3
pX(x) 0.10 0.20 0.30 0.40

y 0 1 2
pY (y) 0.25 0.40 0.35

Problem 41.2
Suppose X and Y are two independent binomial random variables with re-
spective parameters (20, 0.2) and (10, 0.2). Find the pmf of X + Y.

Problem 41.3
Let X and Y be independent random variables each geometrically distributed
with parameter p, i.e.

pX(n) = pY (n) =

{
p(1− p)n−1 n = 1, 2, · · ·

0 otherwise.

Find the probability mass function of X + Y.

Problem 41.4
Consider the following two experiments: the first has outcome X taking
on the values 0, 1, and 2 with equal probabilities; the second results in an
(independent) outcome Y taking on the value 3 with probability 1/4 and 4
with probability 3/4. Find the probability mass function of X + Y.

Problem 41.5 ‡
An insurance company determines that N, the number of claims received
in a week, is a random variable with P [N = n] = 1

2n+1 , where n ≥ 0. The
company also determines that the number of claims received in a given week
is independent of the number of claims received in any other week.
Determine the probability that exactly seven claims will be received during
a given two-week period.

Problem 41.6
Suppose X and Y are independent, each having Poisson distribution with
means 2 and 3, respectively. Let Z = X + Y. Find Pr(X + Y = 1).
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Problem 41.7
Suppose that X has Poisson distribution with parameter λ and that Y has
geometric distribution with parameter p and is independent of X. Find simple
formulas in terms of λ and p for the following probabilities. (The formulas
should not involve an infinite sum.)
(a) Pr(X + Y = 2)
(b) Pr(Y > X)

Problem 41.8
Let X and Y be two independent random variables with common pmf given
by

x 0 1 2 y
pX(x) 0.5 0.25 0.25 pY (y)

Find the probability mass function of X + Y.

Problem 41.9
Let X and Y be two independent random variables with pmfs given by

pX(x) =

{
1
3

x = 1, 2, 3
0 otherwise

pY (y) =


1
2

y = 0
1
3

y = 1
1
6

y = 2
0 otherwise.

Find the probability mass function of X + Y.

Problem 41.10
Let X and Y be two independent identically distributed geometric distribu-
tions with parameter p. Show that X +Y is a negative binomial distribution
with parameters (2, p).

Problem 41.11
LetX, Y, Z be independent Poisson random variables with E(X) = 3, E(Y ) =
1, and E(Z) = 4. What is Pr(X + Y + Z ≤ 1)?

Problem 41.12
The number of phone calls received by an operator in 5-minute period follows
a Poisson distribution with a mean of λ. Find the probability that the total
number of phone calls received in 10 randomly selected 5-minute periods is
10.
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42 Sum of Two Independent Random Vari-

ables: Contniuous Case

In this section, we consider the continuous version of the problem posed
in Section 41: How are sums of independent continuous random variables
distributed?

Example 42.1
Let X and Y be two random variables with joint probability density

fXY (x, y) =

{
6e−3x−2y x > 0, y > 0

0 elsewhere

Find the probability density of Z = X + Y.

Solution.
Integrating the joint probability density over the shaded region of Figure
42.1, we get

FZ(a) = Pr(Z ≤ a) =

∫ a

0

∫ a−y

0

6e−3x−2ydxdy = 1 + 2e−3a − 3e−2a

and differentiating with respect to a we find

fZ(a) = 6(e−2a − e−3a)

for a > 0 and 0 elsewhere

Figure 42.1
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The above process can be generalized with the use of convolutions which
we define next. Let X and Y be two continuous random variables with
probability density functions fX(x) and fY (y), respectively. Assume that
both fX(x) and fY (y) are defined for all real numbers. Then the convolution
fX ∗ fY of fX and fY is the function given by

(fX ∗ fY )(a) =

∫ ∞
−∞

fX(a− y)fY (y)dy

=

∫ ∞
−∞

fY (a− x)fX(x)dx

This definition is analogous to the definition, given for the discrete case, of
the convolution of two probability mass functions. Thus it should not be
surprising that if X and Y are independent, then the probability density
function of their sum is the convolution of their densities.

Theorem 42.1
Let X and Y be two independent random variables with density functions
fX(x) and fY (y) defined for all x and y. Then the sum X + Y is a random
variable with density function fX+Y (a), where fX+Y is the convolution of fX
and fY .

Proof.
The cumulative distribution function is obtained as follows:

FX+Y (a) =Pr(X + Y ≤ a) =

∫∫
x+y≤a

fX(x)fY (y)dxdy

=

∫ ∞
−∞

∫ a−y

−∞
fX(x)fY (y)dxdy =

∫ ∞
−∞

∫ a−y

−∞
fX(x)dxfY (y)dy

=

∫ ∞
−∞

FX(a− y)fY (y)dy

Differentiating the previous equation with respect to a we find

fX+Y (a) =
d

da

∫ ∞
−∞

FX(a− y)fY (y)dy

=

∫ ∞
−∞

d

da
FX(a− y)fY (y)dy

=

∫ ∞
−∞

fX(a− y)fY (y)dy

=(fX ∗ fY )(a)
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Example 42.2
Let X and Y be two independent random variables uniformly distributed on
[0, 1]. Compute the probability density function of X + Y.

Solution.
Since

fX(a) = fY (a) =

{
1 0 ≤ a ≤ 1
0 otherwise

by the previous theorem

fX+Y (a) =

∫ 1

0

fX(a− y)dy.

Now the integrand is 0 unless 0 ≤ a − y ≤ 1(i.e. unless a − 1 ≤ y ≤ a) and
then it is 1. So if 0 ≤ a ≤ 1 then

fX+Y (a) =

∫ a

0

dy = a.

If 1 < a < 2 then

fX+Y (a) =

∫ 1

a−1

dy = 2− a.

Hence,

fX+Y (a) =


a 0 ≤ a ≤ 1

2− a 1 < a < 2
0 otherwise

Example 42.3
Let X and Y be two independent exponential random variables with common
parameter λ. Compute fX+Y (a).

Solution.
We have

fX(a) = fY (a) =

{
λe−λa 0 ≤ a

0 otherwise.

If a ≥ 0 then

fX+Y (a) =

∫ ∞
−∞

fX(a− y)fY (y)dy

=λ2

∫ a

0

e−λady = aλ2e−λa.
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If a < 0 then fX+Y (a) = 0. Hence,

fX+Y (a) =

{
aλ2e−λa 0 ≤ a

0 otherwise

Example 42.4
Let X and Y be two independent random variables, each with the standard
normal density. Compute fX+Y (a).

Solution.
We have

fX(a) = fY (a) =
1√
2π
e−

x2

2 .

By Theorem 42.1 we have

fX+Y (a) =
1

2π

∫ ∞
−∞

e−
(a−y)2

2 e−
y2

2 dy

=
1

2π
e−

a2

4

∫ ∞
−∞

e−(y−a
2

)2dy

=
1

2π
e−

a2

4
√
π

[
1√
π

∫ ∞
−∞

e−w
2

dw

]
, w = y − a

2
.

The expression in the brackets equals 1, since it is the integral of the normal
density function with µ = 0 and σ = 1√

2
. Hence,

fX+Y (a) =
1√
4π
e−

a2

4

Example 42.5
Let X and Y be two independent gamma random variables with respective
parameters (s, λ) and (t, λ). Show that X + Y is a gamma random variable
with parameters (s+ t, λ).

Solution.
We have

fX(a) = λe−λa(λa)s−1

Γ(s)
and fY (a) = λe−λa(λa)t−1

Γ(t)
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By Theorem 42.1 we have

fX+Y (a) =
1

Γ(s)Γ(t)

∫ a

0

λe−λ(a−y)[λ(a− y)]s−1λe−λy(λy)t−1dy

=
λs+te−λa

Γ(s)Γ(t)

∫ a

0

(a− y)s−1yt−1dy

=
λs+te−λaas+t−1

Γ(s)Γ(t)

∫ 1

0

(1− x)s−1xt−1dx, x =
y

a
.

Using the fact that ∫ 1

0

(1− x)s−1xt−1dx =
Γ(s)Γ(t)

Γ(s+ t)
.

we can write

fX+Y (a) =
λe−λa(λa)s+t−1

Γ(s+ t)

Example 42.6
The joint distribution function of X and Y is given by

fXY (x, y) =

{
3
11

(5x+ y) x, y > 0, x+ 2y < 2
0 elsewhere

Find the probability density of Z = X + Y.

Solution.
Note first that the region of integration is the interior of the triangle with
vertices at (0, 0), (0, 1), and (2, 0). From Figure 42.2, we see that F (a) = 0 if
a < 0. If 0 ≤ a < 1 then

FZ(a) = Pr(Z ≤ a) =

∫ a

0

∫ a−y

0

3

11
(5x+ y)dxdy =

3

11
a3.

If 1 ≤ a < 2 then the two lines x + y = a and x + 2y = 2 intersect at
(2a− 2, 2− a). In this case,

FZ(a) =Pr(Z ≤ a)

=

∫ 2−a

0

∫ a−y

0

3

11
(5x+ y)dxdy +

∫ 1

2−a

∫ 2−2y

0

3

11
(5x+ y)dxdy

=
3

11

(
−7

3
a3 + 9a2 − 8a+

7

3

)
.
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If a ≥ 2 then FZ(a) is the area of the shaded triangle which is equal to 1.
Differentiating with respect to a we find

fZ(a) =


9
11
a2 0 < a ≤ 1

3
11

(−7a2 + 18a− 8) 1 < a < 2
0 elsewhere

Figure 42.2
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Practice Problems

Problem 42.1
Let X be an exponential random variable with parameter λ and Y be an
exponential random variable with parameter 2λ independent of X. Find the
probability density function of X + Y.

Problem 42.2
Let X be an exponential random variable with parameter λ and Y be a
uniform random variable on [0,1] independent of X. Find the probability
density function of X + Y.

Problem 42.3
Let X and Y be two independent random variables with probability density
functions (p.d.f.) , fX and fY respectively. Find the pdf of X + 2Y.

Problem 42.4
Consider two independent random variables X and Y. Let fX(x) = 1 − x

2

if 0 ≤ x ≤ 2 and 0 otherwise. Let fY (y) = 2 − 2y for 0 ≤ y ≤ 1 and 0
otherwise. Find the probability density function of X + Y.

Problem 42.5
LetX and Y be two independent and identically distributed random variables
with common density function

f(x) =

{
2x 0 < x < 1
0 otherwise

Find the probability density function of X + Y.

Problem 42.6
Let X and Y be independent exponential random variables with pairwise
distinct respective parameters α and β. Find the probability density function
of X + Y.

Problem 42.7
Let X and Y be two random variables with common pdf

fX(t) = fY (t) =

{
e−t t > 0
0 otherwise

Find the density function of W = 2X + Y.
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Problem 42.8
Let X and Y be independent random variables with density functions

fX(x) =

{
1
2
−1 ≤ x ≤ 1

0 otherwise

fY (y) =

{
1
2

3 ≤ y ≤ 5
0 otherwise.

Find the probability density function of X + Y.

Problem 42.9
Let X and Y be independent random variables with density functions

fX(x) =

{
1
2

0 < x < 2
0 otherwise

fY (y) =

{
y
2

0 < y < 2
0 otherwise.

Find the probability density function of X + Y.

Problem 42.10
Let X and Y be independent random variables with density functions

fX(x) =
1√

2πσ1

e
− (x−µ1)

2

2σ21

and

fY (y) =
1√

2πσ2

e
− (y−µ2)

2

2σ22 .

Find the probability density function of X + Y.

Problem 42.11
Let X have a uniform distribution on the interval (1, 3). What is the proba-
bility that the sum of 2 independent observations of X is greater than 5?

Problem 42.12
Let X and Y be two independent exponential random variables each with
mean 1. Find the pdf of Z = X + Y.

Problem 42.13
X1 and X2 are independent exponential random variables each with a mean
of 1. Find Pr(X1 +X2 < 1).



43 CONDITIONAL DISTRIBUTIONS: DISCRETE CASE 337

43 Conditional Distributions: Discrete Case

Recall that for any two events E and F the conditional probability of E given
F is defined by

Pr(E|F ) =
Pr(E ∩ F )

Pr(F )

provided that Pr(F ) > 0.
In a similar way, if X and Y are discrete random variables then we define
the conditional probability mass function of X given that Y = y by

pX|Y (x|y) = Pr(X = x|Y = y) =
Pr(X = x, Y = y)

Pr(Y = y)
=
pXY (x, y)

pY (y)
(43.1)

provided that pY (y) > 0.

Example 43.1
Two coins are being tossed repeatedly. The tossing of each coin stops when
the coin comes up a head.
(a) Find the probability that the two coins come up heads at the same time.
(b) Find the conditional distribution of the number of coin tosses given that
the two coins come up heads simultaneously.

Solution.
(a) Let X be the number of tosses of the first coin before getting a head,
and Y be the number of tosses of the second coin before getting a head. So
X and Y are independent identically distributed geometric random variables
with parameter p = 1

2
. Thus,

Pr(X = Y ) =
∞∑
k=1

Pr(X = k, Y = k) =
∞∑
k=1

Pr(X = k)Pr(Y = k)

=
∞∑
k=1

1

4k
=

1

3

(b) Notice that given the event [X = Y ] the number of coin tosses is well
defined and it is X (or Y ). So for any k ≥ 1 we have

Pr(X = k|Y = k) =
Pr(X = k, Y = k)

Pr(X = Y )
=

1
4k

1
3

=
3

4

(
1

4

)k−1

.
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Thus given [X = Y ], the number of tosses follows a geometric distribution
with parameter p = 3

4

Sometimes it is not the joint distribution that is known, but rather, for
each y, one knows the conditional distribution of X given Y = y. If one also
knows the distribution of Y, then one can recover the joint distribution using
(43.1). We also mention one more use of (43.1):

pX(x) =
∑
y

pXY (x, y) =
∑
y

pX|Y (x|y)pY (y). (43.2)

Thus, given the conditional distribution of X given Y = y for each possible
value y, and the (marginal) distribution of Y, one can compute the (marginal)
distribution of X, using (43.2).
The conditional cumulative distribution ofX given that Y = y is defined
by

FX|Y (x|y) = Pr(X ≤ x|Y = y) =
∑
a≤x

pX|Y (a|y).

Note that if X and Y are independent, then the conditional mass function
and the conditional distribution function are the same as the unconditional
ones. This follows from the next theorem.

Theorem 43.1
If X and Y are independent and pY (y) > 0 then

pX|Y (x|y) = pX(x).

Proof.
We have

pX|Y (x|y) =Pr(X = x|Y = y)

=
Pr(X = x, Y = y)

Pr(Y = y)

=
Pr(X = x)Pr(Y = y)

Pr(Y = y)

=Pr(X = x) = pX(x)
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Example 43.2
Given the following table.

X\ Y Y=1 Y=2 Y=3 pX(x)
X=1 .01 .20 .09 .3
X=2 .07 .00 .03 .1
X=3 .09 .05 .06 .2
X=4 .03 .25 .12 .4
pY (y) .2 .5 .3 1

Find pX|Y (x|y) where Y = 2.

Solution.

pX|Y (1|2) =
pXY (1, 2)

pY (2)
=
.2

.5
= 0.4

pX|Y (2|2) =
pXY (2, 2)

pY (2)
=

0

.5
= 0

pX|Y (3|2) =
pXY (3, 2)

pY (2)
=
.05

.5
= 0.1

pX|Y (4|2) =
pXY (4, 2)

pY (2)
=
.25

.5
= 0.5

pX|Y (x|2) =
pXY (x, 2)

pY (2)
=

0

.5
= 0, x > 4

Example 43.3
If X and Y are independent Poisson random variables with respective pa-
rameters λ1 and λ2, calculate the conditional distribution of X, given that
X + Y = n.
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Solution.
We have

Pr(X = k|X + Y = n) =
Pr(X = k,X + Y = n)

Pr(X + Y = n)

=
Pr(X = k, Y = n− k)

Pr(X + Y = n)

=
Pr(X = k)Pr(Y = n− k))

Pr(X + Y = n)

=
e−λ1λk1
k!

e−λ2λn−k2

(n− k)!

[
e−(λ1+λ2)(λ1 + λ2)n

n!

]−1

=
n!

k!(n− k)!

λk1λ
n−k
2

(λ1 + λ2)n

=

(
n
k

)(
λ1

λ1 + λ2

)k (
λ2

λ1 + λ2

)n−k
In other words, the conditional mass distribution function of X given that
X + Y = n, is the binomial distribution with parameters n and λ1

λ1+λ2
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Practice Problems

Problem 43.1
Given the following table.

X\ Y Y=0 Y=1 pX(x)
X=0 .4 .1 .5
X=1 .2 .3 .5
pY (y) .6 .4 1

Find pX|Y (x|y) where Y = 1.

Problem 43.2
Let X be a random variable with range the set {1, 2, 3, 4, 5} and Y be a
random variable with range the set {1, 2, · · · , X}.
(a) Find pXY (x, y).
(b) Find pX|Y (x|y).
(c) Are X and Y independent?

Problem 43.3
The following is the joint distribution function of X and Y.

X\Y 4 3 2 pX(x)
5 0.1 0.05 0 0.15
4 0.15 0.15 0 0.3
3 0.10 0.15 0.10 0.35
2 0 0.05 0.10 0.15
1 0 0 0.05 0.05
pY (y) 0.35 0.40 0.25 1

Find Pr(X|Y = 4) for X = 3, 4, 5.

Problem 43.4
A fair coin is tossed 4 times. Let the random variable X denote the number of
heads in the first 3 tosses, and let the random variable Y denote the number
of heads in the last 3 tosses. The joint pmf is given by the following table
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X\Y 0 1 2 3 pX(x)
0 1/16 1/16 0 0 2/16
1 1/16 3/16 2/16 0 6/16
2 0 2/16 3/16 1/16 6/16
3 0 0 1/16 1/16 2/16
pY (y) 2/16 6/16 6/16 2/16 1

What is the conditional pmf of the number of heads in the first 3 coin tosses
given exactly 1 head was observed in the last 3 tosses?

Problem 43.5
Two dice are rolled. Let X and Y denote, respectively, the largest and
smallest values obtained. Compute the conditional mass function of Y given
X = x, for x = 1, 2, · · · , 6. Are X and Y independent?

Problem 43.6
Let X and Y be discrete random variables with joint probability function

pXY (x, y) =

{
n!yx(pe−1)y(1−p)n−y

y!(n−y)!x!
y = 0, 1, · · · , n ;x = 0, 1, · · ·

0 otherwise

(a) Find pY (y).
(b) Find the conditional probability distribution of X, given Y = y. Are X
and Y independent? Justify your answer.

Problem 43.7
Let X and Y have the joint probability function pXY (x, y) described as fol-
lows:

X\ Y 0 1 pX(x)
0 1/18 3/18 4/18
1 4/18 3/18 7/18
2 6/18 1/18 7/18
pY (y) 11/18 7/18 1

Find pX|Y (x|y) and pY |X(y|x).

Problem 43.8
Let X and Y be random variables with joint probability mass function

pXY (x, y) = c(1− 2−x)y
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where x = 0, 1, · · · , N − 1 and y = 0, 1, 2, · · ·
(a) Find c.
(b) Find pX(x).
(c) Find pY |X(y|x), the conditional probability mass function of Y given
X = x.

Problem 43.9
Let X and Y be identically independent Poisson random variables with
paramter λ. Find Pr(X = k|X + Y = n).

Problem 43.10
If two cards are randomly drawn (without replacement) from an ordinary
deck of 52 playing cards, Y is the number of aces obtained in the first draw
and X is the total number of aces obtained in both draws, find
(a) the joint probability distribution of X and Y ;
(b) the marginal distribution of Y ;
(c) the conditional distribution of X given Y = 1.

Problem 43.11 ‡
Let N1 and N2 represent the numbers of claims submitted to a life insurance
company in April and May, respectively. The joint probability function of
N1 and N2 is

Pr(n1, n2) =

{
3
4

(
1
4

)n1−1
e−n1(1− e−n1)n2−1, for n1 = 1, 2, 3, · · · and n2 = 1, 2, 3, · · ·

0 otherwise.

Calculate the expected number of claims that will be submitted to the com-
pany in May if exactly 2 claims were submitted in April.
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44 Conditional Distributions: Continuous Case

In this section, we develop the distribution of X given Y when both are
continuous random variables. Unlike the discrete case, we cannot use simple
conditional probability to define the conditional probability of an event given
Y = y, because the conditioning event has probability 0 for any y. However,
we motivate our approach by the following argument.
Suppose X and Y are two continuous random variables with joint density
fXY (x, y). Let fX|Y (x|y) denote the probability density function of X given
that Y = y. We define

Pr(a < X < b|Y = y) =

∫ b

a

fX|Y (x|y)dx.

Then for δ very small we have (See Remark 30.1)

Pr(x ≤ X ≤ x+ δ|Y = y) ≈ δfX|Y (x|y).

On the other hand, for small ε we have

Pr(x ≤ X ≤ x+ δ|Y = y) ≈Pr(x ≤ X ≤ x+ δ|y ≤ Y ≤ y + ε)

=
Pr(x ≤ X ≤ x+ δ, y ≤ Y ≤ y + ε)

Pr(y ≤ Y ≤ y + ε)

≈δεfXY (x, y)

εfY (y)
.

In the limit, as ε tends to 0, we are left with

δfX|Y (x|y) ≈ δfXY (x, y)

fY (y)
.

This suggests the following definition. The conditional density function
of X given Y = y is

fX|Y (x|y) =
fXY (x, y)

fY (y)

provided that fY (y) > 0.
Compare this definition with the discrete case where

pX|Y (x|y) =
pXY (x, y)

pY (y)
.
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Example 44.1
Suppose X and Y have the following joint density

fXY (x, y) =

{
1
2
|X|+ |Y | < 1

0 otherwise.

(a) Find the marginal distribution of X.
(b) Find the conditional distribution of Y given X = 1

2
.

Solution.
(a) Clearly, X only takes values in (−1, 1). So fX(x) = 0 if |x| ≥ 1. Let
−1 < x < 1,

fX(x) =

∫ ∞
−∞

1

2
dy =

∫ 1−|x|

−1+|x|

1

2
dy = 1− |x|.

(b) The conditional density of Y given X = 1
2

is then given by

fY |X(y|x) =
f(1

2
, y)

fX(1
2
)

=

{
1 −1

2
< y < 1

2

0 otherwise.

Thus, fY |X follows a uniform distribution on the interval
(
−1

2
, 1

2

)
Example 44.2
Suppose that X is uniformly distributed on the interval [0, 1] and that, given
X = x, Y is uniformly distributed on the interval [1− x, 1].
(a) Determine the joint density fXY (x, y).
(b) Find the probability Pr(Y ≥ 1

2
).

Solution.
Since X is uniformly distributed on [0, 1], we have fX(x) = 1, 0 ≤ x ≤ 1.
Similarly, since, given X = x, Y is uniformly distributed on [1 − x, 1], the
conditional density of Y given X = x is 1

1−(1−x)
= 1

x
on the interval [1−x, 1];

i.e., fY |X(y|x) = 1
x
, 1− x ≤ y ≤ 1 for 0 ≤ x ≤ 1. Thus

fXY (x, y) = fX(x)fY |X(y|x) =
1

x
, 0 < x < 1, 1− x < y < 1.
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(b) Using Figure 44.1 we find

Pr(Y ≥ 1

2
) =

∫ 1
2

0

∫ 1

1−x

1

x
dydx+

∫ 1

1
2

∫ 1

1
2

1

x
dydx

=

∫ 1
2

0

1− (1− x)

x
dx+

∫ 1

1
2

1/2

x
dx

=
1 + ln 2

2

Figure 44.1

Note that ∫ ∞
−∞

fX|Y (x|y)dx =

∫ ∞
−∞

fXY (x, y)

fY (y)
dx =

fY (y)

fY (y)
= 1.

The conditional cumulative distribution function of X given Y = y is
defined by

FX|Y (x|y) = Pr(X ≤ x|Y = y) =

∫ x

−∞
fX|Y (t|y)dt.

From this definition, it follows

fX|Y (x|y) =
∂

∂x
FX|Y (x|y).

Example 44.3
The joint density of X and Y is given by

fXY (x, y) =

{
15
2
x(2− x− y) 0 ≤ x, y ≤ 1

0 otherwise.

Compute the conditional density of X, given that Y = y for 0 ≤ y ≤ 1.
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Solution.
The marginal density function of Y is

fY (y) =

∫ 1

0

15

2
x(2− x− y)dx =

15

2

(
2

3
− y

2

)
.

Thus,

fX|Y (x|y) =
fXY (x, y)

fY (y)

=
x(2− x− y)

2
3
− y

2

=
6x(2− x− y)

4− 3y

Example 44.4
The joint density function of X and Y is given by

fXY (x, y) =

{
e
−xy e−y

y
x ≥ 0, y ≥ 0

0 otherwise.

Compute Pr(X > 1|Y = y).

Solution.
The marginal density function of Y is

fY (y) = e−y
∫ ∞

0

1

y
e−

x
y dx = −e−y

[
−e−

x
y

]∞
0

= e−y.

Thus,

fX|Y (x|y) =
fXY (x, y)

fY (y)

=

e
−xy e−y

y

e−y

=
1

y
e−

x
y
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Hence,

Pr(X > 1|Y = y) =

∫ ∞
1

1

y
e−

x
y dx

=− e−
x
y |∞1 = e−

1
y

We end this section with the following theorem.

Theorem 44.1
Continuous random variables X and Y with fY (y) > 0 are independent if
and only if

fX|Y (x|y) = fX(x).

Proof.
Suppose first that X and Y are independent. Then fXY (x, y) = fX(x)fY (y).
Thus,

fX|Y (x|y) =
fXY (x, y)

fY (y)
=
fX(x)fY (y)

fY (y)
= fX(x).

Conversely, suppose that fX|Y (x|y) = fX(x). Then fXY (x, y) = fX|Y (x|y)fY (y) =
fX(x)fY (y). This shows that X and Y are independent

Example 44.5
Let X and Y be two continuous random variables with joint density function

fXY (x, y) =

{
1
2

0 ≤ y < x ≤ 2
0 otherwise.

(a) Find fX(x), fY (y) and fX|Y (x|1).
(b) Are X and Y independent?

Solution.
(a) We have

fX(x) =

∫ x

0

1

2
dy =

x

2
, 0 ≤ x ≤ 2

fY (y) =

∫ 2

y

1

2
dx =

1

2
(2− y), 0 ≤ y ≤ 2

and

fX|Y (x|1) =
fXY (x, 1)

fY (1)
=

1
2
1
2

= 1, 1 ≤ x ≤ 2.

(b) Since fX|Y (x|1) 6= fX(x), X and Y are dependent
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Practice Problems

Problem 44.1
Let X and Y be two random variables with joint density function

fXY (x, y) =

{
5x2y −1 ≤ x ≤ 1, 0 < y ≤ |x|

0 otherwise.

Find fX|Y (x|y), the conditional probability density function of X given Y =
y. Sketch the graph of fX|Y (x|0.5).

Problem 44.2
Suppose that X and Y have joint density function

fXY (x, y) =

{
8xy 0 ≤ x < y ≤ 1
0 otherwise.

Find fX|Y (x|y), the conditional probability density function of X given Y =
y.

Problem 44.3
Suppose that X and Y have joint density function

fXY (x, y) =

{
3y2

x3
0 ≤ y < x ≤ 1

0 otherwise.

Find fY |X(y|x), the conditional probability density function of Y given X =
x.

Problem 44.4
The joint density function of X and Y is given by

fXY (x, y) =

{
xe−x(y+1) x ≥ 0, y ≥ 0

0 otherwise.

Find the conditional density of X given Y = y and that of Y given X = x.

Problem 44.5
Let X and Y be continuous random variables with conditional and marginal
p.d.f.’s given by

fX(x) =
x3e−x

6
I(0,∞)(x)
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and

fY |x(y|x) =
3y2

x3
I(0,x)(y)

where IA(x) is the indicator function of A.
(a) Find the joint p.d.f. of X and Y.
(b) Find the conditional p.d.f. of X given Y = y.

Problem 44.6
Suppose X, Y are two continuous random variables with joint probability
density function

fXY (x, y) =

{
12xy(1− x) 0 < x, y < 1

0 otherwise.

(a) Find fX|Y (x|y). Are X and Y independent?
(b) Find Pr(Y < 1

2
|X > 1

2
).

Problem 44.7
The joint probability density function of the random variables X and Y is
given by

fXY (x, y) =

{
1
3
x− y + 1 1 ≤ x ≤ 2, 0 ≤ y ≤ 1

0 otherwise.

(a) Find the conditional probability density function of X given Y = y.
(b) Find Pr(X < 3

2
|Y = 1

2
).

Problem 44.8 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
24xy 0 < x < 1, 0 < y < 1− x

0 otherwise.

Calculate Pr
(
Y < X|X = 1

3

)
.

Problem 44.9 ‡
Once a fire is reported to a fire insurance company, the company makes an
initial estimate, X, of the amount it will pay to the claimant for the fire loss.
When the claim is finally settled, the company pays an amount, Y, to the
claimant. The company has determined that X and Y have the joint density
function

fXY (x, y) =

{
2

x2(x−1)
y−(2x−1)/(x−1) x > 1, y > 1

0 otherwise.
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Given that the initial claim estimated by the company is 2, determine the
probability that the final settlement amount is between 1 and 3 .

Problem 44.10 ‡
A company offers a basic life insurance policy to its employees, as well as a
supplemental life insurance policy. To purchase the supplemental policy, an
employee must first purchase the basic policy.
Let X denote the proportion of employees who purchase the basic policy, and
Y the proportion of employees who purchase the supplemental policy. Let
X and Y have the joint density function fXY (x, y) = 2(x+ y) on the region
where the density is positive.
Given that 10% of the employees buy the basic policy, what is the probability
that fewer than 5% buy the supplemental policy?

Problem 44.11 ‡
An auto insurance policy will pay for damage to both the policyholder’s car
and the other driver’s car in the event that the policyholder is responsible
for an accident. The size of the payment for damage to the policyholder’s
car, X, has a marginal density function of 1 for 0 < x < 1. Given X = x, the
size of the payment for damage to the other driver’s car, Y, has conditional
density of 1 for x < y < x+ 1.
If the policyholder is responsible for an accident, what is the probability that
the payment for damage to the other driver’s car will be greater than 0.5?

Problem 44.12 ‡
You are given the following information about N, the annual number of
claims for a randomly selected insured:

Pr(N = 0) =
1

2

Pr(N = 1) =
1

3

Pr(N > 1) =
1

6

Let S denote the total annual claim amount for an insured. When N = 1, S
is exponentially distributed with mean 5 . When N > 1, S is exponentially
distributed with mean 8 . Determine Pr(4 < S < 8).
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Problem 44.13
Let Y have a uniform distribution on the interval (0, 1), and let the con-
ditional distribution of X given Y = y be uniform on the interval (0,

√
y).

What is the marginal density function of X for 0 < x < 1?

Problem 44.14 ‡
The distribution of Y, given X, is uniform on the interval [0, X]. The marginal
density of X is

fX(x) =

{
2x for 0 < x < 1
0 otherwise.

Determine the conditional density of X, given Y = y > 0.

Problem 44.15
Suppose that X has a continuous distribution with p.d.f. fX(x) = 2x on
(0, 1) and 0 elsewhere. Suppose that Y is a continuous random variable such
that the conditional distribution of Y given X = x is uniform on the interval
(0, x). Find the mean and variance of Y.

Problem 44.16 ‡
An insurance policy is written to cover a loss X where X has density function

fX(x) =

{
3
8
x2 0 ≤ x ≤ 2
0 otherwise.

The time T (in hours) to process a claim of size x, where 0 ≤ x ≤ 2, is
uniformly distributed on the interval from x to 2x.
Calculate the probability that a randomly chosen claim on this policy is
processed in three hours or more.
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45 Joint Probability Distributions of Functions

of Random Variables

Theorem 38.1 provided a result for finding the pdf of a function of one random
variable: if Y = g(X) is a function of the random variable X, where g(x) is
monotone and differentiable then the pdf of Y is given by

fY (y) = fX(g−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣ .
An extension to functions of two random variables is given in the following
theorem.

Theorem 45.1
Let X and Y be jointly continuous random variables with joint probability
density function fXY (x, y). Let U = g1(X, Y ) and V = g2(X, Y ). Assume
that the functions u = g1(x, y) and v = g2(x, y) can be solved uniquely
for x and y. Furthermore, suppose that g1 and g2 have continuous partial
derivatives at all points (x, y) and such that the Jacobian determinant

J(x, y) =

∣∣∣∣∣ ∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

∣∣∣∣∣ =
∂g1

∂x

∂g2

∂y
− ∂g1

∂y

∂g2

∂x
6= 0

for all x and y. Then the random variables U and V are continuous random
variables with joint density function given by

fUV (u, v) = fXY (x(u, v), y(u, v))|J(x(u, v), y(u, v))|−1

Proof.
We first remind the reader about the change of variable formula for a double
integral. Suppose x = x(u, v) and y = y(u, v) are two differentiable functions
of u and v.We assume that the functions x and y take a point in the uv−plane
to exactly one point in the xy−plane.
Let us see what happens to a small rectangle T in the uv−plane with sides
of lengths ∆u and ∆v as shown in Figure 45.1.
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Figure 45.1

Since the side-lengths are small, by local linearity each side of the rectangle in
the uv−plane is transformed into a line segment in the xy−plane. The result
is that the rectangle in the uv−plane is transformed into a parallelogram R
in the xy−plane with sides in vector form

~a = [x(u+ ∆u, v)− x(u, v)]~i+ [y(u+ ∆u, v)− y(u, v)]~j ≈ ∂x

∂u
∆u~i+

∂y

∂u
∆u~j

and

~b = [x(u, v + ∆v)− x(u, v)]~i+ [y(u, v + ∆v)− y(u, v)]~j ≈ ∂x

∂v
∆v~i+

∂y

∂v
∆v~j

Now, the area of R is

Area R ≈ ||~a×~b|| =
∣∣∣∣∂x∂u ∂y∂v − ∂x

∂v

∂y

∂u

∣∣∣∣∆u∆v

Using determinant notation, we define the Jacobian, ∂(x,y)
∂(u,v)

, as follows

∂(x, y)

∂(u, v)
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
=

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣
Thus, we can write

Area R ≈
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣∆u∆v
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Now, suppose we are integrating f(x, y) over a region R. Partition R into
mn small parallelograms. Then using Riemann sums we can write∫

R

f(x, y)dxdy ≈
m∑
j=1

n∑
i=1

f(xij, yij) · Area of Rij

≈
m∑
j=1

n∑
i=1

f(x(uij, vij), y(uij, vij))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣∆u∆v

where (xij, yij) in Rij corresponds to a point (uij, vij) in Tij. Now, letting
m,n→∞ to otbain∫

R

f(x, y)dxdy =

∫
T

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv.
The result of the theorem follows from the fact that if a region R in the
xy−plane maps into the region T in the uv−plane then we must have

Pr((X, Y ) ∈ R) =

∫ ∫
R

fXY (x, y)dxdy

=

∫ ∫
T

fXY (x(u, v), y(u, v))|J(x(u, v), y(u, v))|−1dudv

=Pr((U, V ) ∈ T )

Example 45.1
Let X and Y be jointly continuous random variables with density function
fXY (x, y). Let U = X + Y and V = X − Y. Find the joint density function
of U and V.

Solution.
Let u = g1(x, y) = x+y and v = g2(x, y) = x−y. Then x = u+v

2
and y = u−v

2
.

Moreover

J(x, y) =

∣∣∣∣ 1 1
1 −1

∣∣∣∣ = −2

Thus,

fUV (u, v) =
1

2
fXY

(
u+ v

2
,
u− v

2

)
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Example 45.2
Let X and Y be jointly continuous random variables with density function

fXY (x, y) = 1
2π
e−

x2+y2

2 . Let U = X + Y and V = X − Y. Find the joint
density function of U and V.

Solution.
Since J(x, y) = −2 we have

fUV (u, v) =
1

4π
e−

(u+v2 )2+(u−v2 )2

2 =
1

4π
e−

u2+v2

4

Example 45.3
Suppose that X and Y have joint density function given by

fXY (x, y) =

{
4xy 0 < x < 1, 0 < y < 1
0 otherwise

Let U = X
Y

and V = XY.
(a) Find the joint density function of U and V.
(b) Find the marginal density of U and V .
(c) Are U and V independent?

Solution.
(a) Now, if u = g1(x, y) = x

y
and v = g2(x, y) = xy then solving for x and y

we find x =
√
uv and y =

√
v
u
. Moreover,

J(x, y) =

∣∣∣∣ 1
y
− x
y2

y x

∣∣∣∣ =
2x

y

By Theorem 45.1, we find

fUV (u, v) =
1

2u
fXY (

√
uv,

√
v

u
) =

2v

u
, 0 < uv < 1, 0 <

v

u
< 1

and 0 otherwise. The region where fUV is defined is shown in Figure 45.2.
(b) The marginal density of U is

fU(u) =

∫ u

0

2v

u
dv = u, 0 < u ≤ 1

fU(u) =

∫ 1
u

0

2v

u
dv =

1

u3
, u > 1
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and the marginal density of V is

fV (v) =

∫ ∞
0

fUV (u, v)du =

∫ 1
v

v

2v

u
du = −4v ln v, 0 < v < 1

(c) Since fUV (u, v) 6= fU(u)fV (v), U and V are dependent

Figure 45.2
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Practice Problems

Problem 45.1
Let X and Y be two random variables with joint pdf fXY . Let Z = aX + bY
and W = cX + dY where ad − bc 6= 0. Find the joint probability density
function of Z and W.

Problem 45.2
Let X1 and X2 be two independent exponential random variables each having
parameter λ. Find the joint density function of Y1 = X1 +X2 and Y2 = eX2 .

Problem 45.3
LetX and Y be random variables with joint pdf fXY (x, y). LetR =

√
X2 + Y 2

and Φ = tan−1
(
Y
X

)
with −π < Φ ≤ π. Find fRΦ(r, φ).

Problem 45.4
Let X and Y be two random variables with joint pdf fXY (x, y). Let Z =
g(X, Y ) =

√
X2 + Y 2 and W = Y

X
. Find fZW (z, w).

Problem 45.5
If X and Y are independent gamma random variables with parameters (α, λ)
and (β, λ) respectively, compute the joint density of U = X + Y and V =
X

X+Y
.

Problem 45.6
Let X1 and X2 be two continuous random variables with joint density func-
tion

fX1X2(x1, x2) =

{
e−(x1+x2) x1 ≥ 0, x2 ≥ 0

0 otherwise

Let Y1 = X1 +X2 and Y2 = X1

X1+X2
. Find the joint density function of Y1 and

Y2.

Problem 45.7
Let X1 and X2 be two independent normal random variables with parameters
(0,1) and (0,4) respectively. Let Y1 = 2X1 + X2 and Y2 = X1 − 3X2. Find
fY1Y2(y1, y2).

Problem 45.8
Let X be a uniform random variable on (0, 2π) and Y an exponential random
variable with λ = 1 and independent of X. Show that
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U =
√

2Y cosX and V =
√

2Y sinX

are independent standard normal random variables

Problem 45.9
Let X and Y be two random variables with joint density function fXY .
Compute the pdf of U = X + Y. What is the pdf in the case X and Y are
independent? Hint: let V = Y.

Problem 45.10
Let X and Y be two random variables with joint density function fXY .
Compute the pdf of U = Y −X.

Problem 45.11
Let X and Y be two random variables with joint density function fXY .
Compute the pdf of U = XY. Hint: let V = X.

Problem 45.12
Let X and Y be two independent exponential distributions with mean 1.
Find the distribution of X

Y
.
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Properties of Expectation

We have seen that the expected value of a random variable is a weighted
average of the possible values of X and also is the center of the distribution
of the variable. Recall that the expected value of a discrete random variable
X with probability mass function p(x) is defined by

E(X) =
∑
x

xp(x)

provided that the sum is finite.
For a continuous random variable X with probability density function f(x),
the expected value is given by

E(X) =

∫ ∞
−∞

xf(x)dx

provided that the improper integral is convergent.
In this chapter we develop and exploit properties of expected values.

46 Expected Value of a Function of Two Ran-

dom Variables

In this section, we learn some equalities and inequalities about the expec-
tation of random variables. Our goals are to become comfortable with the
expectation operator and learn about some useful properties.
First, we introduce the definition of expectation of a function of two random
variables: Suppose that X and Y are two random variables taking values in
SX and SY respectively. For a function g : SX × SY → R the expected value
of g(X, Y ) is

E(g(X, Y ) =
∑
x∈SX

∑
y∈SY

g(x, y)pXY (x, y).

361
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if X and Y are discrete with joint probability mass function pXY (x, y) and

E(g(X, Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fXY (x, y)dxdy

if X and Y are continuous with joint probability density function fXY (x, y).

Example 46.1
Let X and Y be two discrete random variables with joint probability mass
function:

pXY (1, 1) = 1
3
, pXY (1, 2) = 1

8
, pXY (2, 1) = 1

2
, pXY (2, 2) = 1

24

Find the expected value of g(X, Y ) = XY.

Solution.
The expected value of the function g(X, Y ) = XY is calculated as follows:

E(g(X, Y )) =E(XY ) =
2∑

x=1

2∑
y=1

xypXY (x, y)

=(1)(1)(
1

3
) + (1)(2)(

1

8
) + (2)(1)(

1

2
) + (2)(2)(

1

24
)

=
7

4

An important application of the above definition is the following result.

Proposition 46.1
The expected value of the sum/difference of two random variables is equal
to the sum/difference of their expectations. That is,

E(X + Y ) = E(X) + E(Y )

and

E(X − Y ) = E(X)− E(Y ).
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Proof.
We prove the result for discrete random variables X and Y with joint prob-
ability mass function pXY (x, y). Letting g(X, Y ) = X ± Y we have

E(X ± Y ) =
∑
x

∑
y

(x± y)pXY (x, y)

=
∑
x

∑
y

xpXY (x, y)±
∑
x

∑
y

ypXY (x, y)

=
∑
x

x
∑
y

pXY (x, y)±
∑
y

y
∑
x

pXY (x, y)

=
∑
x

xpX(x)±
∑
y

ypY (y)

=E(X)± E(Y )

A similar proof holds for the continuous case where you just need to replace
the sums by improper integrals and the joint probability mass function by
the joint probability density function

Using mathematical induction one can easily extend the previous result to

E(X1 +X2 + · · ·+Xn) = E(X1) + E(X2) + · · ·+ E(Xn), E(Xi) <∞.

Example 46.2
A group of N business executives throw their business cards into a jar. The
cards are mixed, and each person randomly selects one. Find the expected
number of people that select their own card.

Solution.
Let X = the number of people who select their own card. For 1 ≤ i ≤ N let

Xi =

{
1 if the ith person chooses his own card
0 otherwise

Then E(Xi) = Pr(Xi = 1) = 1
N

and

X = X1 +X2 + · · ·+XN .

Hence,

E(X) = E(X1) + E(X2) + · · ·+ E(XN) =

(
1

N

)
N = 1
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Example 46.3 (Sample Mean)
Let X1, X2, · · · , Xn be a sequence of independent and identically distributed
random variables, each having a mean µ and variance σ2. Define a new ran-
dom variable by

X =
X1 +X2 + · · ·+Xn

n
.

We call X the sample mean. Find E(X).

Solution.
The expected value of X is

E(X) = E

[
X1 +X2 + · · ·+Xn

n

]
=

1

n

n∑
i=1

E(Xi) = µ.

Because of this result, when the distribution mean µ is unknown, the sample
mean is often used in statisitcs to estimate it

The following property is known as the monotonicity property of the ex-
pected value.

Proposition 46.2
If X is a nonnegative random variable then E(X) ≥ 0. Thus, if X and Y are
two random variables such that X ≥ Y then E(X) ≥ E(Y ).

Proof.
We prove the result for the continuous case. We have

E(X) =

∫ ∞
−∞

xf(x)dx

=

∫ ∞
0

xf(x)dx ≥ 0

since f(x) ≥ 0 so the integrand is nonnegative. Now, if X ≥ Y then
X−Y ≥ 0 so that by the previous proposition we can write E(X)−E(Y ) =
E(X − Y ) ≥ 0

As a direct application of the monotonicity property we have
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Proposition 46.3 (Boole’s Inequality)
For any events A1, A2, · · · , An we have

Pr

(
n⋃
i=1

Ai

)
≤

n∑
i=1

Pr(Ai).

Proof.
For i = 1, · · · , n define

Xi =

{
1 if Ai occurs
0 otherwise

Let

X =
n∑
i=1

Xi

so X denotes the number of the events Ai that occur. Also, let

Y =

{
1 if X ≥ 1 occurs
0 otherwise

so Y is equal to 1 if at least one of the Ai occurs and 0 otherwise. Clearly,
X ≥ Y so that E(X) ≥ E(Y ). But

E(X) =
n∑
i=1

E(Xi) =
n∑
i=1

P (Ai)

and

E(Y ) = Pr{ at least one of the Ai occur } = Pr (
⋃n
i=1 Ai) .

Thus, the result follows. Note that for any set A we have

E(IA) =

∫
IA(x)f(x)dx =

∫
A

f(x)dx = Pr(A)

Proposition 46.4
If X is a random variable with range [a, b] then a ≤ E(X) ≤ b.
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Proof.
Let Y = X−a ≥ 0. Then E(Y ) ≥ 0. But E(Y ) = E(X)−E(a) = E(X)−a ≥
0. Thus, E(X) ≥ a. Similarly, let Z = b−X ≥ 0. Then E(Z) = b−E(X) ≥ 0
or E(X) ≤ b

We have determined that the expectation of a sum is the sum of the ex-
pectations. The same is not always true for products: in general, the expec-
tation of a product need not equal the product of the expectations. But it
is true in an important special case, namely, when the random variables are
independent.

Proposition 46.5
If X and Y are independent random variables then for any function h and g
we have

E(g(X)h(Y )) = E(g(X))E(h(Y ))

In particular, E(XY ) = E(X)E(Y ).

Proof.
We prove the result for the continuous case. The proof of the discrete case
is similar. Let X and Y be two independent random variables with joint
density function fXY (x, y). Then

E(g(X)h(Y )) =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fXY (x, y)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX(x)fY (y)dxdy

=

(∫ ∞
−∞

h(y)fY (y)dy

)(∫ ∞
−∞

g(x)fX(x)dx

)
=E(h(Y ))E(g(X))

We next give a simple example to show that the expected values need not
multiply if the random variables are not independent.

Example 46.4
Consider a single toss of a coin. We define the random variable X to be 1 if
heads turns up and 0 if tails turns up, and we set Y = 1 −X. Thus X and
Y are dependent. Show that E(XY ) 6= E(X)E(Y ).
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Solution.
Clearly, E(X) = E(Y ) = 1

2
. But XY = 0 so that E(XY ) = 0 6= E(X)E(Y )

Example 46.5
Suppose a box contains 10 green, 10 red and 10 black balls. We draw 10
balls from the box by sampling with replacement. Let X be the number of
green balls, and Y be the number of black balls in the sample.
(a) Find E(XY ).
(b) Are X and Y independent? Explain.

Solution.
First we note that X and Y are binomial with n = 10 and p = 1

3
.

(a) Let Xi be 1 if we get a green ball on the ith draw and 0 otherwise, and
Yj be the event that in jth draw we got a black ball. Trivially, Xi and Yj are
independent if 1 ≤ i 6= j ≤ 10. Moreover, XiYi = 0 for all 1 ≤ i ≤ 10. Since
X = X1 +X2 + · · ·X10 and Y = Y1 + Y2 + · · ·Y10 we have

XY =
∑ ∑

1≤i 6=j≤10

XiYj.

Hence,

E(XY ) =
∑ ∑

1≤i 6=j≤10

E(XiYj) =
∑ ∑

1≤i 6=j≤10

E(Xi)E(Yj) = 90×1

3
×1

3
= 10.

(b) Since E(X) = E(Y ) = 10
3
, we have E(XY ) 6= E(X)E(Y ) so X and Y

are dependent

The following inequality will be of importance in the next section

Proposition 46.6 (Markov’s Inequality)

If X ≥ 0 and c > 0 then Pr(X ≥ c) ≤ E(X)
c
.

Proof.
Let c > 0. Define

I =

{
1 if X ≥ c
0 otherwise

Since X ≥ 0, we have I ≤ X
c
. Taking expectations of both side we find

E(I) ≤ E(X)
c
. Now the result follows since E(I) = Pr(X ≥ c)
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Example 46.6
Let X be a non-negative random variable. Let a be a positive constant.

Prove that Pr(X ≥ a) ≤ E(etX)
eta

for all t ≥ 0.

Solution.
Applying Markov’s inequality we find

Pr(X ≥ a) = Pr(tX ≥ ta) = Pr(etX ≥ eta) ≤ E(etX)

eta

As an important application of the previous result we have

Proposition 46.7
If X ≥ 0 and E(X) = 0 then Pr(X = 0) = 1.

Proof.
Since E(X) = 0, by the previous result we find Pr(X ≥ c) = 0 for all c > 0.
But

Pr(X > 0) = Pr

(
∞⋃
n=1

(X >
1

n
)

)
≤

∞∑
n=1

Pr(X >
1

n
) = 0.

Hence, P (X > 0) = 0. Since X ≥ 0, we have 1 = Pr(X ≥ 0) = Pr(X =
0) + Pr(X > 0) = Pr(X = 0)

Corollary 46.1
Let X be a random variable. If V ar(X) = 0, then Pr(X = E(X)) = 1.

Proof.
Suppose that V ar(X) = 0. Since (X − E(X))2 ≥ 0 and V ar(X) = E((X −
E(X))2), by the previous result we have P (X − E(X) = 0) = 1. That is,
Pr(X = E(X)) = 1

Example 46.7 (expected value of a Binomial Random Variable)
Let X be a binomial random variable with parameters (n, p). Find E(X).

Solution.
We have that X is the number of successes in n trials. For 1 ≤ i ≤ n let Xi

denote the number of successes in the ith trial. Then E(Xi) = 0(1−p)+1p =
p. Since X = X1 +X2 + · · ·+Xn, we find E(X) =

∑n
i=1E(Xi) =

∑n
i=1 p =

np
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Practice Problems

Problem 46.1
Let X and Y be independent random variables, both being equally likely to
be any of the numbers 1, 2, · · · ,m. Find E(|X − Y |).

Problem 46.2
Let X and Y be random variables with joint pdf

fXY (x, y) =

{
1 0 < x < 1, x < y < x+ 1
0 otherwise

Find E(XY ).

Problem 46.3
Let X and Y be two independent uniformly distributed random variables in
[0,1]. Find E(|X − Y |).

Problem 46.4
Let X and Y be continuous random variables with joint pdf

fXY (x, y) =

{
2(x+ y) 0 < x < y < 1

0 otherwise

Find E(X2Y ) and E(X2 + Y 2).

Problem 46.5
Suppose that E(X) = 5 and E(Y ) = −2. Find E(3X + 4Y − 7).

Problem 46.6
Suppose that X and Y are independent, and that E(X) = 5, E(Y ) = −2.
Find E[(3X − 4)(2Y + 7)].

Problem 46.7
Let X and Y be two independent random variables that are uniformly dis-
tributed on the interval (0, L). Find E(|X − Y |).

Problem 46.8
Ten married couples are to be seated at five different tables, with four people
at each table. Assume random seating, what is the expected number of
married couples that are seated at the same table?
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Problem 46.9
John and Katie randomly, and independently, choose 3 out of 10 objects.
Find the expected number of objects
(a) chosen by both individuals.
(b) not chosen by either individual.
(c) chosen exactly by one of the two.

Problem 46.10
If E(X) = 1 and Var(X) = 5 find
(a) E[(2 +X)2]
(b) Var(4 + 3X)

Problem 46.11 ‡
Let T1 be the time between a car accident and reporting a claim to the
insurance company. Let T2 be the time between the report of the claim and
payment of the claim. The joint density function of T1 and T2, f(t1, t2), is
constant over the region 0 < t1 < 6, 0 < t2 < 6, t1 + t2 < 10, and zero
otherwise.
Determine E[T1 +T2], the expected time between a car accident and payment
of the claim.

Problem 46.12 ‡
Let T1 and T2 represent the lifetimes in hours of two linked components in
an electronic device. The joint density function for T1 and T2 is uniform over
the region defined by 0 ≤ t1 ≤ t2 ≤ L, where L is a positive constant.
Determine the expected value of the sum of the squares of T1 and T2.

Problem 46.13
Let X and Y be two independent random variables with µX = 1, µY =
−1, σ2

X = 1
2
, and σ2

Y = 2. Compute E[(X + 1)2(Y − 1)2].

Problem 46.14 ‡
A machine consists of two components, whose lifetimes have the joint density
function

f(x, y) =

{
1
50

for x > 0, y > 0, x+ y < 10
0 otherwise.

The machine operates until both components fail. Calculate the expected
operational time of the machine.
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47 Covariance, Variance of Sums, and Corre-

lations

So far, We have discussed the absence or presence of a relationship between
two random variables, i.e. independence or dependence. But if there is in fact
a relationship, the relationship may be either weak or strong. For example,
if X is the weight of a sample of water and Y is the volume of the sample
of water then there is a strong relationship between X and Y. On the other
hand, if X is the weight of a person and Y denotes the same person’s height
then there is a relationship between X and Y but not as strong as in the
previous example.
We would like a measure that can quantify this difference in the strength of
a relationship between two random variables.
The covariance between X and Y is defined by

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))].

An alternative expression that is sometimes more convenient is

Cov(X, Y ) =E(XY − E(X)Y −XE(Y ) + E(X)E(Y ))

=E(XY )− E(X)E(Y )− E(X)E(Y ) + E(X)E(Y )

=E(XY )− E(X)E(Y ).

Recall that for independent X, Y we have E(XY ) = E(X)E(Y ) and so
Cov(X, Y ) = 0. However, the converse statement is false as there exists
random variables that have covariance 0 but are dependent. For example,
let X be a random variable such that

Pr(X = 0) = Pr(X = 1) = Pr(X = −1) =
1

3

and define

Y =

{
0 if X 6= 0
1 otherwise.

Thus, Y depends on X.
Clearly, XY = 0 so that E(XY ) = 0. Also,

E(X) = (0 + 1− 1)
1

3
= 0
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and thus

Cov(X, Y ) = E(XY )− E(X)E(Y ) = 0.

Useful facts are collected in the next result.

Theorem 47.1
(a) Cov(X, Y ) = Cov(Y,X) (Symmetry)
(b) Cov(X,X) = V ar(X)
(c) Cov(aX, Y ) = aCov(X, Y )

(d) Cov
(∑n

i=1 Xi,
∑m

j=1 Yj

)
=
∑n

i=1

∑m
j=1Cov(Xi, Yj)

Proof.
(a) Cov(X, Y ) = E(XY )−E(X)E(Y ) = E(Y X)−E(Y )E(X) = Cov(Y,X).
(b) Cov(X,X) = E(X2)− (E(X))2 = V ar(X).
(c) Cov(aX, Y ) = E(aXY ) − E(aX)E(Y ) = aE(XY ) − aE(X)E(Y ) =
a(E(XY )− E(X)E(Y )) = aCov(X, Y ).

(d) First note thatE [
∑n

i=1Xi] =
∑n

i=1 E(Xi) and E
[∑m

j=1 Yj

]
=
∑m

j=1 E(Yj).

Then

Cov

(
n∑
i=1

Xi,
m∑
j=1

Yj

)
=E

[(
n∑
i=1

Xi −
n∑
i=1

E(Xi)

)(
m∑
j=1

Yj −
m∑
j=1

E(Yj)

)]

=E

[
n∑
i=1

(Xi − E(Xi))
m∑
j=1

(Yj − E(Yj))

]

=E

[
n∑
i=1

m∑
j=1

(Xi − E(Xi))(Yj − E(Yj))

]

=
n∑
i=1

m∑
j=1

E[(Xi − E(Xi))(Yj − E(Yj))]

=
n∑
i=1

m∑
j=1

Cov(Xi, Yj)

Example 47.1
Given that E(X) = 5, E(X2) = 27.4, E(Y ) = 7, E(Y 2) = 51.4 and Var(X +
Y ) = 8, find Cov(X + Y,X + 1.2Y ).
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Solution.
By definition,

Cov(X + Y,X + 1.2Y ) = E((X + Y )(X + 1.2Y ))− E(X + Y )E(X + 1.2Y )

Using the properties of expectation and the given data, we get

E(X + Y )E(X + 1.2Y ) =(E(X) + E(Y ))(E(X) + 1.2E(Y ))

=(5 + 7)(5 + (1.2) · 7) = 160.8

E((X + Y )(X + 1.2Y )) =E(X2) + 2.2E(XY ) + 1.2E(Y 2)

=27.4 + 2.2E(XY ) + (1.2)(51.4)

=2.2E(XY ) + 89.08

Thus,

Cov(X + Y,X + 1.2Y ) = 2.2E(XY ) + 89.08− 160.8 = 2.2E(XY )− 71.72

To complete the calculation, it remains to find E(XY ). To this end we make
use of the still unused relation Var(X + Y ) = 8

8 =Var(X + Y ) = E((X + Y )2)− (E(X + Y ))2

=E(X2) + 2E(XY ) + E(Y 2)− (E(X) + E(Y ))2

=27.4 + 2E(XY ) + 51.4− (5 + 7)2 = 2E(XY )− 65.2

so E(XY ) = 36.6. Substituting this above gives Cov(X + Y,X + 1.2Y ) =
(2.2)(36.6)− 71.72 = 8.8

Example 47.2
Given: E(X) = 10,Var(X) = 25, E(Y ) = 50,Var(Y ) = 100, E(Z) =
6,Var(Z) = 4,Cov(X, Y ) = 10, and Cov(X,Z) = 3.5. Let Z = X + cY.
Find c if Cov(X,Z) = 3.5.

Solution.
We have

Cov(X,Z) =Cov(X,X + cY ) = Cov(X,X) + cCov(X, Y )

=Var(X) + cCov(X, Y ) = 25 + c(10) = 3.5

Solving for c we find c = −2.15



374 PROPERTIES OF EXPECTATION

Using (b) and (d) in the previous theorem with Yj = Xj, j = 1, 2, · · · , n
we find

V ar

(
n∑
i=1

Xi

)
=Cov

(
n∑
i=1

Xi,

n∑
i=1

Xi

)

=
n∑
i=1

n∑
i=1

Cov(Xi, Xj)

=
n∑
i=1

V ar(Xi) +
∑

i 6=j

∑
Cov(Xi, Xj)

Since each pair of indices i 6= j appears twice in the double summation, the
above reduces to

V ar

(
n∑
i=1

Xi

)
=

n∑
i=1

V ar(Xi) + 2
∑

i<j

∑
Cov(Xi, Xj).

In particular, if X1, X2, · · · , Xn are pairwise independent then

V ar

(
n∑
i=1

Xi

)
=

n∑
i=1

V ar(Xi).

Example 47.3 ‡
The profit for a new product is given by Z = 3X − Y − 5, where X and Y
are independent random variables with Var(X) = 1 and Var(Y ) = 2. What
is the variance of Z?

Solution.
Using the properties of a variance, and independence, we get

Var(Z) =Var(3X − Y − 5) = Var(3X − Y )

=Var(3X) + Var(−Y ) = 9Var(X) + Var(Y ) = 11

Example 47.4
A salesperson salary consists of two parts a commission, X, and a fixed in-
come Y. so that the total salary isX+Y. Suppose that Var(X) = 5, 000,Var(Y ) =
10, 000, and Var(X + Y ) = 17, 000.
If X is increased by a flat amount of 100, and Y is increased by 10%, what
is the variance of the total salary after these increases?



47 COVARIANCE, VARIANCE OF SUMS, AND CORRELATIONS 375

Solution.
We need to compute Var(X + 100 + 1.1Y ). Since adding constants does not
change the variance, this is the same as Var(X + 1.1Y ), which expands as
follows:

Var(X + 1.1Y ) =Var(X) + Var(1.1Y ) + 2Cov(X, 1.1Y )

=Var(X) + 1.21Var(Y ) + 2(1.1)Cov(X, Y )

We are given that Var(X) = 5, 000,Var(Y ) = 10, 000, so the only remaining
unknown quantity is Cov(X, Y ), which can be computed via the general
formula for Var(X + Y ) :

Cov(X, Y ) =
1

2
(Var(X + Y )− Var(X)− Var(Y ))

=
1

2
(17, 000− 5, 000− 10, 000) = 1, 000

Substituting this into the above formula, we get the answer:

Var(X + 1.1Y ) = 5, 000 + 1.21(10, 000) + 2(1.1)(1, 000) = 19, 300

Example 47.5
LetX be the sample mean of n independent random variablesX1, X2, · · · , Xn.
Find V ar(X).

Solution.
By independence we have

V ar(X) =
1

n2

n∑
i=1

V ar(Xi)

The following result is known as the Cauchy Schwartz inequality.

Theorem 47.2
Let X and Y be two random variables. Then

Cov(X, Y )2 ≤ V ar(X)V ar(Y )

with equality if and only if X and Y are linearly related, i.e.,

Y = a+ bX

for some constants a and b with a 6= 0.
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Proof.
We first show that the inequality holds if either Var(X) = 0 or Var(Y ) = 0.
Suppose that Var(X) = 0. Then Pr(X = E(X)) = 1 and so X = E(X). By
the definition of covariance, we have Cov(X, Y ) = 0. Similar argument for
Var(Y ) = 0.
So assume that Var(X) > 0 and Var(Y ) > 0. Let

ρ(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

.

We need to show that |ρ| ≤ 1 or equivalently −1 ≤ ρ(X, Y ) ≤ 1. If we let
σ2
X and σ2

Y denote the variance of X and Y respectively then we have

0 ≤V ar
(
X

σX
+

Y

σY

)
=
V ar(X)

σ2
X

+
V ar(Y )

σ2
Y

+
2Cov(X, Y )

σXσY

=2[1 + ρ(X, Y )]

implying that −1 ≤ ρ(X, Y ). Similarly,

0 ≤V ar
(
X

σX
− Y

σY

)
=
V ar(X)

σ2
X

+
V ar(Y )

σ2
Y

− 2Cov(X, Y )

σXσY

=2[1− ρ(X, Y )]

implying that ρ(X, Y ) ≤ 1.
Suppose now that Cov(X, Y )2 = V ar(X)V ar(Y ). This implies that either

ρ(X, Y ) = 1 or ρ(X, Y ) = −1. If ρ(X, Y ) = 1 then V ar
(
X
σX
− Y

σY

)
= 0.

This implies that X
σX
− Y

σY
= C for some constant C (See Corollary 35.4) or

Y = a + bX where b = σY
σX

> 0. If ρ(X, Y ) = −1 then V ar
(
X
σX

+ Y
σY

)
= 0.

This implies that X
σX

+ Y
σY

= C or Y = a+ bX where b = − σY
σX

< 0.
Conversely, suppose that Y = a+ bX. Then

ρ(X, Y ) =
E(aX + bX2)− E(X)E(a+ bX)√

V ar(X)b2V ar(X)
=

bV ar(X)

|b|V ar(X)
= sign(b).
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If b > 0 then ρ(X, Y ) = 1 and if b < 0 then ρ(X, Y ) = −1

The Correlation coefficient of two random variables X and Y (with pos-
itive variance) is defined by

ρ(X, Y ) =
Cov(X, Y )√
V ar(X)V ar(Y )

.

From the above theorem we have the correlation inequality

−1 ≤ ρ ≤ 1.

The correlation coefficient is a measure of the degree of linearity between X
and Y . A value of ρ(X, Y ) near +1 or −1 indicates a high degree of linearity
between X and Y, whereas a value near 0 indicates a lack of such linearity.
Correlation is a scaled version of covariance; note that the two parameters
always have the same sign (positive, negative, or 0). When the sign is posi-
tive, the variables X and Y are said to be positively correlated and this
indicates that Y tends to increase when X does; when the sign is negative,
the variables are said to be negatively correlated and this indicates that
Y tends to decrease when X increases; and when the sign is 0, the variables
are said to be uncorrelated.
Figure 47.1 shows some examples of data pairs and their correlation.

Figure 47.1
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Practice Problems

Problem 47.1
If X and Y are independent and identically distributed with mean µ and
variance σ2, find E[(X − Y )2].

Problem 47.2
Two cards are drawn without replacement from a pack of cards. The random
variable X measures the number of heart cards drawn, and the random
variable Y measures the number of club cards drawn. Find the covariance
and correlation of X and Y.

Problem 47.3
Suppose the joint pdf of X and Y is

fXY (x, y) =

{
1 0 < x < 1, x < y < x+ 1
0 otherwise

Compute the covariance and correlation of X and Y..

Problem 47.4
Let X and Z be independent random variables with X uniformly distributed
on (−1, 1) and Z uniformly distributed on (0, 0.1). Let Y = X2 + Z. Then
X and Y are dependent.
(a) Find the joint pdf of X and Y.
(b) Find the covariance and the correlation of X and Y.

Problem 47.5
Let the random variable Θ be uniformly distributed on [0, 2π]. Consider the
random variables X = cos Θ and Y = sin Θ. Show that Cov(X, Y ) = 0 even
though X and Y are dependent. This means that there is a weak relationship
between X and Y.

Problem 47.6
If X1, X2, X3, X4 are (pairwise) uncorrelated random variables each having
mean 0 and variance 1, compute the correlations of
(a) X1 +X2 and X2 +X3.
(b) X1 +X2 and X3 +X4.
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Problem 47.7
Let X be the number of 1’s and Y the number of 2’s that occur in n rolls of
a fair die. Compute Cov(X, Y ).

Problem 47.8
Let X be uniformly distributed on [−1, 1] and Y = X2. Show that X and
Y are uncorrelated even though Y depends functionally on X (the strongest
form of dependence).

Problem 47.9
Let X and Y be continuous random variables with joint pdf

fXY (x, y) =

{
3x 0 ≤ y ≤ x ≤ 1
0 otherwise

Find Cov(X, Y ) and ρ(X, Y ).

Problem 47.10
Suppose that X and Y are random variables with Cov(X, Y ) = 3. Find
Cov(2X − 5, 4Y + 2).

Problem 47.11 ‡
An insurance policy pays a total medical benefit consisting of two parts for
each claim. LetX represent the part of the benefit that is paid to the surgeon,
and let Y represent the part that is paid to the hospital. The variance of
X is 5000, the variance of Y is 10,000, and the variance of the total benefit,
X + Y, is 17,000.
Due to increasing medical costs, the company that issues the policy decides
to increase X by a flat amount of 100 per claim and to increase Y by 10%
per claim.
Calculate the variance of the total benefit after these revisions have been
made.

Problem 47.12 ‡
The profit for a new product is given by Z = 3X − Y − 5. X and Y are
independent random variables with Var(X) = 1 and Var(Y) = 2.
What is the variance of Z?
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Problem 47.13 ‡
A company has two electric generators. The time until failure for each gen-
erator follows an exponential distribution with mean 10. The company will
begin using the second generator immediately after the first one fails.
What is the variance of the total time that the generators produce electricity?

Problem 47.14 ‡
A joint density function is given by

fXY (x, y) =

{
kx 0 < x, y < 1
0 otherwise

Find Cov(X, Y )

Problem 47.15 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
8
3
xy 0 ≤ x ≤ 1, x ≤ y ≤ 2x
0 otherwise

Find Cov(X, Y )

Problem 47.16 ‡
Let X and Y denote the values of two stocks at the end of a five-year period.
X is uniformly distributed on the interval (0, 12) . Given X = x, Y is
uniformly distributed on the interval (0, x).
Determine Cov(X, Y ) according to this model.

Problem 47.17 ‡
Let X denote the size of a surgical claim and let Y denote the size of the
associated hospital claim. An actuary is using a model in which E(X) =
5, E(X2) = 27.4, E(Y ) = 7, E(Y 2) = 51.4, and V ar(X + Y ) = 8.
Let C1 = X+Y denote the size of the combined claims before the application
of a 20% surcharge on the hospital portion of the claim, and let C2 denote
the size of the combined claims after the application of that surcharge.
Calculate Cov(C1, C2).

Problem 47.18 ‡
Claims filed under auto insurance policies follow a normal distribution with
mean 19,400 and standard deviation 5,000.
What is the probability that the average of 25 randomly selected claims
exceeds 20,000 ?
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Problem 47.19
Let X and Y be two independent random variables with densities

fX(x) =

{
1 0 < x < 1
0 otherwise

fY (y) =

{
1
2

0 < y < 2
0 otherwise

(a) Write down the joint pdf fXY (x, y).
(b) Let Z = X + Y. Find the pdf fZ(a). Simplify as much as possible.
(c) Find the expectation E(X) and variance Var(X). Repeat for Y.
(d) Compute the expectation E(Z) and the variance Var(Z).

Problem 47.20
Let X and Y be two random variables with joint pdf

fXY (x, y) =

{
1
2

x > 0, y > 0, x+ y < 2
0 otherwise

(a) Let Z = X + Y. Find the pdf of Z.
(b) Find the pdf of X and that of Y.
(c) Find the expectation and variance of X.
(d) Find the covariance Cov(X, Y ).

Problem 47.21
Let X and Y be discrete random variables with joint distribution defined by
the following table

Y\ X 2 3 4 5 pY (y)
0 0.05 0.05 0.15 0.05 0.30
1 0.40 0 0 0 0.40
2 0.05 0.15 0.10 0 0.30
pX(x) 0.50 0.20 0.25 0.05 1

For this joint distribution, E(X) = 2.85, E(Y ) = 1. Calculate Cov(X,Y).

Problem 47.22
Let X and Y be two random variables with joint density function

fXY (x, y) =

{
1 0 < y < 1− |x|,−1 < x ≤ 1
0 otherwise

Find Var(X).
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Problem 47.23
LetX1, X2, X3 be uniform random variables on the interval (0, 1) with Cov(Xi, Xj) =
1
24

for i, j ∈ {1, 2, 3}, i 6= j. Calculate the variance of X1 + 2X2 −X3.

Problem 47.24
Let X and X be discrete random variables with joint probability function
pXY (x, y) given by the following table:

X\ Y 0 1 pX(x)
0 0 0.20 0.20
1 0.40 0.20 0.60
2 0.20 0 0.20
pY (y) 0.60 0.40 1

Find the variance of Y −X.

Problem 47.25
Let X and Y be two independent identically distributed normal random
variables with mean 1 and variance 1. Find c so that E[c|X − Y |] = 1.

Problem 47.26
Let X, Y and Z be random variables with means 1,2 and 3, respectively, and
variances 4,5, and 9, respectively. Also, Cov(X, Y ) = 2,Cov(X,Z) = 3, and
Cov(Y, Z) = 1. What are the mean and variance, respectively, of the random
variable W = 3X + 2Y − Z?

Problem 47.27
Let X1, X2, and X3 be independent random variables each with mean 0 and
variance 1. Let X = 2X1 −X3 and Y = 2X2 +X3. Find ρ(X, Y ).

Problem 47.28
The coefficient of correlation between random variables X and Y is 1

3
, and

σ2
X = a, σ2

Y = 4a. The random variable Z is defined to be Z = 3X − 4Y, and
it is found that σ2

Z = 114. Find a.

Problem 47.29
Given n independent random variables X1, X2, · · · , Xn each having the same
variance σ2. Define U = 2X1 + X2 + · · · + Xn−1 and V = X2 + X3 + · · · +
Xn−1 + 2Xn. Find ρ(U, V ).
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Problem 47.30
The following table gives the joint probability distribution of two random
variables X and Y.

X \ Y 0 1 2
0 0.25 0.08 0.05
1 0.12 0.20 0.10
2 0.03 0.07 0.10

(a) Give the marginal distributions of X and Y .
(b) Find E(X) and E(Y ).
(c) Find Cov(X, Y ).
(d) Find E(100X + 75Y ).
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48 Conditional Expectation

Since conditional probability measures are probabilitiy measures (that is,
they possess all of the properties of unconditional probability measures),
conditional expectations inherit all of the properties of regular expectations.
Let X and Y be random variables. We define conditional expectation of
X given that Y = y by

E(X|Y = y} =
∑
x

xPr(X = x|Y = y)

=
∑
x

xpX|Y (x|y)

where pX|Y is the conditional probability mass function of X, given that
Y = y which is given by

pX|Y (x|y) = Pr(X = x|Y = y) =
Pr(x, y)

pY (y)
.

In the continuous case we have

E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x|y)dx

where

fX|Y (x|y) =
fXY (x, y)

fY (y)
.

Example 48.1
Suppose X and Y are discrete random variables with values 1, 2, 3, 4 and
joint p.m.f. given by

f(x, y) =


1
16

if x = y
2
16

if x < y
0 if x > y

for x, y = 1, 2, 3, 4.
(a) Find the joint probability distribution of X and Y.
(b) Find the conditional expectation of Y given that X = 3.

Solution.
(a) The joint probability distribution is given in tabular form



48 CONDITIONAL EXPECTATION 385

X \ Y 1 2 3 4 pX(x)
1 1

16
2
16

2
16

2
16

7
16

2 0 1
16

2
16

2
16

5
16

3 0 0 1
16

2
16

3
16

4 0 0 0 1
16

1
16

pY (y) 1
16

3
16

5
16

7
16

1

(b) We have

E(Y |X = 3) =
4∑
y=1

ypY |X(y|3)

=
pXY (3, 1)

pX(3)
+

2pXY (3, 2)

pX(3)
+

3pXY (3, 3)

pX(3)
+

4pXY (3, 4)

pX(3)

=3 · 1

3
+ 4 · 2

3
=

11

3

Example 48.2
Suppose that the joint density of X and Y is given by

fXY (x, y) =
e−

x
y e−y

y
, x, y > 0.

Compute E(X|Y = y).

Solution.
The conditional density is found as follows

fX|Y (x|y) =
fXY (x, y)

fY (y)

=
fXY (x, y)∫∞

−∞ fXY (x, y)dx

=
(1/y)e−

x
y e−y∫∞

0
(1/y)e−

x
y e−ydx

=
(1/y)e−

x
y∫∞

0
(1/y)e−

x
y dx

=
1

y
e−

x
y
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Hence,

E(X|Y = y) =

∫ ∞
0

x

y
e−

x
y dx = −

[
xe−

x
y

∣∣∣∞
0
−
∫ ∞

0

e−
x
y dx

]
=−

[
xe−

x
y + ye−

x
y

]∞
0

= y

Example 48.3
Let Y be a random variable with a density fY given by

fY (y) =

{
α−1
yα

y > 1

0 otherwise

where α > 1. Given Y = y, let X be a random variable which is Uniformly
distributed on (0, y).
(a) Find the marginal distribution of X.
(b) Calculate E(Y |X = x) for every x > 0.

Solution.
The joint density function is given by

fXY (x, y) =

{
α−1
yα+1 0 < x < y, y > 1

0 otherwise.

(a) Observe that X only takes positive values, thus fX(x) = 0, x ≤ 0. For
0 < x < 1 we have

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
1

fXY (x, y)dy =
α− 1

α
.

For x ≥ 1 we have

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
x

fXY (x, y)dy =
α− 1

αxα
.

(b) For 0 < x < 1 we have

fY |X(y|x) =
fXY (x, y)

fX(x)
=

α

yα+1
, y > 1.

Hence,

E(Y |X = x) =

∫ ∞
1

yα

yα+1
dy = α

∫ ∞
1

dy

yα
=

α

α− 1
.
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If x ≥ 1 then

fY |X(y|x) =
fXY (x, y)

fX(x)
=
αxα

yα+1
, y > x.

Hence,

E(Y |X = x) =

∫ ∞
x

y
αxα

yα+1
dy =

αx

α− 1

Notice that if X and Y are independent then pX|Y (x|y) = Pr(x) so that
E(X|Y = y) = E(X).
Now, for any function g(x), the conditional expected value of g given Y = y
is, in the continuous case,

E(g(X)|Y = y) =

∫ ∞
−∞

g(x)fX|Y (x|y)dx

if the integral exists. For the discrete case, we have a sum instead of an
integral. That is, the conditional expectation of g given Y = y is

E(g(X)|Y = y) =
∑
x

g(x)pX|Y (x|y).

The proof of this result is identical to the unconditional case.
Next, let φX(y) = E(X|Y = y) denote the function of the random variable
Y whose value at Y = y is E(X|Y = y). Clearly, φX(y) is a random variable.
We denote this random variable by E(X|Y ). The expectation of this random
variable is just the expectation of X as shown in the following theorem.

Theorem 48.1 (Double Expectation Property)

E(X) = E(E(X|Y ))



388 PROPERTIES OF EXPECTATION

Proof.
We give a proof in the case X and Y are continuous random variables.

E(E(X|Y )) =

∫ ∞
−∞

E(X|Y = y)fY (y)dy

=

∫ ∞
−∞

(∫ ∞
−∞

xfX|Y (x|y)dx

)
fY (y)dy

=

∫ ∞
−∞

∫ ∞
−∞

xfX|Y (x|y)fY (y)dxdy

=

∫ ∞
−∞

x

∫ ∞
−∞

fXY (x, y)dydx

=

∫ ∞
−∞

xfX(x)dx = E(X)

Computing Probabilities by Conditioning
Suppose we want to know the probability of some event, A. Suppose also
that knowing Y gives us some useful information about whether or not A
occurred.
Define an indicator random variable

X =

{
1 if A occurs
0 if A does not occur

Then
Pr(A) = E(X)

and for any random variable Y

E(X|Y = y) = Pr(A|Y = y).

Thus, by the double expectation property we have

Pr(A) =E(X) =
∑
y

E(X|Y = y)Pr(Y = y)

=
∑
y

Pr(A|Y = y)pY (y)

in the discrete case and

Pr(A) =

∫ ∞
−∞

Pr(A|Y = y)fY (y)dy
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in the continuous case.

The Conditional Variance
Next, we introduce the concept of conditional variance. Just as we have de-
fined the conditional expectation of X given that Y = y, we can define the
conditional variance of X given Y as follows

Var(X|Y = y) = E[(X − E(X|Y ))2|Y = y].

Note that the conditional variance is a random variable since it is a function
of Y.

Proposition 48.1
Let X and Y be random variables. Then
(a) Var(X|Y ) = E(X2|Y )− [E(X|Y )]2.
(b) E(Var(X|Y )) = E[E(X2|Y )− (E(X|Y ))2] = E(X2)− E[(E(X|Y ))2].
(c) Var(E(X|Y )) = E[(E(X|Y ))2]− (E(X))2.
(d) Law of Total Variance: Var(X) = E[Var(X|Y )] + Var(E(X|Y )).

Proof.
(a) We have

Var(X|Y ) =E[(X − E(X|Y ))2|Y ]

=E[(X2 − 2XE(X|Y ) + (E(X|Y ))2|Y ]

=E(X2|Y )− 2E(X|Y )E(X|Y ) + (E(X|Y ))2

=E(X2|Y )− [E(X|Y )]2.

(b) Taking E of both sides of the result in (a) we find

E(Var(X|Y )) = E[E(X2|Y )− (E(X|Y ))2] = E(X2)− E[(E(X|Y ))2].

(c) Since E(E(X|Y )) = E(X) we have

Var(E(X|Y )) = E[(E(X|Y ))2]− (E(X))2.

(d) The result follows by adding the two equations in (b) and (c)

Conditional Expectation and Prediction
One of the most important uses of conditional expectation is in estimation
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theory. Let us begin this discussion by asking: What constitutes a good
estimator? An obvious answer is that the estimate be close to the true value.
Suppose that we are in a situation where the value of a random variable is
observed and then, based on the observed, an attempt is made to predict the
value of a second random variable Y. Let g(X) denote the predictor, that is, if
X is observed to be equal to x, then g(x) is our prediction for the value of Y.
So the question is of choosing g in such a way g(X) is close to Y. One possible
criterion for closeness is to choose g so as to minimize E[(Y − g(X))2]. Such
a minimizer will be called minimum mean square estimate (MMSE) of
Y given X. The following theorem shows that the MMSE of Y given X is
just the conditional expectation E(Y |X).

Theorem 48.2

min
g
E[(Y − g(X))2] = E(Y − E(Y |X)).

Proof.
We have

E[(Y − g(X))2] =E[(Y − E(Y |X) + E(Y |X)− g(X))2]

=E[(Y − E(Y |X))2] + E[(E(Y |X)− g(X))2]

+2E[(Y − E(Y |X))(E(Y |X)− g(X))].

Using the fact that the expression h(X) = E(Y |X) − g(X) is a function of
X and thus can be treated as a constant we have

E[(Y − E(Y |X))h(X)] =E[E[(Y − E(Y |X))h(X)|X]]

=E[(h(X)E[Y − E(Y |X)|X]]

=E[h(X)[E(Y |X)− E(Y |X)]] = 0

for all functions g. Thus,

E[(Y − g(X))2] = E[(Y − E(Y |X))2] + E[(E(Y |X)− g(X))2].

The first term on the right of the previous equation is not a function of g.
Thus, the right hand side expression is minimized when g(X) = E(Y |X)
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Example 48.4
Let X and Y be random variables with joint pdf

fXY =

{
α−1
yα

y > 1

0 otherwise

where α > 1. Determine the best estimator g(x) of Y given X.

Solution.
Given Y = y, let X be a random variable which is Uniformly distributed on
(0, y). From Example 48.3, the best estimator is given by

g(x) = E(Y |X) =

{
α
α−1

, if x < 1
αx
α−1

, if x ≥ 1
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Practice Problems

Problem 48.1
Suppose that X and Y have joint distribution

fXY (x, y) =

{
8xy 0 < x < y < 1
0 otherwise.

Find E(X|Y ) and E(Y |X).

Problem 48.2
Suppose that X and Y have joint distribution

fXY (x, y) =

{
3y2

x3
0 < y < x < 1

0 otherwise.

Find E(X), E(X2), V ar(X), E(Y |X), V ar(Y |X), E[V ar(Y |X)], V ar[E(Y |X)],
and V ar(Y ).

Problem 48.3
Let X and Y be independent exponentially distributed random variables
with parameters µ and λ respectively. Using conditioning, find Pr(X > Y ).

Problem 48.4
Let X be uniformly distributed on [0, 1]. Find E(X|X > 0.5).

Problem 48.5
Let X and Y be discrete random variables with conditional density function

fY |X(y|2) =


0.2 y = 1
0.3 y = 2
0.5 y = 3
0 otherwise.

Compute E(Y |X = 2).

Problem 48.6
Suppose that X and Y have joint distribution

fXY (x, y) =

{
21
4
x2y x2 < y < 1
0 otherwise.

Find E(Y |X).
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Problem 48.7
Suppose that X and Y have joint distribution

fXY (x, y) =

{
21
4
x2y x2 < y < 1
0 otherwise.

Find E(Y ) in two ways.

Problem 48.8
Suppose that E(X|Y ) = 18 − 3

5
Y and E(Y |X) = 10 − 1

3
X. Find E(X) and

E(Y ).

Problem 48.9
Let X be an exponential random variable with λ = 5 and Y a uniformly
distributed random variable on (−3, X). Find E(Y ).

Problem 48.10
In a mall, a survey found that the number of people who pass by JCPenney
between 4:00 and 5:00 pm is a Poisson random variable with parameter λ =
100. Assume that each person may enter the store, independently of the other
person, with a given probability p = 0.15. What is the expected number of
people who enter the store during the given period?

Problem 48.11
Let X and Y be discrete random variables with joint probability mass func-
tion defined by the following table

X\Y 1 2 3 pX(x)
1 1/9 1/9 0 2/9
2 1/3 0 1/6 1/2
3 1/9 1/18 1/9 5/18
pY (y) 5/9 1/6 5/18 1

Compute E(X|Y = i) for i = 1, 2, 3. Are X and Y independent?

Problem 48.12 ‡
A diagnostic test for the presence of a disease has two possible outcomes: 1
for disease present and 0 for disease not present. Let X denote the disease
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state of a patient, and let Y denote the outcome of the diagnostic test. The
joint probability function of X and Y is given by:

Pr(X = 0, Y = 0) =0.800

Pr(X = 1, Y = 0) =0.050

Pr(X = 0, Y = 1) =0.025

Pr(X = 1, Y = 1) =0.125.

Calculate V ar(Y |X = 1).

Problem 48.13 ‡
The stock prices of two companies at the end of any given year are modeled
with random variables X and Y that follow a distribution with joint density
function

fXY (x, y) =

{
2x 0 < x < 1, x < y < x+ 1
0 otherwise.

What is the conditional variance of Y given that X = x?

Problem 48.14 ‡
An actuary determines that the annual numbers of tornadoes in counties P
and Q are jointly distributed as follows:

X\Y 0 1 2 PX(x)
0 0.12 0.13 0.05 0.30
1 0.06 0.15 0.15 0.36
2 0.05 0.12 0.10 0.27
3 0.02 0.03 0.02 0.07
pY (y) 0.25 0.43 0.32 1

where X is the number of tornadoes in county Q and Y that of county P.
Calculate the conditional variance of the annual number of tornadoes in
county Q, given that there are no tornadoes in county P.

Problem 48.15
Let X be a random variable with mean 3 and variance 2, and let Y be
a random variable such that for every x, the conditional distribution of Y
given X = x has a mean of x and a variance of x2. What is the variance of
the marginal distribution of Y ?
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Problem 48.16
Let X and Y be two continuous random variables with joint density function

fXY (x, y) =

{
2 0 < x < y < 1
0 otherwise.

For 0 < x < 1, find Var(Y |X = x).

Problem 48.17
Suppose that the number of stops X in a day for a UPS delivery truck driver
is Poisson with mean λ and that the expected distance driven by the driver
Y, given that there are X = x stops, has a normal distribution with a mean of
αx miles, and a standard deviation of βx miles. Find the mean and variance
of the number of miles driven per day.

Problem 48.18 ‡
The joint probability density for X and Y is

f(x, y) =

{
2e−(x+2y), for x > 0, y > 0

0 otherwise.

Calculate the variance of Y given that X > 3 and Y > 3.

Problem 48.19 ‡
The number of workplace injuries, N, occurring in a factory on any given day
is Poisson distributed with mean λ. The parameter λ is a random variable
that is determined by the level of activity in the factory, and is uniformly
distributed on the interval [0, 3].
Calculate Var(N).

Problem 48.20 ‡
A fair die is rolled repeatedly. Let X be the number of rolls needed to obtain
a 5 and Y the number of rolls needed to obtain a 6. Calculate E(X|Y = 2).

Problem 48.21 ‡
A driver and a passenger are in a car accident. Each of them independently
has probability 0.3 of being hospitalized. When a hospitalization occurs, the
loss is uniformly distributed on [0, 1]. When two hospitalizations occur, the
losses are independent.
Calculate the expected number of people in the car who are hospitalized,
given that the total loss due to hospitalizations from the accident is less than
1.
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Problem 48.22 ‡
New dental and medical plan options will be offered to state employees next
year. An actuary uses the following density function to model the joint
distribution of the proportion X of state employees who will choose Dental
Option 1 and the proportion Y who will choose Medical Option 1 under the
new plan options:

f(x, y) =


0.50 for 0 < x, y < 0.5
1.25 for 0 < x < 0.5, 0.5 < y < 1
1.50 for 0.5 < x < 1, 0 < y < 0.5
0.75 for 0.5 < x < 1, 0.5 < y < 1.

Calculate Var(Y |X = 0.75).

Problem 48.23 ‡
A motorist makes three driving errors, each independently resulting in an
accident with probability 0.25.
Each accident results in a loss that is exponentially distributed with mean
0.80. Losses are mutually independent and independent of the number of
accidents. The motorist’s insurer reimburses 70% of each loss due to an
accident.
Calculate the variance of the total unreimbursed loss the motorist experiences
due to accidents resulting from these driving errors.

Problem 48.24 ‡
The number of hurricanes that will hit a certain house in the next ten years
is Poisson distributed with mean 4.
Each hurricane results in a loss that is exponentially distributed with mean
1000. Losses are mutually independent and independent of the number of
hurricanes.
Calculate the variance of the total loss due to hurricanes hitting this house
in the next ten years.

Problem 48.25
Let X and Y be random variables with joint pdf

fXY =

{
αxy 0 < x < y < 1

0 otherwise

where α > 0. Determine the best estimator g(x) of Y given X.
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49 Moment Generating Functions

The moment generating function of a random variable X, denoted by
MX(t), is defined as

MX(t) = E[etX ]

provided that the expectation exists for t in some neighborhood of 0.
For a discrete random variable with a pmf Pr(x) we have

MX(t) =
∑
x

etxPr(x)

and for a continuous random variable with pdf f,

MX(t) =

∫ ∞
−∞

etxf(x)dx.

Example 49.1
Let X be a discrete random variable with pmf given by the following table

x 1 2 3 4 5
Pr(x) 0.15 0.20 0.40 0.15 0.10

Find MX(t).

Solution.
We have

MX(t) = 0.15et + 0.20e2t + 0.40e3t + 0.15e4t + 0.10e5t

Example 49.2
Let X be the uniform random variable on the interval [a, b]. Find MX(t).

Solution.
We have

MX(t) =

∫ b

a

etx

b− a
dx =

1

t(b− a)
[etb − eta]

As the name suggests, the moment generating function can be used to gen-
erate moments E(Xn) for n = 1, 2, · · · . Our first result shows how to use the
moment generating function to calculate moments.
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Proposition 49.1

E(Xn) = Mn
X(0)

where

Mn
X(0) =

dn

dtn
MX(t)

∣∣∣∣
t=0

.

Proof.
We prove the result for a continuous random variable X with pdf f. The
discrete case is shown similarly. In what follows we always assume that we can
differentiate under the integral sign. This interchangeability of differentiation
and expectation is not very limiting, since all of the distributions we will
consider enjoy this property. We have

d

dt
MX(t) =

d

dt

∫ ∞
−∞

etxf(x)dx =

∫ ∞
−∞

(
d

dt
etx
)
f(x)dx

=

∫ ∞
−∞

xetxf(x)dx = E[XetX ]

Hence,
d

dt
MX(t) |t=0 = E[XetX ] |t=0 = E(X).

By induction on n we find

dn

dtn
MX(t) |t=0 = E[XnetX ] |t=0 = E(Xn)

We next compute MX(t) for some common distributions.

Example 49.3
Let X be a binomial random variable with parameters n and p. Find the
expected value and the variance of X using moment generating functions.

Solution.
We can write

MX(t) =E(etX) =
n∑
k=0

etknCkp
k(1− p)n−k

=
n∑
k=0

nCk(pe
t)k(1− p)n−k = (pet + 1− p)n
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Differentiating yields

d

dt
MX(t) = npet(pet + 1− p)n−1

Thus

E(X) =
d

dt
MX(t) |t=0 = np.

To find E(X2), we differentiate a second time to obtain

d2

dt2
MX(t) = n(n− 1)p2e2t(pet + 1− p)n−2 + npet(pet + 1− p)n−1.

Evaluating at t = 0 we find

E(X2) = M ′′
X(0) = n(n− 1)p2 + np.

Observe that this implies the variance of X is

V ar(X) = E(X2)− (E(X))2 = n(n− 1)p2 + np− n2p2 = np(1− p)

Example 49.4
Let X be a Poisson random variable with parameter λ. Find the expected
value and the variance of X using moment generating functions.

Solution.
We can write

MX(t) =E(etX) =
∞∑
n=0

etne−λλn

n!
= e−λ

∞∑
n=0

etnλn

n!

=e−λ
∞∑
n=0

(λet)n

n!
= e−λeλe

t

= eλ(et−1)

Differentiating for the first time we find

M ′
X(t) = λeteλ(et−1).

Thus,

E(X) = M ′
X(0) = λ.
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Differentiating a second time we find

M ′′
X(t) = (λet)2eλ(et−1) + λeteλ(et−1).

Hence,

E(X2) = M ′′
X(0) = λ2 + λ.

The variance is then

V ar(X) = E(X2)− (E(X))2 = λ

Example 49.5
Let X be an exponential random variable with parameter λ. Find the ex-
pected value and the variance of X using moment generating functions.

Solution.
We can write

MX(t) = E(etX) =
∫∞

0
etxλe−λxdx = λ

∫∞
0
e−(λ−t)xdx = λ

λ−t

where t < λ. Differentiation twice yields

M ′
X(t) = λ

(λ−t)2 and M ′′
X(t) = 2λ

(λ−t)3 .

Hence,

E(X) = M ′
X(0) = 1

λ
and E(X2) = M ′′

X(0) = 2
λ2
.

The variance of X is given by

V ar(X) = E(X2)− (E(X))2 =
1

λ2

Moment generating functions are also useful in establishing the distribution
of sums of independent random variables. To see this, the following two
observations are useful. Let X be a random variable, and let a and b be
finite constants. Then,

MaX+b(t) =E[et(aX+b)] = E[ebte(at)X ]

=ebtE[e(at)X ] = ebtMX(at)
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Example 49.6
Let X be a normal random variable with parameters µ and σ2. Find the
expected value and the variance of X using moment generating functions.

Solution.
First we find the moment of a standard normal random variable with param-
eters 0 and 1. We can write

MZ(t) =E(etZ) =
1√
2π

∫ ∞
−∞

etze−
z2

2 dz =
1√
2π

∫ ∞
−∞

exp

{
−(z2 − 2tz)

2

}
dz

=
1√
2π

∫ ∞
−∞

exp

{
−(z − t)2

2
+
t2

2

}
dz = e

t2

2
1√
2π

∫ ∞
−∞

e−
(z−t)2

2 dz = e
t2

2

Now, since X = µ+ σZ we have

MX(t) =E(etX) = E(etµ+tσZ) = E(etµetσZ) = etµE(etσZ)

=etµMZ(tσ) = etµe
σ2t2

2 = exp

{
σ2t2

2
+ µt

}
By differentiation we obtain

M ′
X(t) = (µ+ tσ2)exp

{
σ2t2

2
+ µt

}
and

M ′′
X(t) = (µ+ tσ2)2exp

{
σ2t2

2
+ µt

}
+ σ2exp

{
σ2t2

2
+ µt

}
and thus

E(X) = M ′
X(0) = µ and E(X2) = M ′′

X(0) = µ2 + σ2

The variance of X is

V ar(X) = E(X2)− (E(X))2 = σ2

Next, suppose X1, X2, · · · , XN are independent random variables. Then, the
moment generating function of Y = X1 + · · ·+XN is

MY (t) =E(et(X1+X2+···+Xn)) = E(eX1t · · · eXN t)

=
N∏
k=1

E(eXkt) =
N∏
k=1

MXk(t)
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where the next-to-last equality follows from Proposition 46.5.

Another important property is that the moment generating function uniquely
determines the distribution. That is, if random variables X and Y both have
moment generating functions MX(t) and MY (t) that exist in some neighbor-
hood of zero and if MX(t) = MY (t) for all t in this neighborhood, then X
and Y have the same distributions.
The general proof of this is an inversion problem involving Laplace transform
theory and is omitted. However, We will prove the claim here in a simplified
setting.
SupposeX and Y are two random variables with common range {0, 1, 2, · · · , n}.
Moreover, suppose that both variables have the same moment generating
function. That is,

n∑
x=0

etxpX(x) =
n∑
y=0

etypY (y).

For simplicity, let s = et and ci = pX(i)− pY (i) for i = 0, 1, · · · , n. Then

0 =
n∑
x=0

etxpX(x)−
n∑
y=0

etypY (y)

0 =
n∑
x=0

sxpX(x)−
n∑
y=0

sypY (y)

0 =
n∑
i=0

sipX(i)−
n∑
i=0

sipY (i)

0 =
n∑
i=0

si[pX(i)− pY (i)]

0 =
n∑
i=0

cis
i, ∀s > 0.

The above is simply a polynomial in s with coefficients c0, c1, · · · , cn. The
only way it can be zero for all values of s is if c0 = c1 = · · · = cn = 0.
That is

pX(i) = pY (i), i = 0, 1, 2, · · · , n.

So probability mass functions for X and Y are exactly the same.



49 MOMENT GENERATING FUNCTIONS 403

Example 49.7
If X and Y are independent binomial random variables with parameters
(n, p) and (m, p), respectively, what is the pmf of X + Y ?

Solution.
We have

MX+Y (t) =MX(t)MY (t)

=(pet + 1− p)n(pet + 1− p)m

=(pet + 1− p)n+m.

Since (pet+1−p)n+m is the moment generating function of a binomial random
variable having parameters m+n and p, X+Y is a binomial random variable
with this same pmf

Example 49.8
If X and Y are independent Poisson random variables with parameters λ1

and λ2, respectively, what is the pmf of X + Y ?

Solution.
We have

MX+Y (t) =MX(t)MY (t)

=eλ1(et−1)eλ2(et−1)

=e(λ1+λ2)(et−1).

Since e(λ1+λ2)(et−1) is the moment generating function of a Poisson random
variable having parameter λ1 + λ2, X + Y is a Poisson random variable with
this same pmf

Example 49.9
IfX and Y are independent normal random variables with parameters (µ1, σ

2
1)

and (µ2, σ
2
2), respectively, what is the distribution of X + Y ?

Solution.
We have

MX+Y (t) =MX(t)MY (t)

=exp

{
σ2

1t
2

2
+ µ1t

}
· exp

{
σ2

2t
2

2
+ µ2t

}
=exp

{
(σ2

1 + σ2
2)t2

2
+ (µ1 + µ2)t

}



404 PROPERTIES OF EXPECTATION

which is the moment generating function of a normal random variable with
mean µ1 +µ2 and variance σ2

1 +σ2
2. Because the moment generating function

uniquely determines the distribution then X+Y is a normal random variable
with the same distribution

Example 49.10 ‡
An insurance company insures two types of cars, economy cars and luxury
cars. The damage claim resulting from an accident involving an economy car
has normal N(7, 1) distribution, the claim from a luxury car accident has
normal N(20, 6) distribution.
Suppose the company receives three claims from economy car accidents and
one claim from a luxury car accident. Assuming that these four claims are
mutually independent, what is the probability that the total claim amount
from the three economy car accidents exceeds the claim amount from the
luxury car accident?

Solution.
Let X1, X2, X3 denote the claim amounts from the three economy cars, and
X4 the claim from the luxury car. Then we need to compute Pr(X1 +X2 +
X3 > X4), which is the same as Pr(X1 +X2 +X3 −X4 > 0). Now, since the
Xis are independent and normal with distribution N(7, 1) (for i = 1, 2, 3) and
N(20, 6) for i = 4, the linear combination X = X1 +X2 +X3−X4 has normal
distribution with parameters µ = 7+7+7−20 = 1 and σ2 = 1+1+1+6 = 9.
Thus, the probability we want is

Pr(X > 0) =P

(
X − 1√

9
>

0− 1√
9

)
=Pr(Z > −0.33) = 1− Pr(Z ≤ −0.33)

=Pr(Z ≤ 0.33) ≈ 0.6293

Joint Moment Generating Functions
For any random variables X1, X2, · · · , Xn, the joint moment generating func-
tion is defined by

M(t1, t2, · · · , tn) = E(et1X1+t2X2+···+tnXn).

Example 49.11
Let X and Y be two independent normal random variables with parameters
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(µ1, σ
2
1) and (µ2, σ

2
2) respectively. Find the joint moment generating function

of X + Y and X − Y.

Solution.
The joint moment generating function is

M(t1, t2) =E(et1(X+Y )+t2(X−Y )) = E(e(t1+t2)X+(t1−t2)Y )

=E(e(t1+t2)X)E(e(t1−t2)Y ) = MX(t1 + t2)MY (t1 − t2)

=e(t1+t2)µ1+ 1
2

(t1+t2)2σ2
1e(t1−t2)µ2+ 1

2
(t1−t2)2σ2

2

=e(t1+t2)µ1+(t1−t2)µ2+ 1
2

(t21+t22)σ2
1+ 1

2
(t21+t22)σ2

2+t1t2(σ2
1−σ2

2)

Example 49.12
Let X and Y be two random variables with joint distribution function

fXY (x, y) =

{
e−x−y x > 0, y > 0

0 otherwise

Find E(XY ), E(X), E(Y ) and Cov(X, Y ).

Solution.
We note first that fXY (x, y) = fX(x)fY (y) so that X and Y are independent.
Thus, the moment generating function is given by

M(t1, t2) = E(et1X+t2Y ) = E(et1X)E(et2Y ) =
1

1− t1
1

1− t2
.

Thus,

E(XY ) =
∂2

∂t2∂t1
M(t1, t2)

∣∣∣∣
(0,0)

=
1

(1− t1)2(1− t2)2

∣∣∣∣
(0,0)

= 1

E(X) =
∂

∂t1
M(t1, t2)

∣∣∣∣
(0,0)

=
1

(1− t1)2(1− t2)

∣∣∣∣
(0,0)

= 1

E(Y ) =
∂

∂t2
M(t1, t2)

∣∣∣∣
(0,0)

=
1

(1− t1)(1− t2)2

∣∣∣∣
(0,0)

= 1

and
Cov(X, Y ) = E(XY )− E(X)E(Y ) = 0
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Practice Problems

Problem 49.1
Let X be a discrete random variable with range {1, 2, · · · , n} so that its pmf
is given by pX(j) = 1

n
for 1 ≤ j ≤ n. Find E(X) and V ar(X) using moment

generating functions.

Problem 49.2
Let X be a geometric distribution function with pX(n) = p(1 − p)n−1. Find
the expected value and the variance of X using moment generating functions.

Problem 49.3
The following problem exhibits a random variable with no moment generating
function. Let X be a random variable with pmf given by

pX(n) =
6

π2n2
, n = 1, 2, 3, · · · .

Show that MX(t) does not exist in any neighborhood of 0.

Problem 49.4
Let X be a gamma random variable with parameters α and λ. Find the
expected value and the variance of X using moment generating functions.

Problem 49.5
Show that the sum of n independently exponential random variable each
with paramter λ is a gamma random variable with parameters n and λ.

Problem 49.6
Let X be a random variable with pdf given by

f(x) =
1

π(1 + x2)
, −∞ < x <∞.

Find MX(t).

Problem 49.7
Let X be an exponential random variable with paramter λ. Find the moment
generating function of Y = 3X − 2.
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Problem 49.8
Identify the random variable whose moment generating function is given by

MX(t) =

(
3

4
et +

1

4

)15

.

Problem 49.9
Identify the random variable whose moment generating function is given by

MY (t) = e−2t

(
3

4
e3t +

1

4

)15

.

Problem 49.10 ‡
X and Y are independent random variables with common moment generating

function M(t) = e
t2

2 . Let W = X + Y and Z = X − Y. Determine the joint
moment generating function, M(t1, t2) of W and Z.

Problem 49.11 ‡
An actuary determines that the claim size for a certain class of accidents is
a random variable, X, with moment generating function

MX(t) =
1

(1− 2500t)4

Determine the standard deviation of the claim size for this class of accidents.

Problem 49.12 ‡
A company insures homes in three cities, J, K, and L . Since sufficient distance
separates the cities, it is reasonable to assume that the losses occurring in
these cities are independent.
The moment generating functions for the loss distributions of the cities are:

MJ(t) =(1− 2t)−3

MK(t) =(1− 2t)−2.5

ML(t) =(1− 2t)−4.5

Let X represent the combined losses from the three cities. Calculate E(X3).
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Problem 49.13 ‡
Let X1, X2, X3 be independent discrete random variables with common prob-
ability mass function

Pr(x) =


1
3

x = 0
2
3

x = 1
0 otherwise

Determine the moment generating function M(t), of Y = X1X2X3.

Problem 49.14 ‡
Two instruments are used to measure the height, h, of a tower. The error
made by the less accurate instrument is normally distributed with mean 0 and
standard deviation 0.0056h. The error made by the more accurate instrument
is normally distributed with mean 0 and standard deviation 0.0044h.
Assuming the two measurements are independent random variables, what is
the probability that their average value is within 0.005h of the height of the
tower?

Problem 49.15
Let X1, X2, · · · , Xn be independent geometric random variables each with
parameter p. Define Y = X1 +X2 + · · ·Xn.
(a) Find the moment generating function of Xi, 1 ≤ i ≤ n.
(b) Find the moment generating function of a negative binomial random
variable with parameters (n, p).
(c) Show that Y defined above is a negative binomial random variable with
parameters (n, p).

Problem 49.16
Let X be normally distributed with mean 500 and standard deviation 60
and Y be normally distributed with mean 450 and standard deviation 80.
Suppose that X and Y are independent. Find Pr(X > Y ).

Problem 49.17
Suppose a random variable X has moment generating function

MX(t) =

(
2 + et

3

)9

Find the variance of X.
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Problem 49.18
Let X be a random variable with density function

f(x) =

{
(k + 1)x2 0 < x < 1

0 otherwise

Find the moment generating function of X

Problem 49.19
If the moment generating function for the random variable X is MX(t) = 1

t+1
,

find E[(X − 2)3].

Problem 49.20
Suppose that X is a random variable with moment generating function
MX(t) =

∑∞
j=0

e(tj−1)

j!
. Find Pr(X = 2).

Problem 49.21
If X has a standard normal distribution and Y = eX , what is the k-th
moment of Y ?

Problem 49.22
The random variable X has an exponential distribution with parameter b. It
is found that MX(−b2) = 0.2. Find b.

Problem 49.23
Let X1 and X2 be two random variables with joint density function

fX1X1(x1, x2) =

{
1 0 < x1 < 1, 0 < x2 < 1
0 otherwise

Find the moment generating function M(t1, t2).

Problem 49.24
The moment generating function for the joint distribution of random vari-
ables X and Y is M(t1, t2) = 1

3(1−t2)
+ 2

3
et1 · 2

(2−t2)
, t2 < 1. Find Var(X).

Problem 49.25
Let X and Y be two independent random variables with moment generating
functions
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MX(t) = et
2+2t and MY (t) = e3t2+t

Determine the moment generating function of X + 2Y.

Problem 49.26
Let X1 and X2 be random variables with joint moment generating function

M(t1, t2) = 0.3 + 0.1et1 + 0.2et2 + 0.4et1+t2

What is E(2X1 −X2)?

Problem 49.27
Suppose X and Y are random variables whose joint distribution has moment
generating function

MXY (t1, t2) =

(
1

4
et1 +

3

8
et2 +

3

8

)10

for all t1, t2. Find the covariance between X and Y.

Problem 49.28
Independent random variables X, Y and Z are identically distributed. Let
W = X+Y. The moment generating function of W is MW (t) = (0.7+0.3et)6.
Find the moment generating function of V = X + Y + Z.

Problem 49.29 ‡
The value of a piece of factory equipment after three years of use is 100(0.5)X

where X is a random variable having moment generating function

MX(t) = 1
1−2t

for t < 1
2
.

Calculate the expected value of this piece of equipment after three years of
use.

Problem 49.30 ‡
Let X and Y be identically distributed independent random variables such
that the moment generating function of X + Y is

M(t) = 0.09e−2t + 0.24e−t + 0.34 + 0.24et + 0.09e2t, −∞ < t <∞.

Calculate Pr(X ≤ 0).



Limit Theorems

Limit theorems are considered among the important results in probability
theory. In this chapter, we consider two types of limit theorems. The first
type is known as the law of large numbers. The law of large numbers
describes how the average of a randomly selected sample from a large popu-
lation is likely to be close to the average of the whole population.
The second type of limit theorems that we study is known as central limit
theorems. Central limit theorems are concerned with determining condi-
tions under which the sum of a large number of random variables has a
probability distribution that is approximately normal.

50 The Law of Large Numbers

There are two versions of the law of large numbers: the weak law of large
numbers and the strong law of numbers.

50.1 The Weak Law of Large Numbers

The law of large numbers is one of the fundamental theorems of statistics.
One version of this theorem, the weak law of large numbers, can be proven
in a fairly straightforward manner using Chebyshev’s inequality, which is, in
turn, a special case of the Markov inequality.
Our first result is known as Markov’s inequality.

Proposition 50.1 (Markov’s Inequality)

If X ≥ 0 and c > 0, then Pr(X ≥ c) ≤ E(X)
c
.

411



412 LIMIT THEOREMS

Proof.
Let c > 0. Define

I =

{
1 if X ≥ c
0 otherwise.

Since X ≥ 0, I ≤ X
c
. Taking expectations of both side we find E(I) ≤ E(X)

c
.

Now the result follows since E(I) = Pr(X ≥ c)

Example 50.1
Suppose that a student’s score on a test is a random variable with mean
75. Give an upper bound for the probability that a student’s test score will
exceed 85.

Solution.
Let X be the random variable denoting the student’s score. Using Markov’s
inequality, we have

Pr(X ≥ 85) ≤ E(X)

85
=

75

85
≈ 0.882

Example 50.2
If X is a non-negative random variable with E(X) > 0. Show thatPr(X ≥
aE(X)) ≤ 1

a
for all a > 0.

Solution.
The result follows by letting c = aE(X) is Markov’s inequality

Remark 50.1
Markov’s inequality does not apply for negative random variable. To see this,
let X be a random variable with range {−1000, 1000}. Suppose that Pr(X =
−1000) = Pr(X = 1000) = 1

2
. Then E(X) = 0 and Pr(X ≥ 1000) 6= 0

Markov’s bound gives us an upper bound on the probability that a random
variable is large. It turns out, though, that there is a related result to get an
upper bound on the probability that a random variable is small.

Proposition 50.2
Suppose that X is a random variable such that X ≤ M for some constant
M. Then for all x < M we have

Pr(X ≤ x) ≤ M − E(X)

M − x
.
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Proof.
By applying Markov’s inequality we find

Pr(X ≤ x) =Pr(M −X ≥M − x)

≤E(M −X)

M − x
=
M − E(X)

M − x

Example 50.3
Let X denote the test score of a randomly chosen student, where the highest
possible score is 100. Find an upper bound of Pr(X ≤ 50), given that
E(X) = 75.

Solution.
By the previous proposition we find

Pr(X ≤ 50) ≤ 100− 75

100− 50
=

1

2

As a corollary of Proposition 50.1 we have

Proposition 50.3 (Chebyshev’s Inequality)
If X is a random variable with finite mean µ and variance σ2, then for any
value ε > 0,

Pr(|X − µ| ≥ ε) ≤ σ2

ε2
.

Proof.
Since (X − µ)2 ≥ 0, by Markov’s inequality we can write

Pr((X − µ)2 ≥ ε2) ≤ E[(X − µ)2]

ε2
.

But (X − µ)2 ≥ ε2 is equivalent to |X − µ| ≥ ε and this in turn is equivalent
to

Pr(|X − µ| ≥ ε) ≤ E[(X − µ)2]

ε2
=
σ2

ε2

Example 50.4
Show that for any random variable the probability of a deviation from the
mean of more than k standard deviations is less than or equal to 1

k2
.
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Solution.
This follows from Chebyshev’s inequality by using ε = kσ

Example 50.5
Suppose X is the test score of a randomly selected student. We assume
0 ≤ X ≤ 100, E(X) = 70, and σ = 7. Find an upper bound of Pr(X ≥ 84)
using first Markov’s inequality and then Chebyshev’s inequality.

Solution.
By using Markov’s inequality we find

Pr(X ≥ 84) ≤ 70

84
=

35

42

Now, using Chebyshev’s inequality we find

Pr(X ≥ 84) =Pr(X − 70 ≥ 14)

=Pr(X − E(X) ≥ 2σ)

≤Pr(|X − E(X)| ≥ 2σ) ≤ 1

4

Example 50.6
The expected life of a certain battery is 240 hours.
(a) Let p be the probability that a battery will NOT last for 300 hours. What
can you say about p?
(b) Assume now that the standard deviation of a battery’s life is 30 hours.
What can you say now about p?

Solution.
(a) Let X be the random variable representing the number of hours of the
battery’s life. Then by using Markov’s inequality we find

p = Pr(X < 300) = 1− Pr(X ≥ 300) ≥ 1− 240

300
= 0.2

(b) By Chebyshev’s inequality we find

p = Pr(X < 300) = 1−Pr(X ≥ 300) ≥ 1−Pr(|X−240| ≥ 60) ≥ 1− 900

3600
= 0.75
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Example 50.7
You toss a fair coin n times. Assume that all tosses are independent. Let X
denote the number of heads obtained in the n tosses.
(a) Compute (explicitly) the variance of X.
(b) Show that Pr(|X − E(X)| ≥ n

3
) ≤ 9

4n
.

Solution.
(a) For 1 ≤ i ≤ n, letXi = 1 if the ith toss shows heads, andXi = 0 otherwise.
Thus, X = X1 +X2 + · · ·+Xn. Moreover, E(Xi) = 1

2
and E(X2

i ) = 1
2
. Hence,

E(X) = n
2

and

E(X2) =E

( n∑
i=1

Xi

)2
 = nE(X2

1 ) +
∑∑

i 6=j

E(XiXj)

=
n

2
+ n(n− 1)

1

4
=
n(n+ 1)

4

Hence, Var(X) = E(X2)− (E(X))2 = n(n+1)
4
− n2

4
= n

4
.

(b) We apply Chebychev’s inequality:

Pr(|X − E(X)| ≥ n

3
) ≤ Var(X)

(n/3)2
=

9

4n

When does a random variable, X, have zero variance? It turns out that
this happens when the random variable never deviates from the mean. The
following theorem characterizes the structure of a random variable whose
variance is zero.

Proposition 50.4
If X is a random variable with zero variance, then X must be constant with
probability equals to 1.

Proof.
First we show that if X ≥ 0 and E(X) = 0 then X = 0 and Pr(X = 0) = 1.
Since E(X) = 0, by Markov’s inequality Pr(X ≥ c) = 0 for all c > 0. But

Pr(X > 0) = P

(
∞⋃
n=1

(X >
1

n
)

)
≤

∞∑
n=1

Pr(X >
1

n
) = 0.
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Hence, Pr(X > 0) = 0. Since X ≥ 0, 1 = Pr(X ≥ 0) = Pr(X = 0) + Pr(X >
0) = Pr(X = 0).
Now, suppose that V ar(X) = 0. Since (X − E(X))2 ≥ 0 and V ar(X) =
E((X −E(X))2), by the above result we have Pr(X −E(X) = 0) = 1. That
is, Pr(X = E(X)) = 1

One of the most well known and useful results of probability theory is the
following theorem, known as the weak law of large numbers.

Theorem 50.1
Let X1, X2, · · · , Xn be a sequence of independent random variables with com-
mon mean µ and finite common variance σ2. Then for any ε > 0

lim
n→∞

P
{∣∣X1+X2+···+Xn

n
− µ

∣∣ ≥ ε
}

= 0

or equivalently

lim
n→∞

P

(∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ < ε

)
= 1

Proof.
Since

E
[
X1+X2+···+Xn

n

]
= µ and Var

(
X1+X2+···+Xn

n

)
= σ2

n

by Chebyshev’s inequality we find

0 ≤ P

{∣∣∣∣X1 +X2 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

}
≤ σ2

nε2

and the result follows by letting n→∞

The above theorem says that for large n, X1+X2+···+Xn
n

− µ is small with
high probability. Also, it says that the distribution of the sample average
becomes concentrated near µ as n→∞.
Let A be an event with probability p. Repeat the experiment n times. Let
Xi be 1 if the event occurs and 0 otherwise. Then Sn = X1+X2+···+Xn

n
is the

number of occurrence of A in n trials and µ = E(Xi) = p. By the weak law
of large numbers we have

lim
n→∞

P (|Sn − µ| < ε) = 1
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The above statement says that, in a large number of repetitions of a Bernoulli
experiment, we can expect the proportion of times the event will occur to
be near p = Pr(A). This agrees with the definition of probability that we
introduced in Section 6.
The Weak Law of Large Numbers was given for a sequence of pairwise in-
dependent random variables with the same mean and variance. We can
generalize the Law to sequences of pairwise independent random variables,
possibly with different means and variances, as long as their variances are
bounded by some constant.

Example 50.8
LetX1, X2, · · · be pairwise independent random variables such that Var(Xi) ≤
b for some constant b > 0 and for all 1 ≤ i ≤ n. Let

Sn =
X1 +X2 + · · ·+Xn

n

and
µn = E(Sn).

Show that, for every ε > 0 we have

Pr(|Sn − µn| > ε) ≤ b

ε2
· 1

n

and consequently
lim
n→∞

Pr(|Sn − µn| ≤ ε) = 1

Solution.
Since E(Sn) = µn and Var(Sn) = Var(X1)+Var(X2)+···+Var(Xn)

n2 ≤ bn
n2 = b

n
, by

Chebyshev’s inequality we find

0 ≤ P

{∣∣∣∣X1 +X2 + · · ·+Xn

n
− µn

∣∣∣∣ ≥ ε

}
≤ 1

ε2
· b
n
.

Now,

1 ≥ Pr(|Sn − µn| ≤ ε) = 1− Pr(|Sn − µn| > ε) ≥ 1− b

ε2
· 1

n

By letting n→∞ we conclude that

lim
n→∞

Pr(|Sn − µn| ≤ ε) = 1
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50.2 The Strong Law of Large Numbers

Recall the weak law of large numbers:

lim
n→∞

Pr(|Sn − µ| < ε) = 1

where the Xi’s are independent identically distributed random variables and
Sn = X1+X2+···+Xn

n
. This type of convergence is referred to as convergence

in probability. Unfortunately, this form of convergence does not assure
convergence of individual realizations. In other words, for any given elemen-
tary event x ∈ S, we have no assurance that limn→∞ Sn(x) = µ. Fortunately,
however, there is a stronger version of the law of large numbers that does
assure convergence for individual realizations.

Theorem 50.2 (Strong law of large numbers)
Let {Xn}n≥1 be a sequence of independent random variables with finite mean
µ = E(Xi) and K = E(X4

i ) <∞. Then

P

(
lim
n→∞

X1 +X2 + · · ·+Xn

n
= µ

)
= 1.

Proof.
We first consider the case µ = 0 and let Tn = X1 +X2 + · · ·+Xn. Then
E(T 4

n) = E[(X1 + X2 + · · · + Xn)(X1 + X2 + · · · + Xn)(X1 + X2 + · · · +
Xn)(X1 +X2 + · · ·+Xn)]
When expanding the product on the right side using the multinomial theorem
the resulting expression contains terms of the form

X4
i , X3

iXj, X2
iX

2
j , X2

iXjXk and XiXjXkXl

with i 6= j 6= k 6= l. Now recalling that µ = 0 and using the fact that the
random variables are independent we find

E(X3
iXj) =E(X3

i )E(Xj) = 0

E(X2
iXjXk) =E(X2

i )E(Xj)E(Xk) = 0

E(XiXjXkXl) =E(Xi)E(Xj)E(Xk)E(Xl) = 0

Next, there are n terms of the form X4
i and for each i 6= j the coefficient of

X2
iX

2
j according to the multinomial theorem is

4!

2!2!
= 6.
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But there are nC2 = n(n−1)
2

different pairs of indices i 6= j. Thus, by taking
the expectation term by term of the expansion we obtain

E(T 4
n) = nE(X4

i ) + 3n(n− 1)E(X2
i )E(X2

j )

where in the last equality we made use of the independence assumption.
Now, from the definition of the variance we find

0 ≤ V ar(X2
i ) = E(X4

i )− (E(X2
i ))2

and this implies that
(E(X2

i ))2 ≤ E(X4
i ) = K.

It follows that
E(T 4

n) ≤ nK + 3n(n− 1)K

which implies that

E

[
T 4
n

n4

]
≤ K

n3
+

3K

n2
≤ 4K

n2

Therefore.

E

[
∞∑
n=1

T 4
n

n4

]
≤ 4K

∞∑
n=1

1

n2
<∞ (50.1)

Now,

P

[
∞∑
n=1

T 4
n

n4
<∞

]
+ P

[
∞∑
n=1

T 4
n

n4
=∞

]
= 1.

If P
[∑∞

n=1
T 4
n

n4 =∞
]
> 0 then at some value in the range of the random vari-

able
∑∞

n=1
T 4
n

n4 the sum
∑∞

n=1
T 4
n

n4 is infinite and so its expected value is infinite

which contradicts (50.1). Hence, P
[∑∞

n=1
T 4
n

n4 =∞
]

= 0 and therefore

P

[
∞∑
n=1

T 4
n

n4
<∞

]
= 1.

But the convergence of a series implies that its nth term goes to 0. Hence,

P

[
lim
n→∞

T 4
n

n4
= 0

]
= 1
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Since T 4
n

n4 =
(
Tn
n

)4
= S4

n the last result implies that

P
[

lim
n→∞

Sn = 0
]

= 1

which proves the result for µ = 0.
Now, if µ 6= 0, we can apply the preceding argument to the random variables
Xi − µ to obtain

P

[
lim
n→∞

n∑
i=1

(Xi − µ)

n
= 0

]
= 1

or equivalently

P

[
lim
n→∞

n∑
i=1

Xi

n
= µ

]
= 1

which proves the theorem

As an application of this theorem, suppose that a sequence of independent
trials of some experiment is performed. Let E be a fixed event of the exper-
iment and let Pr(E) denote the probability that E occurs on any particular
trial. Define

Xi =

{
1 if E occurs on the ith trial
0 otherwise

By the Strong Law of Large Numbers we have

P

[
lim
n→∞

X1 +X2 + · · ·+Xn

n
= E(X) = Pr(E)

]
= 1

Since X1+X2+· · ·+Xn represents the number of times the event E occurs in
the first n trials, the above result says that the limiting proportion of times
that the event occurs is just Pr(E). This justifies our definition of Pr(E) that
we introduced in Section 6,i.e.,

Pr(E) = lim
n→∞

n(E)

n

where n(E) denotes the number of times in the first n repetitions of the ex-
periment that the event E occurs.

To clarify the somewhat subtle difference between the Weak and Strong Laws
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of Large Numbers, we will construct an example of a sequence X1, X2, · · · of
mutually independent random variables that satisfies the Weak Law of Large
but not the Strong Law.

Example 50.9
Let X1, X2, · · · be the sequence of mutually independent random variables
such that X1 = X2 = 0, and for each positive integer i > 2

Pr(Xi = i) = 1
2i ln i

, Pr(Xi = −i) = 1
2i ln i

, Pr(Xi = 0) = 1− 1
i ln i

Note that E(Xi) = 0 for all i. Let Tn = X1 +X2 + · · ·+Xn and Sn = Tn
n
.

(a) Show that Var(Tn) ≤ n2

lnn
.

(b) Show that the sequence X1, X2, · · · satisfies the Weak Law of Large Num-
bers, i.e., prove that for any ε > 0

lim
n→∞

Pr(|Sn| ≥ ε) = 0.

(c) Let A1, A2, · · · be any infinite sequence of mutually independent events
such that

∞∑
i=1

Pr(Ai) =∞.

Prove that

Pr(infinitely many Ai occur) = 1

(d) Show that
∑∞

i=1 Pr(|Xi| ≥ i) =∞.
(e) Conclude that

lim
n→∞

Pr(Sn = µ) = 0

and hence that the Strong Law of Large Numbers completely fails for the
sequence X1, X2, · · ·



422 LIMIT THEOREMS

Solution.
(a) We have

Var(Tn) =Var(X1) + Var(X2) + · · ·+ Var(Xn)

=0 + 0 +
n∑
i=3

(E(X2
i )− (E(Xi))

2)

=
n∑
i=3

i2
1

i ln i

=
n∑
i=3

i

ln i

Now, if we let f(x) = x
lnx

then f ′(x) = 1
lnx

(
1− 1

lnx

)
> 0 for x > e so

that f(x) is increasing for x > e. It follows that n
lnn
≥ i

ln i
for 3 ≤ i ≤ n.

Furthermore,
n2

lnn
=

n∑
i=1

n

lnn
≥

n∑
i=3

i

ln i

Hence,

Var(Tn) ≤ n2

lnn
.

(b) We have

Pr(|Sn| ≥ ε) =Pr(|Sn − 0| ≥ ε)

≤Var(Sn) · 1

ε2
Chebyshev′s inequality

=
Var(Tn)

n2
· 1

ε2

≤ 1

ε2 lnn

which goes to zero as n goes to infinity.
(c) Let Tr,n =

∑n
i=r IAi the number of events Ai with r ≤ i ≤ n that occur.

Then

lim
n→∞

E(Tr,n) = lim
n→∞

n∑
i=r

E(IAi) = lim
n→∞

n∑
i=r

Pr(Ai) =∞

Since ex → 0 as x→ −∞ we conclude that e−E(Tr,n) → 0 as n→∞.
Now, let Kr be the event that no Ai with i ≥ r occurs. Also, let Kr,n be the
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event that no Ai with r ≤ i ≤ n occurs. Finally, let K be the event that only
finitely many A′is. occurs. We must prove that Pr(K) = 0. We first show
that

Pr(Kr,n) ≤ e−E(Tr,n).

We remind the reader of the inequality 1 + x ≤ ex. We have

Pr(Kr,n) =Pr(Tr,n = 0) = P [(Ar ∪ Ar+1 ∪ · · · ∪ An)c]

=P [Acr ∩ Acr+1 ∩ · · · ∩ Acn]

=
n∏
i=r

Pr(Aci)

=
n∏
i=r

[1− Pr(Ai)]

≤
n∏
i=r

e−Pr(Ai)

=e−
∑n
i=r Pr(Ai)

=e−
∑n
i=r E(IAi )

=e−E(Tr,n)

Now, since Kr ⊂ Kr,n we conclude that 0 ≤ Pr(Kr) ≤ Pr(Kr,n) ≤ e−E(Tr,n) →
0 as n→∞. Hence, Pr(Kr) = 0 for all r ≤ n.
Now note that K = ∪rKr so by Boole’s inequality (See Proposition 46.3),
0 ≤ Pr(K) ≤

∑
rKr = 0. That is, Pr(K) = 0. Hence the probability that

infinitely many Ai’s occurs is 1.
(d) We have that Pr(|Xi| ≥ i) = 1

i ln i
. Thus,

n∑
i=1

Pr(|Xi| ≥ i) =0 + 0 +
n∑
i=3

1

i ln i

≥
∫ n

3

dx

x lnx

= ln lnn− ln ln 3

and this last term approaches infinity as n approaches infinity.
(e) By parts (c) and (d), the probability that |Xi| ≥ i for infinitely many i
is 1. But if |Xi| ≥ i for infinitely many i then from the definition of limit
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limn→∞
Xn
n
6= 0. Hence,

Pr( lim
n→∞

Xn

n
6= 0) = 1

which means

Pr( lim
n→∞

Xn

n
= 0) = 0

Now note that
Xn

n
= Sn −

n− 1

n
Sn−1

so that if limn→∞ Sn = 0 then limn→∞
Xn
n

= 0. This implies that

Pr( lim
n→∞

Sn = 0) ≤ Pr( lim
n→∞

Xn

n
= 0)

That is,
Pr( lim

n→∞
Sn = 0) = 0

and this violates the Stong Law of Large numbers
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Practice Problems

Problem 50.1
Let ε > 0. Let X be a discrete random variable with range {−ε, ε} and pmf
given by Pr(−ε) = 1

2
and Pr(ε) = 1

2
and 0 otherwise. Show that the inequality

in Chebyshev’s inequality is in fact an equality.

Problem 50.2
Let X1, X2, · · · , Xn be a Bernoulli trials process with probability 0.3 for
success and 0.7 for failure. Let Xi = 1 if the ith outcome is a success
and 0 otherwise. Find n so that P

(∣∣Sn
n
− E

(
Sn
n

)∣∣ ≥ 0.1
)
≤ 0.21, where

Sn = X1 +X2 + · · ·+Xn.

Problem 50.3
Suppose that X is uniformly distributed on [0, 12]. Find an upper bound for
the probability that a sample from X lands more than 1.5 standard deviation
from the mean.

Problem 50.4
Let X be a random variable with E(X) = 103. Find an upper bound for the
probability that X is at least 104.

Problem 50.5
Suppose that X is a random variable with mean and variance both equal to
20. What can be said about Pr(0 < X < 40)?

Problem 50.6
Let X1, X2, · · · , X20 be independent Poisson random variables with mean 1.
Use Markov’s inequality to obtain a bound on

Pr(X1 +X2 + · · ·+X20 > 15).

Problem 50.7
Suppose that the test score of a randomly chosen student has mean 75 and
variance 25. What can be said about the probability that a student will score
between 65 and 85?

Problem 50.8
Let MX(t) = E(etX) be the moment generating function of a random variable
X. Show that

Pr(X ≥ ε) ≤ e−εtMX(t), t > 0.
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Problem 50.9
The expected weekly sale of computers by a store is 50. Suppose that on
Monday the store has 75 computers. What can be said about the probability
of not having enough computers left by the end of the week?

Problem 50.10
Let X be a random variable with mean 1

2
and variance 25× 10−7. What can

you say about Pr(0.475 ≤ X ≤ 0.525)?

Problem 50.11
Let X ≥ 0 be a random variable with mean µ. Show that Pr(X ≥ 2µ) ≤ 1

2
.

Problem 50.12
The expected daily production of a DVD factory is 100 DVDs.
(a) Find an upper bound to the probability that the factory’s production will
be more than 120 in a day.
(b) Suppose that the variance of the daily production is known to be 5.
Find a lower bound to the probability that the factory’s production will be
between 70 and 130 in a day.

Problem 50.13
A biased coin comes up heads 30% of the time. The coin is tossed 400
times. Let X be the number of heads in the 400 tossings. Use Chebyshev’s
inequality to bound the probability that X is between 100 and 140.

Problem 50.14
Let X1, · · · , Xn be independent random variables, each with probability den-
sity function:

f(x) =

{
2x 0 ≤ x ≤ 1
0 otherwise.

Show that X =
∑n
i=1Xi
n

converges in probability to a constant as n→∞ and
find that constant.

Problem 50.15
Let X1, · · · , Xn be independent and identically distributed Uniform(0,1). Let
Yn be the minimum of X1, · · · , Xn.
(a) Find the cumulative distribution of Yn
(b) Show that Yn converges in probability to 0 by showing that for arbitrary
ε > 0

lim
n→∞

Pr(|Yn − 0| ≤ ε) = 1.
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51 The Central Limit Theorem

The central limit theorem is one of the most remarkable theorems among
the limit theorems. This theorem says that the sum of a large number of
independent identically distributed random variables is well-approximated
by a normal random variable.
We first need a technical result.

Theorem 51.1
Let Z1, Z2, · · · be a sequence of random variables having distribution func-
tions FZn and moment generating functions MZn , n ≥ 1. Let Z be a ran-
dom variable having distribution FZ and moment generating function MZ . If
MZn(t) → MZ(t) as n → ∞ and for all t, then FZn → FZ for all t at which
FZ(t) is continuous.

With the above theorem, we can prove the central limit theorem.

Theorem 51.2
Let X1, X2, · · · be a sequence of independent and identically distributed ran-
dom variables, each with mean µ and variance σ2. Then,

P

(√
n

σ

(
X1 +X2 + · · ·+Xn

n
− µ

)
≤ a

)
→ 1√

2π

∫ a

−∞
e−

x2

2 dx

as n→∞.

The Central Limit Theorem says that regardless of the underlying distribu-
tion of the variables Xi, so long as they are independent, the distribution of√
n
σ

(
X1+X2+···+Xn

n
− µ

)
converges to the same, normal, distribution.

Proof.
We prove the theorem under the assumption that E(etXi) is finite in a neigh-
borhood of 0. In particular, we show that

M√
n
σ (X1+X2+···+Xn

n
−µ)(x)→ e

x2

2

where e
x2

2 is the moment generating function of the standard normal distri-
bution.



428 LIMIT THEOREMS

Now, using the properties of moment generating functions we can write

M√
n
σ (X1+X2+···+Xn

n
−µ)(x) =M 1√

n

∑n
i=1

Xi−µ
σ

(x)

=M∑n
i=1

Xi−µ
σ

(
x√
n

)
=

n∏
i=1

MXi−µ
σ

(
x√
n

)
=

(
MX1−µ

σ

(
x√
n

))n
=

(
MY

(
x√
n

))n
where

Y =
X1 − µ
σ

.

Now expand MY (x/
√
n) in a Taylor series around 0 as follows

MY

(
x√
n

)
= MY (0) +M ′

Y (0)

(
x√
n

)
+

1

2

x2

n
M ′′

Y (0) +R

(
x√
n

)
,

where

n
x2
R
(

x√
n

)
→ 0 as x→ 0

But

E(Y ) = E

[
X1 − µ
σ

]
= 0

and

E(Y 2) = E

[(
X1 − µ
σ

)2
]

=
V ar(X1)

σ2
= 1.

By Proposition 49.1 we obtain MY (0) = 1,M ′
Y (0) = E(Y ) = 0, and M ′′

Y (0) =
E(Y 2) = 1. Hence,

MY

(
x√
n

)
= 1 +

1

2

x2

n
+R

(
x√
n

)
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and so

lim
n→∞

(
MY

(
x√
n

))n
= lim

n→∞

(
1 +

1

2

x2

n
+R

(
x√
n

))n
= lim

n→∞

(
1 +

1

n

(
x2

2
+ nR

(
x√
n

)))n
But

nR

(
x√
n

)
= x2 n

x2
R

(
x√
n

)
→ 0

as n→∞. Hence,

lim
n→∞

(
MY

(
x√
n

))n
= e

x2

2 .

Now the result follows from Theorem 51.1 with Zn =
√
n
σ

(
X1+X2+···+Xn

n
− µ

)
,

Z standard normal distribution,

FZn(a) = P

(√
n

σ

(
X1 +X2 + · · ·+Xn

n
− µ

)
≤ a

)
and

FZ(a) = Φ(a) =

∫ a

−∞
e−

x2

2 dx

The central limit theorem suggests approximating the random variable
√
n

σ

(
X1 +X2 + · · ·+Xn

n
− µ

)
with a standard normal random variable. This implies that the sample mean
has approximately a normal distribution with mean µ and variance σ2

n
.

Also, a sum of n independent and identically distributed random variables
with common mean µ and variance σ2 can be approximated by a normal
distribution with mean nµ and variance nσ2.

Example 51.1 ‡
In an analysis of healthcare data, ages have been rounded to the nearest
multiple of 5 years. The difference between the true age and the rounded age
is assumed to be uniformly distributed on the interval from −2.5 years to 2.5
years. The healthcare data are based on a random sample of 48 people.
What is the approximate probability that the mean of the rounded ages is
within 0.25 years of the mean of the true ages?
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Solution.
Let X denote the difference between true and reported age. We are given X is
uniformly distributed on (−2.5, 2.5). That is, X has pdf f(x) = 1/5,−2.5 <
x < 2.5. It follows that E(X) = 0 and

σ2
X = E(X2) =

∫ 2.5

−2.5

x2

5
dx ≈ 2.083

so that SD(X) =
√

2.083 ≈ 1.443.
Now X48 the difference between the means of the true and rounded ages,
has a distribution that is approximately normal with mean 0 and standard
deviation 1.443√

48
≈ 0.2083. Therefore,

P

(
−1

4
≤ X48 ≤

1

4

)
=P

(
−0.25

0.2083
≤ X48

0.2083
≤ 0.25

0.2083

)
=Pr(−1.2 ≤ Z ≤ 1.2) = 2Φ(1.2)− 1 ≈ 2(0.8849)− 1 = 0.77

Example 51.2
Let Xi, i = 1, 2, · · · , 48 be independent random variables that are uni-
formly distributed on the interval [−0.5, 0.5]. Find the approximate prob-
ability Pr(|X| ≤ 0.05), where X is the arithmetic average of the X ′is.

Solution.
Since each Xi is uniformly distributed on [−0.5, 0.5], its mean is µ = 0

and its variance is σ2 =
∫ 0.5

−0.5
x2dx = x3

3

]0.5

−0.5
= 1

12
. By the Central Limit

Theorem, X has approximate distribution N(µ, σ
2

n
) = N(0, 1

242
). Thus 24X

is approximately standard normal, so

Pr(|X| ≤ 0.05) ≈Pr(24 · (−0.05) ≤ 24X ≤ 24 · (0.05))

=Φ(1.2)− Φ(−1.2) = 2Φ(1.2)− 1 = 0.7698

Example 51.3
Let X1, X2, X3, X4 be a random sample of size 4 from a normal distribution
with mean 2 and variance 10, and let X be the sample mean. Determine a
such that Pr(X ≤ a) = 0.90.
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Solution.
The sample mean X is normal with mean µ = 2 and variance σ2

n
= 10

4
= 2.5,

and standard deviation
√

2.5 ≈ 1.58, so

0.90 = Pr(X ≤ a) = P

(
X − 2

1.58
<
a− 2

1.58

)
= Φ

(
a− 2

1.58

)
.

From the normal table, we get a−2
1.58

= 1.28, so a = 4.02

Example 51.4 6

Assume that the weights of individuals are independent and normally dis-
tributed with a mean of 160 pounds and a standard deviation of 30 pounds.
Suppose that 25 people squeeze into an elevator that is designed to hold 4300
pounds.
(a) What is the probability that the load (total weight) exceeds the design
limit?
(b) What design limit is exceeded by 25 occupants with probability 0.001?

Solution.
(a) Let X be an individual’s weight. Then, X has a normal distribution with
µ = 160 pounds and σ = 30 pounds. Let Y = X1 + X2 + · · · + X25, where
Xi denotes the ith person’s weight. Then, Y has a normal distribution with
E(Y ) = 25E(X) = 25 · (160) = 4000 pounds and Var(Y ) = 25Var(X) =
25 · (900) = 22500. Now, the desired probability is

Pr(Y > 4300) =P

(
Y − 4000√

22500
>

4300− 4000√
22500

)
=Pr(Z > 2) = 1− Pr(Z ≤ 2)

=1− 0.9772 = 0.0228

(b) We want to find x such that Pr(Y > x) = 0.001. Note that

Pr(Y > x) =P

(
Y − 4000√

22500
>
x− 4000√

22500

)
=P

(
Z >

x− 4000√
22500

)
= 0.01

6Applied Statisitcs and Probability for Engineers by Montgomery and Tunger
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It is equivalent to P
(
Z ≤ x−4000√

22500

)
= 0.999. From the normal Table we find

Pr(Z ≤ 3.09) = 0.999. So (x − 4000)/150 = 3.09. Solving for x we find
x ≈ 4463.5 pounds
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Practice Problems

Problem 51.1
Letter envelopes are packaged in boxes of 100. It is known that, on average,
the envelopes weigh 1 ounce, with a standard deviation of 0.05 ounces. What
is the probability that 1 box of envelopes weighs more than 100.4 ounces?

Problem 51.2
In the SunBelt Conference men basketball league, the standard deviation in
the distribution of players’ height is 2 inches. A random group of 25 players
are selected and their heights are measured. Estimate the probability that the
average height of the players in this sample is within 1 inch of the conference
average height.

Problem 51.3
A radio battery manufacturer claims that the lifespan of its batteries has a
mean of 54 days and a standard deviation of 6 days. A random sample of
50 batteries were picked for testing. Assuming the manufacturer’s claims are
true, what is the probability that the sample has a mean lifetime of less than
52 days?

Problem 51.4
If 10 fair dice are rolled, find the approximate probability that the sum
obtained is between 30 and 40, inclusive.

Problem 51.5
Let Xi, i = 1, 2, · · · , 10 be independent random variables each uniformly
distributed over (0,1). Calculate an approximation to Pr(

∑10
i=1 Xi > 6).

Problem 51.6
Suppose that Xi, i = 1, · · · , 100 are exponentially distributed random vari-

ables with parameter λ = 1
1000

. Let X =
∑100
i=1Xi
100

. Approximate Pr(950 ≤
X ≤ 1050).

Problem 51.7
A baseball team plays 100 independent games. It is found that the probability
of winning a game is 0.8. Estimate the probability that team wins at least
90 games.
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Problem 51.8
A small auto insurance company has 10,000 automobile policyholders. It
has found that the expected yearly claim per policyholder is $240 with a
standard deviation of $800. Estimate the probability that the total yearly
claim exceeds $2.7 million.

Problem 51.9
Let X1, X2, · · · , Xn be n independent random variables each with mean 100
and standard deviation 30. Let X be the sum of these random variables.
Find n such that Pr(X > 2000) ≥ 0.95.

Problem 51.10 ‡
A charity receives 2025 contributions. Contributions are assumed to be inde-
pendent and identically distributed with mean 3125 and standard deviation
250.
Calculate the approximate 90th percentile for the distribution of the total
contributions received.

Problem 51.11 ‡
An insurance company issues 1250 vision care insurance policies. The number
of claims filed by a policyholder under a vision care insurance policy during
one year is a Poisson random variable with mean 2. Assume the numbers of
claims filed by distinct policyholders are independent of one another.
What is the approximate probability that there is a total of between 2450
and 2600 claims during a one-year period?

Problem 51.12 ‡
A company manufactures a brand of light bulb with a lifetime in months
that is normally distributed with mean 3 and variance 1 . A consumer buys
a number of these bulbs with the intention of replacing them successively as
they burn out. The light bulbs have independent lifetimes.
What is the smallest number of bulbs to be purchased so that the succession
of light bulbs produces light for at least 40 months with probability at least
0.9772?

Problem 51.13 ‡
Let X and Y be the number of hours that a randomly selected person watches
movies and sporting events, respectively, during a three-month period. The
following information is known about X and Y :
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E(X) = 50
E(Y) = 20
Var(X) = 50
Var(Y) = 30
Cov (X,Y) = 10

One hundred people are randomly selected and observed for these three
months. Let T be the total number of hours that these one hundred people
watch movies or sporting events during this three-month period.
Approximate the value of Pr(T < 7100).

Problem 51.14 ‡
The total claim amount for a health insurance policy follows a distribution
with density function

f(x) =

{
1

1000
e−

x
1000 x > 0

0 otherwise

The premium for the policy is set at 100 over the expected total claim
amount. If 100 policies are sold, what is the approximate probability that
the insurance company will have claims exceeding the premiums collected?

Problem 51.15 ‡
A city has just added 100 new female recruits to its police force. The city will
provide a pension to each new hire who remains with the force until retire-
ment. In addition, if the new hire is married at the time of her retirement,
a second pension will be provided for her husband. A consulting actuary
makes the following assumptions:

(i) Each new recruit has a 0.4 probability of remaining with the police force
until retirement.
(ii) Given that a new recruit reaches retirement with the police force, the
probability that she is not married at the time of retirement is 0.25.
(iii) The number of pensions that the city will provide on behalf of each new
hire is independent of the number of pensions it will provide on behalf of any
other new hire.
Determine the probability that the city will provide at most 90 pensions to
the 100 new hires and their husbands.
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Problem 51.16
(a) Give the approximate sampling distribution for the following quantity
based on random samples of independent observations:

X =

∑100
i=1Xi

100
, E(Xi) = 100, Var(Xi) = 400.

(b) What is the approximate probability the sample mean will be between
96 and 104?

Problem 51.17
A biased coin comes up heads 30% of the time. The coin is tossed 400 times.
Let X be the number of heads in the 400 tossings.
(a) Use Chebyshev’s inequality to bound the probability that X is between
100 and 140.
(b) Use normal approximation to compute the probability that X is between
100 and 140.
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52 More Useful Probabilistic Inequalities

The importance of the Markov’s and Chebyshev’s inequalities is that they
enable us to derive bounds on probabilities when only the mean, or both the
mean and the variance, of the probability distribution are known. In this
section, we establish more probability bounds.
The following result gives a tighter bound in Chebyshev’s inequality.

Proposition 52.1
Let X be a random variable with mean µ and finite variance σ2. Then for
any a > 0

Pr(X ≥ µ+ a) ≤ σ2

σ2 + a2

and

Pr(X ≤ µ− a) ≤ σ2

σ2 + a2

Proof.
Without loss of generality we assume that µ = 0. Then for any b > 0 we have

Pr(X ≥ a) =Pr(X + b ≥ a+ b)

≤Pr((X + b)2 ≥ (a+ b)2)

≤E[(X + b)2]

(a+ b)2

=
σ2 + b2

(a+ b)2

=
α + t2

(1 + t)2
= g(t)

where

α = σ2

a2
and t = b

a
.

Since

g′(t) = 2
t2 + (1− α)t− α

(1 + t)4

we find g′(t) = 0 when t = α. Since g′′(t) = 2(2t + 1 − α)(1 + t)−4 − 8(t2 +
(1 − α)t − α)(1 + t)−5 we find g′′(α) = 2(α + 1)−3 > 0 so that t = α is the
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minimum of g(t) with

g(α) =
α

1 + α
=

σ2

σ2 + a2
.

It follows that

Pr(X ≥ a) ≤ σ2

σ2 + a2
.

Now, suppose that µ 6= 0. Since E(X − E(X)) = 0 and V ar(X − E(X)) =
V ar(X) = σ2, by applying the previous inequality to X − µ we obtain

Pr(X ≥ µ+ a) ≤ σ2

σ2 + a2
.

Similarly, since E(µ−X) = 0 and V ar(µ−X) = V ar(X) = σ2, we get

Pr(µ−X ≥ a) ≤ σ2

σ2 + a2

or

Pr(X ≤ µ− a) ≤ σ2

σ2 + a2

Example 52.1
If the number produced in a factory during a week is a random variable with
mean 100 and variance 400, compute an upper bound on the probability that
this week’s production will be at least 120.

Solution.
Applying the previous result we find

Pr(X ≥ 120) = Pr(X − 100 ≥ 20) ≤ 400

400 + 202
=

1

2

The following provides bounds on Pr(X ≥ a) in terms of the moment gener-
ating function M(t) = etX with t > 0.

Proposition 52.2 (Chernoff’s bound)
Let X be a random variable and suppose that M(t) = E(etX) is finite. Then

Pr(X ≥ a) ≤ e−taM(t), t > 0

and
Pr(X ≤ a) ≤ e−taM(t), t < 0
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Proof.
Suppose first that t > 0. Then

Pr(X ≥ a) ≤Pr(etX ≥ eta)

≤E[etX ]e−ta

where the last inequality follows from Markov’s inequality. Similarly, for
t < 0 we have

Pr(X ≤ a) ≤Pr(etX ≥ eta)

≤E[etX ]e−ta

It follows from Chernoff’s inequality that a sharp bound for Pr(X ≥ a) is a
minimizer of the function e−taM(t).

Example 52.2
Let Z is a standard random variable so that its moment generating function

is M(t) = e
t2

2 . Find a sharp upper bound for Pr(Z ≥ a).

Solution.
By Chernoff inequality we have

Pr(Z ≥ a) ≤ e−tae
t2

2 = e
t2

2
−ta, t > 0

Let g(t) = e
t2

2
−ta. Then g′(t) = (t − a)e

t2

2
−ta so that g′(t) = 0 when t = a.

Since g′′(t) = e
t2

2
−ta + (t − a)2e

t2

2
−ta we find g′′(a) > 0 so that t = a is the

minimum of g(t). Hence, a sharp bound is

Pr(Z ≥ a) ≤ e−
a2

2 , t > 0

Similarly, for a < 0 we find

Pr(Z ≤ a) ≤ e−
a2

2 , t < 0

The next inequality is one having to do with expectations rather than prob-
abilities. Before stating it, we need the following definition: A differentiable
function f(x) is said to be convex on the open interval I = (a, b) if

f(αu+ (1− α)v) ≤ αf(u) + (1− α)f(v)

for all u and v in I and 0 ≤ α ≤ 1. Geometrically, this says that the graph
of f(x) lies completely above each tangent line.
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Proposition 52.3 (Jensen’s inequality)
If f(x) is a convex function then

E(f(X)) ≥ f(E(X))

provided that the expectations exist and are finite.

Proof.
The tangent line at (E(x), f(E(X))) is

y = f(E(X)) + f ′(E(X))(x− E(X)).

By convexity we have

f(x) ≥ f(E(X)) + f ′(E(X))(x− E(X)).

Upon taking expectation of both sides we find

E(f(X)) ≥E[f(E(X)) + f ′(E(X))(X − E(X))]

=f(E(X)) + f ′(E(X))E(X)− f ′(E(X))E(X) = f(E(X))

Example 52.3
Let X be a random variable. Show that E(eX) ≥ eE(X).

Solution.
Since f(x) = ex is convex, by Jensen’s inequality we can write E(eX) ≥
eE(X)

Example 52.4
Suppose that {x1, x2, · · · , xn} is a set of positive numbers. Show that the
arithmetic mean is at least as large as the geometric mean:

(x1 · x2 · · ·xn)
1
n ≤ 1

n
(x1 + x2 + · · ·+ xn).

Solution.
Let X be a random variable such that Pr(X = xi) = 1

n
for 1 ≤ i ≤ n. Let

g(x) = ln x. By Jensen’s inequality we have

E[− lnX] ≥ − ln [E(X)].
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That is
E[lnX] ≤ ln [E(X)].

But

E[lnX] =
1

n

n∑
i=1

lnxi =
1

n
ln (x1 · x2 · · ·xn)

and

ln [E(X)] = ln
1

n
(x1 + x2 + · · ·+ xn).

It follows that

ln (x1 · x2 · · ·xn)
1
n ≤ ln

1

n
(x1 + x2 + · · ·+ xn)

Now the result follows by taking ex of both sides and recalling that ex is an
increasing function
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Practice Problems

Problem 52.1
Roll a single fair die and let X be the outcome. Then, E(X) = 3.5 and
V ar(X) = 35

12
.

(a) Compute the exact value of Pr(X ≥ 6).
(b) Use Markov’s inequality to find an upper bound of Pr(X ≥ 6).
(c) Use Chebyshev’s inequality to find an upper bound of Pr(X ≥ 6).
(d) Use one-sided Chebyshev’s inequality to find an upper bound of Pr(X ≥
6).

Problem 52.2
Find Chernoff bounds for a binomial random variable with parameters (n, p).

Problem 52.3
Suppose that the average number of sick kids in a pre-k class is three per
day. Assume that the variance of the number of sick kids in the class in any
one day is 9. Give an estimate of the probability that at least five kids will
be sick tomorrow.

Problem 52.4
Suppose that you record only the integer amount of dollars of the checks you
write in your checkbook. If 20 checks are written, what is an upper bound
on the probability that the record in your checkbook shows at least $15 less
than the actual amount in your account?

Problem 52.5
Find the chernoff bounds for a Poisson random variable X with parameter
λ.

Problem 52.6
Let X be a Poisson random variable with mean 20.
(a) Use the Markov’s inequality to obtain an upper bound on

p = Pr(X ≥ 26).

(b) Use the Chernoff bound to obtain an upper bound on p.
(c) Use the Chebyshev’s bound to obtain an upper bound on p.
(d) Approximate p by making use of the central limit theorem.
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Problem 52.7
Let X be a random variable. Show the following
(a) E(X2) ≥ [E(X)]2.
(b) If X ≥ 0 then E

(
1
X

)
≥ 1

E(X)
.

(c) If X > 0 then −E[lnX] ≥ − ln [E(X)]

Problem 52.8
Let X be a random variable with density function f(x) = a

xa+1 , x ≥ 1, a > 1.
We call X a pareto random variable with parameter a.
(a) Find E(X).
(b) Find E

(
1
X

)
.

(c) Show that g(x) = 1
x

is convex in (0,∞).
(d) Verify Jensen’s inequality by comparing (b) and the reciprocal of (a).

Problem 52.9
Suppose that {x1, x2, · · · , xn} is a set of positive numbers. Prove

(x1 · x2 · · ·xn)
2
n ≤ x2

1 + x2
2 + · · ·+ x2

n

n
.
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Risk Management and
Insurance

This section repersents a discussion of the study notes entitled “Risk and
Insurance” by Anderson and Brown as listed in the SOA syllabus for Exam
P.
By Economic risk or simply “risk” we mean one’s possibility of losing eco-
nomic security. For example, a driver faces a potential economic loss if his
car is damaged and even a larger possible economic risk exists with respect
to potential damages a driver might have to pay if he injures a third party
in a car accident for which he is responsible.
Insurance is a form of risk management primarily used to hedge against
the risk of a contingent, uncertain loss. Insurance is defined as the equi-
table transfer of the risk of a loss, from one entity (the insured) to another
(the insurer), in exchange for payment. An insurer is a company selling
the insurance; an insured or policyholder is the person or entity buying
the insurance policy. The amount of money to be charged by the insurer
for a certain amount of insurance coverage is called the premium. The in-
surance involves the insured assuming a guaranteed and known covered loss
in the form of payment from the insurer upon the occurrence of a specific
loss. The payment is referred to as the benefit or claim payment. This
defined claim payment amount can be a fixed amount or can reimburse all
or a part of the loss that occurred. The insured receives a contract called
the insurance policy which details the conditions and circumstances under
which the insured will be compensated.
Normally, only a small percentage of policyholders suffer losses. Their losses
are paid out of the premiums collected from the pool of policyholders. Thus,
the entire pool compensates the unfortunate few.

445
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The Overall Loss Distribution Let X denote the overall loss of a pol-
icy. Let X1 be the number of losses that will occur in a specified period.
This random variable for the number of losses is commonly referred to as the
frequency of loss and its probability distribution is called the frequency
distribution. Let X2 denote the amount of the loss, given that a loss has
occurred. This random variable is often referred to as the severity and the
probability distribution for the amount of loss is called the severity distri-
bution.

Example 53.1
Consider a car owner who has an 80% chance of no accidents in a year, a
20% chance of being in a single accident in a year, and 0% chance of being
in more than one accident. If there is an accident the severity distribution is
given by the following table

X2 Probability
500 0.50
5000 0.40
15000 0.10

(a) Calculate the total loss distribution function.
(b) Calculate the car owner’s expected loss.
(c) Calculate the standard deviation of the annual loss incurred by the car
owner.

Solution.
(a) Combining the frequency and severity distributions forms the following
distribution of the random variable X, loss due to accident:

f(x) =


0.80 x = 0

20%(0.50) = 0.10 x = 500
20%(0.40) = 0.08 x = 5000
20%(0.10) = 0.02 x = 15000

(b) The car owner’s expected loss is

E(X) = 0.80× 0 + 0.10× 500 + 0.08× 5000 + 0.02× 15000 = $750.

On average, the car owner spends 750 on repairs due to car accidents. A 750
loss may not seem like much to the car owner, but the possibility of a 5000
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or 15,000 loss could create real concern.
(c) The standard deviation is

σX =
√∑

(x− E(X))2f(x)

=
√

0.80(−750)2 + 0.10(−250)2 + 0.08(4250)2 + 0.02(14250)2

=
√

5962500 = 2441.82

In all types of insurance there may be limits on benefits or claim payments.
More specifically, there may be a maximum limit on the total reimbursed;
there may be a minimum limit on losses that will be reimbursed; only a
certain percentage of each loss may be reimbursed; or there may be different
limits applied to particular types of losses. In each of these situations, the
insurer does not reimburse the entire loss. Rather, the policyholder must
cover part of the loss himself.
A policy may stipulate that losses are to be reimbursed only in excess of
a stated threshold amount, called a deductible. For example, consider
insurance that covers a loss resulting from an accident but includes a 500
deductible. If the loss is less than 500 the insurer will not pay anything to
the policyholder. On the other hand, if the loss is more than 500, the insurer
will pay for the loss in excess of the deductible. In other words, if the loss is
2000, the insurer will pay 1500.
Suppose that a insurance contract has a deductible of d and a maximum
payment (i.e., benefit limit) of u per loss. Let X denote the total loss incurred
by the policyholder and Y the payment received by the policyholder. Then

Y =


0 0 ≤ X ≤ d

X − d d < X ≤ d+ u
u X ≥ d+ u

Example 53.2
Consider a policy with a deductible of 500 and benefit limit of 2500.
(a) How much will the policyholder receive if he/she suffered a loss of 450?
(b) How much will the policyholder receive if he/she suffered a loss of 1500?
(c) How much with the policyholder receive if he/she suffered a loss of 3500?

Solution.
(a) The loss is less than the deductible. As a result, the insurance company
pays nothing and you need to cover the complete loss.
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(b) You will cover 500 and the insurance company will pay you 1500−500 =
1000.
(c) First, you have to cover 500. Since 3500 − 500 = 3000 and the benefit
limit is 2500, you will receive just 2500 from the insurance company. Thus,
in total your share for the loss is 1000 and the insurance share is 2500

Example 53.3
Consider the policy of Example 53.1. Suppose that the policy provides a 500
deductible and benefit limit of 12500. Calculte
(a) The annual expected payment made by the insurance company to a car
owner.
(b) The standard deviation of the annual payment made by the insurance
company to a car owner.
(c) The annual expected cost that the insured must cover out-of-pocket.
(d) The standard deviation of the annual expected cost that the insured must
cover out-of-pocket.
(e) The correlation coefficient between insurer’s annual payment and the
insured’s annual out-of-pocket cost to cover the loss.

Solution.
(a) Let Y denote the annual payment made by the insurance to the insurer.
The pdf of this random variable is

f(y) =


0.80 y = 0, x = 0

20%(0.50) = 0.10 y = 0, x = 500
20%(0.40) = 0.08 y = 4500, x = 5000
20%(0.10) = 0.02 y = 12500, x = 15000

The annual expected payment made by the insurance to the insured is

E(Y ) = 0× 0.90 + 4500× 0.08 + 12500× 0.02 = 610.

(b) The standard deviation of the annual payment made by the insurance
company to a car owner is

σY =
√∑

(y − E(Y ))2f(y)

=
√

0.90(−610)2 + 0.08(3890)2 + 0.02(11890)2 =
√

4372900 = 2091.15
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(c) Let Z be the annual expected cost that the insured must cover out-of-
pocket.The distribution of Z is

f(z) =


0.80 z = 0, x = 0

20%(0.50) = 0.10 z = 500, x = 500
20%(0.40) = 0.08 z = 500, x = 5000
20%(0.10) = 0.02 z = 2500, x = 15000

the annual expected cost that the insured must cover out-of-pocket is

E(Z) = 0.10(500) + 0.08(500) + 0.02(2500) = 140.

(d) The standard deviation of the annual expected cost that the insured must
cover out-of-pocket is

σZ =
√∑

(z − E(Z))2f(z)

=
√

0.80(−140)2 + 0.18(360)2 + 0.02(2360)2 =
√

150400 = 387.81

(e) We have that X = Y +Z where X as defined in Example 53.1. From the
formula

Var(X) = Var(Y ) + Var(Z)− 2Cov(Y, Z)

we find

Cov(Y, Z) =
5962500− 4372900− 150400

2
= 719600.

Finally,

ρY,Z =
Cov(Y, Z)

σY σZ
=

719600

2091.15× 387.81
= 0.8873

Continuous Severity Distributions
In the car insurance example, Example 53.1, the severity distribution was a
discrete distribution. In what follows, we consider the continuous case of the
severity distribution.

Example 53.4
Consider an insurance policy that reimburses annual hospital charges for an
insured individual. The probability of any individual being hospitalized in
a year is 15%. Once an individual is hospitalized, the charges X have a
probability density function fX(x|H = 1) = 0.1e−0.1x for x > 0 and fX(x) =
0 for x ≤ 0. Determine the expected value, the standard deviation, and
the ratio of the standard deviation to the mean (coefficient of variation) of
hospital charges for an insured individual.
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Solution.
The expected value of hospital charges is

E(X) =Pr(H 6= 1)E[X|H 6= 1] + Pr(H = 1)E[X|H = 1]

=0.85× 0 + 0.15

∫ ∞
0

0.1xe−0.1xdx = 1.5

Now,

E(X2) =Pr(H 6= 1)E[X2|H 6= 1] + Pr(H = 1)E[X2|H = 1]

=0.85× 02 + 0.15

∫ ∞
0

0.1x2e−0.1xdx = 30

The variance of the hospital charges is given by

Var(X) = E(X2)− [E(X)]2 = 30− 1.52 = 27.75

so that the standard deviation is σX =
√

27.75 = 5.27. Finally, the coefficient
of variation is

σX
E(X)

=
5.27

0.15
= 3.51

Example 53.5
Using the previous example, determine the expected claim payments, stan-
dard deviation and coefficient of variation for an insurance pool that reim-
burses hospital charges for 200 individuals. Assume that claims for each
individual are independent of the other individuals.

Solution.
Let S = X1 +X2 + · · ·+X200. Since the claims are independent, we have

E(S) =200E(X) = 200× 1.5 = 300

σS =10
√

2σX = 74.50

and the coefficient of variation is

σS
E(S)

=
74.50

300
= 0.25

Example 53.6
In Example 53.4, assume that there is a deductible of 5. Determine the
expected value, standard deviation and coefficient of variation of the claim
payment.



451

Solution.
Let Y represent claim payments to hospital charges. Letting Z = max(0, X−
5) we can write

Y =

{
Z with probability 0.15
0 with probability 0.85

The expected value of the claim payments to hospital charges is

E(Y ) =0.85× 0 + 0.15× E(Z)

=0.15

∫ ∞
0

max(0, x− 5)fX(x)dx

=0.15

∫ ∞
5

0.1(x− 5)e−0.1xdx

=1.5e−0.5

Likewise,

E(Y 2) =0.85× 02 + 0.15× E(Z2)

=0.15

∫ ∞
0

max(0, x− 5)2fX(x)dx

=0.15

∫ ∞
5

0.1(x− 5)2e−0.1xdx

=30e−0.5

The variance of the claim payments to hospital charges is

Var(Y ) = E(Y 2)− [E(Y )]2 = 30e−0.5 − 2.25e−1 = 17.3682

and the standard deviation is σY =
√

17.3682 = 4.17. Finally, the coefficient
of variation is

σY
E(Y )

=
4.17

1.5e−0.5
= 4.58
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Practice Problems

Problem 53.1
Consider a policy with a deductible of 200 and benefit limit of 5000. The
policy states that the insurer will pay 90% of the loss in excess of the de-
ductible subject to the benefit claim
(a) How much will the policyholder receive if he/she suffered a loss of 4000?
(b) How much will the policyholder receive if he/she suffered a loss of 5750?
(c) How much with the policyholder receive if he/she suffered a loss of 5780?

Problem 53.2
Consider a car owner who has an 80% chance of no accidents in a year, a
20% chance of being in a single accident in a year, and 0% chance of being
in more than one accident. If there is an accident the severity distribution is
given by the following table

X2 Probability
500 0.50
5000 0.40
15000 0.10

There is an annual deductible of 500 and the annual maximum payment by
the insurer is 12500. The insurer will pay 40% of the loss in excess of the
deductible subject to the maximum annual payment. Calculate
(a) The distribution function of the random variable Y representing the pay-
ment made by the insurer to the insured.
(b) The annual expected payment made by the insurance company to a car
owner.
(c) The standard deviation of the annual payment made by the insurance
company to a car owner.
(d) The annual expected cost that the insured must cover out-of-pocket.
(e) The standard deviation of the annual expected cost that the insured must
cover out-of-pocket.
(f) The correlation coefficient between insurer’s annual payment and the in-
sured’s annual out-of-pocket cost to cover the loss.

Problem 53.3 ‡
Automobile losses reported to an insurance company are independent and
uniformly distributed between 0 and 20,000. The company covers each such
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loss subject to a deductible of 5,000.
Calculate the probability that the total payout on 200 reported losses is
between 1,000,000 and 1,200,000.

Problem 53.4 ‡
The amount of a claim that a car insurance company pays out follows an
exponential distribution. By imposing a deductible of d, the insurance com-
pany reduces the expected claim payment by 10%.
Calculate the percentage reduction on the variance of the claim payment.
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Sample Exam 1

Problem 1 ‡
A survey of a group’s viewing habits over the last year revealed the following
information

(i) 28% watched gymnastics
(ii) 29% watched baseball
(iii) 19% watched soccer
(iv) 14% watched gymnastics and baseball
(v) 12% watched baseball and soccer
(vi) 10% watched gymnastics and soccer
(vii) 8% watched all three sports.

Calculate the percentage of the group that watched none of the three sports
during the last year.
(A) 24
(B) 36
(C) 41
(D) 52
(E) 60

Problem 2 ‡
An insurance company estimates that 40% of policyholders who have only
an auto policy will renew next year and 60% of policyholders who have only
a homeowners policy will renew next year. The company estimates that 80%
of policyholders who have both an auto and a homeowners policy will renew
at least one of those policies next year. Company records show that 65% of
policyholders have an auto policy, 50% of policyholders have a homeowners
policy, and 15% of policyholders have both an auto and a homeowners policy.
Using the company’s estimates, calculate the percentage of policyholders that
will renew at least one policy next year.
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(A) 20
(B) 29
(C) 41
(D) 53
(E) 70

Problem 3 ‡
An insurer offers a health plan to the employees of a large company. As
part of this plan, the individual employees may choose exactly two of the
supplementary coverages A,B, and C, or they may choose no supplementary
coverage. The proportions of the company’s employees that choose coverages
A,B, and C are 1

4
, 1

3
, and , 5

12
respectively.

Determine the probability that a randomly chosen employee will choose no
supplementary coverage.

(A) 0
(B) 47

144

(C) 1
2

(D) 97
144

(E) 7
9

Problem 4 ‡
An insurance agent offers his clients auto insurance, homeowners insurance
and renters insurance. The purchase of homeowners insurance and the pur-
chase of renters insurance are mutually exclusive. The profile of the agent’s
clients is as follows:
i) 17% of the clients have none of these three products.
ii) 64% of the clients have auto insurance.
iii) Twice as many of the clients have homeowners insurance as have renters
insurance.
iv) 35% of the clients have two of these three products.
v) 11% of the clients have homeowners insurance, but not auto insurance.
Calculate the percentage of the agent’s clients that have both auto and renters
insurance.

(A) 7%
(B) 10%
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(C) 16%
(D) 25%
(E) 28

Problem 5 ‡
From 27 pieces of luggage, an airline luggage handler damages a random
sample of four. The probability that exactly one of the damaged pieces of
luggage is insured is twice the probability that none of the damaged pieces
are insured. Calculate the probability that exactly two of the four damaged
pieces are insured.

(A) 0.06
(B) 0.13
(C) 0.27
(D) 0.30
(E) 0.31

Problem 6 ‡
An auto insurance company insures drivers of all ages. An actuary compiled
the following statistics on the company’s insured drivers:

Age of Probability Portion of Company’s
Driver of Accident Insured Drivers
16 - 20 0.06 0.08
21 - 30 0.03 0.15
31 - 65 0.02 0.49
66 - 99 0.04 0.28

A randomly selected driver that the company insures has an accident. Cal-
culate the probability that the driver was age 16-20.

(A) 0.13
(B) 0.16
(C) 0.19
(D) 0.23
(E) 0.40

Problem 7 ‡
An actuary studied the likelihood that different types of drivers would be
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involved in at least one collision during any one-year period. The results of
the study are presented below.

Probability
Type of Percentage of of at least one
driver all drivers collision
Teen 8% 0.15
Young adult 16% 0.08
Midlife 45% 0.04
Senior 31% 0.05
Total 100%

Given that a driver has been involved in at least one collision in the past
year, what is the probability that the driver is a young adult driver?

(A) 0.06
(B) 0.16
(C) 0.19
(D) 0.22
(E) 0.25

Problem 8 ‡
Ten percent of a company’s life insurance policyholders are smokers. The
rest are nonsmokers. For each nonsmoker, the probability of dying during
the year is 0.01. For each smoker, the probability of dying during the year is
0.05.
Given that a policyholder has died, what is the probability that the policy-
holder was a smoker?

(A) 0.05
(B) 0.20
(C) 0.36
(D) 0.56
(E) 0.90

Problem 9 ‡
Workplace accidents are categorized into three groups: minor, moderate and
severe. The probability that a given accident is minor is 0.5, that it is mod-
erate is 0.4, and that it is severe is 0.1. Two accidents occur independently
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in one month.
Calculate the probability that neither accident is severe and at most one is
moderate.

(A) 0.25
(B) 0.40
(C) 0.45
(D) 0.56
(E) 0.65

Problem 10 ‡
Two life insurance policies, each with a death benefit of 10,000 and a one-
time premium of 500, are sold to a couple, one for each person. The policies
will expire at the end of the tenth year. The probability that only the wife
will survive at least ten years is 0.025, the probability that only the husband
will survive at least ten years is 0.01, and the probability that both of them
will survive at least ten years is 0.96 .
What is the expected excess of premiums over claims, given that the husband
survives at least ten years?

(A) 350
(B) 385
(C) 397
(D) 870
(E) 897

Problem 11 ‡
A probability distribution of the claim sizes for an auto insurance policy is
given in the table below:

Claim size Probability
20 0.15
30 0.10
40 0.05
50 0.20
60 0.10
70 0.10
80 0.30
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What percentage of the claims are within one standard deviation of the mean
claim size?

(A) 45%
(B) 55%
(C) 68%
(D) 85%
(E) 100%

Problem 12 ‡
A company prices its hurricane insurance using the following assumptions:

(i) In any calendar year, there can be at most one hurricane.
(ii) In any calendar year, the probability of a hurricane is 0.05 .
(iii) The number of hurricanes in any calendar year is independent of the

number of hurricanes in any other calendar year.

Using the company’s assumptions, calculate the probability that there are
fewer than 3 hurricanes in a 20-year period.

(A) 0.06
(B) 0.19
(C) 0.38
(D) 0.62
(E) 0.92

Problem 13 ‡
A company buys a policy to insure its revenue in the event of major snow-
storms that shut down business. The policy pays nothing for the first such
snowstorm of the year and $10,000 for each one thereafter, until the end of
the year. The number of major snowstorms per year that shut down business
is assumed to have a Poisson distribution with mean 1.5 .
What is the expected amount paid to the company under this policy during
a one-year period?

(A) 2,769
(B) 5,000
(C) 7,231
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(D) 8,347
(E) 10,578

Problem 14 ‡
Each time a hurricane arrives, a new home has a 0.4 probability of experi-
encing damage. The occurrences of damage in different hurricanes are inde-
pendent. Calculate the mode of the number of hurricanes it takes for the
home to experience damage from two hurricanes. Hint: The mode of X is
the number that maximizes the probability mass function of X.

(A) 2
(B) 3
(C) 4
(D) 5
(E) 6

Problem 15 ‡
An insurance company insures a large number of homes. The insured value,
X, of a randomly selected home is assumed to follow a distribution with
density function

f(x) =

{
3x−4 x > 1

0 otherwise

Given that a randomly selected home is insured for at least 1.5, what is the
probability that it is insured for less than 2 ?

(A) 0.578
(B) 0.684
(C) 0.704
(D) 0.829
(E) 0.875

Problem 16 ‡
A manufacturer’s annual losses follow a distribution with density function

f(x) =

{
2.5(0.6)2.5

x3.5
x > 0.6

0 otherwise.

To cover its losses, the manufacturer purchases an insurance policy with an
annual deductible of 2.
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What is the mean of the manufacturer’s annual losses not paid by the insur-
ance policy?

(A) 0.84
(B) 0.88
(C) 0.93
(D) 0.95
(E) 1.00

Problem 17 ‡
A random variable X has the cumulative distribution function

F (x) =


0 x < 1

x2−2x+2
2

1 ≤ x < 2
1 x ≥ 2.

Calculate the variance of X.

(A) 7
72

(B) 1
8

(C) 5
36

(D) 4
3

(E) 23
12

Problem 18 ‡
An insurance company sells an auto insurance policy that covers losses in-
curred by a policyholder, subject to a deductible of 100 . Losses incurred
follow an exponential distribution with mean 300.
What is the 95th percentile of actual losses that exceed the deductible?

(A) 600
(B) 700
(C) 800
(D) 900
(E) 1000

Problem 19 ‡
The owner of an automobile insures it against damage by purchasing an in-
surance policy with a deductible of 250 . In the event that the automobile is
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damaged, repair costs can be modeled by a uniform random variable on the
interval (0, 1500).
Determine the standard deviation of the insurance payment in the event that
the automobile is damaged.

(A) 361
(B) 403
(C) 433
(D) 464
(E) 521

Problem 20 ‡
The lifetime of a printer costing 200 is exponentially distributed with mean 2
years. The manufacturer agrees to pay a full refund to a buyer if the printer
fails during the first year following its purchase, and a one-half refund if it
fails during the second year.
If the manufacturer sells 100 printers, how much should it expect to pay in
refunds?

(A) 6,321
(B) 7,358
(C) 7,869
(D) 10,256
(E) 12,642

Problem 21 ‡
The time to failure of a component in an electronic device has an exponential
distribution with a median of four hours.
Calculate the probability that the component will work without failing for
at least five hours.

(A) 0.07
(B) 0.29
(C) 0.38
(D) 0.42
(E) 0.57

Problem 22 ‡
An actuary models the lifetime of a device using the random variable Y =
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10X0.8, where X is an exponential random variable with mean 1 year.
Determine the probability density function fY (y), for y > 0, of the random
variable Y.

(A) 10y0.8e−8y−0.2

(B) 8y−0.2e−10y0.8

(C) 8y−0.2e−(0.1y)1.25

(D) (0.1y)1.25e−0.125(0.1y)0.25

(E) 0.125(0.1y)0.25e−(0.1y)1.25

Problem 23 ‡
A device runs until either of two components fails, at which point the de-
vice stops running. The joint density function of the lifetimes of the two
components, both measured in hours, is

fXY (x, y) =

{
x+y

8
0 < x, y < 2

0 otherwise

What is the probability that the device fails during its first hour of operation?

(A) 0.125
(B) 0.141
(C) 0.391
(D) 0.625
(E) 0.875

Problem 24 ‡
Let X represent the age of an insured automobile involved in an accident.
Let Y represent the length of time the owner has insured the automobile at
the time of the accident. X and Y have joint probability density function

fXY (x, y) =

{
1
64

(10− xy2) 2 ≤ x ≤ 10, 0 ≤ y ≤ 1
0 otherwise.

Calculate the expected age of an insured automobile involved in an accident.

(A) 4.9
(B) 5.2
(C) 5.8
(D) 6.0
(E) 6.4
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Problem 25 ‡
A device contains two components. The device fails if either component fails.
The joint density function of the lifetimes of the components, measured in
hours, is f(s, t), where 0 < s < 1 and 0 < t < 1.
What is the probability that the device fails during the first half hour of
operation?

(A)
∫ 0.5

0

∫ 0.5

0
f(s, t)dsdt

(B)
∫ 1

0

∫ 0.5

0
f(s, t)dsdt

(C)
∫ 1

0.5

∫ 1

0.5
f(s, t)dsdt

(D)
∫ 0.5

0

∫ 1

0
f(s, t)dsdt+

∫ 1

0

∫ 0.5

0
f(s, t)dsdt

(E)
∫ 0.5

0

∫ 1

0.5
f(s, t)dsdt+

∫ 1

0

∫ 0.5

0
f(s, t)dsdt

Problem 26 ‡
The waiting time for the first claim from a good driver and the waiting time
for the first claim from a bad driver are independent and follow exponential
distributions with means 6 years and 3 years, respectively.
What is the probability that the first claim from a good driver will be filed
within 3 years and the first claim from a bad driver will be filed within 2
years?

(A) 1
18

(1− e− 2
3 − e− 1

2 + e−
7
6 )

(B) 1
18
e−

7
6

(C) 1− e− 2
3 − e− 1

2 + e−
7
6

(D) 1− e− 2
3 − e− 1

2 + e−
1
3

(E) 1− 1
3
e−

2
3 − 1

6
e−

1
2 + 1

18
e−

7
6

Problem 27 ‡
In a small metropolitan area, annual losses due to storm, fire, and theft are
assumed to be independent, exponentially distributed random variables with
respective means 1.0, 1.5, and 2.4 .
Determine the probability that the maximum of these losses exceeds 3.

(A) 0.002
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(B) 0.050
(C) 0.159
(D) 0.287
(E) 0.414

Problem 28 ‡
Let N1 and N2 represent the numbers of claims submitted to a life insurance
company in April and May, respectively. The joint probability function of
N1 and N2 is

Pr(n1, n2) =

{
3
4

(
1
4

)n1−1
e−n1(1− e−n1)n2−1, for n1 = 1, 2, 3, · · · and n2 = 1, 2, 3, · · ·

0 otherwise.

Calculate the expected number of claims that will be submitted to the com-
pany in May if exactly 2 claims were submitted in April.

(A) 3
16

(e2 − 1)
(B) 3

16
e2

(C) 3e
4−e

(D) e2 − 1
(E) e2

Problem 29 ‡
An auto insurance policy will pay for damage to both the policyholder’s car
and the other driver’s car in the event that the policyholder is responsible
for an accident. The size of the payment for damage to the policyholder’s
car, X, has a marginal density function of 1 for 0 < x < 1. Given X = x, the
size of the payment for damage to the other driver’s car, Y, has conditional
density of 1 for x < y < x+ 1.
If the policyholder is responsible for an accident, what is the probability that
the payment for damage to the other driver’s car will be greater than 0.5?

(A) 3
8

(B) 1
2

(C) 3
4

(D) 7
8

(E) 15
16
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Problem 30 ‡
Let T1 be the time between a car accident and reporting a claim to the in-
surance company. Let T2 be the time between the report of the claim and
payment of the claim. The joint density function of T1 and T2, f(t1, t2), is
constant over the region 0 < t1 < 6, 0 < t2 < 6, t1 + t2 < 10, and zero other-
wise.
Determine E[T1 +T2], the expected time between a car accident and payment
of the claim.

(A) 4.9
(B) 5.0
(C) 5.7
(D) 6.0
(E) 6.7

Problem 31 ‡
An insurance policy pays a total medical benefit consisting of two parts for
each claim. Let X represent the part of the benefit that is paid to the sur-
geon, and let Y represent the part that is paid to the hospital. The variance
of X is 5000, the variance of Y is 10,000, and the variance of the total benefit,
X + Y, is 17,000.
Due to increasing medical costs, the company that issues the policy decides
to increase X by a flat amount of 100 per claim and to increase Y by 10%
per claim.
Calculate the variance of the total benefit after these revisions have been
made.

(A) 18,200
(B) 18,800
(C) 19,300
(D) 19,520
(E) 20,670

Problem 32 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
8
3
xy 0 ≤ x ≤ 1, x ≤ y ≤ 2x
0 otherwise
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Find Cov(X, Y )

(A) 0.04
(B) 0.25
(C) 0.67
(D) 0.80
(E) 1.24

Problem 33 ‡
A diagnostic test for the presence of a disease has two possible outcomes: 1
for disease present and 0 for disease not present. Let X denote the disease
state of a patient, and let Y denote the outcome of the diagnostic test. The
joint probability function of X and Y is given by:

Pr(X = 0, Y = 0) =0.800

Pr(X = 1, Y = 0) =0.050

Pr(X = 0, Y = 1) =0.025

Pr(X = 1, Y = 1) =0.125.

Calculate V ar(Y |X = 1).

(A) 0.13
(B) 0.15
(C) 0.20
(D) 0.51
(E) 0.71

Problem 34 ‡
The number of workplace injuries, N, occurring in a factory on any given day
is Poisson distributed with mean λ. The parameter λ is a random variable
that is determined by the level of activity in the factory, and is uniformly
distributed on the interval [0, 3].
Calculate Var(N).

(A) λ
(B) 2λ
(C) 0.75
(D) 1.50
(E) 2.25



469

Problem 35 ‡
A motorist makes three driving errors, each independently resulting in an
accident with probability 0.25.
Each accident results in a loss that is exponentially distributed with mean
0.80. Losses are mutually independent and independent of the number of
accidents. The motorist’s insurer reimburses 70% of each loss due to an ac-
cident.
Calculate the variance of the total unreimbursed loss the motorist experi-
ences due to accidents resulting from these driving errors.

(A) 0.0432
(B) 0.0756
(C) 0.1782
(D) 0.2520
(E) 0.4116

Problem 36 ‡
An actuary determines that the claim size for a certain class of accidents is
a random variable, X, with moment generating function

MX(t) =
1

(1− 2500t)4

Determine the standard deviation of the claim size for this class of accidents.

(A) 1,340
(B) 5,000
(C) 8,660
(D) 10,000
(E) 11,180

Problem 37 ‡
The value of a piece of factory equipment after three years of use is 100(0.5)X

where X is a random variable having moment generating function

MX(t) = 1
1−2t

for t < 1
2
.

Calculate the expected value of this piece of equipment after three years of
use.
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(A) 12.5
(B) 25.0
(C) 41.9
(D) 70.7
(E) 83.8

Problem 38 ‡
An insurance company issues 1250 vision care insurance policies. The number
of claims filed by a policyholder under a vision care insurance policy during
one year is a Poisson random variable with mean 2. Assume the numbers of
claims filed by distinct policyholders are independent of one another.
What is the approximate probability that there is a total of between 2450
and 2600 claims during a one-year period?

(A) 0.68
(B) 0.82
(C) 0.87
(D) 0.95
(E) 1.00

Problem 39 ‡
A city has just added 100 new female recruits to its police force. The city will
provide a pension to each new hire who remains with the force until retire-
ment. In addition, if the new hire is married at the time of her retirement,
a second pension will be provided for her husband. A consulting actuary
makes the following assumptions:

(i) Each new recruit has a 0.4 probability of remaining with the police force
until retirement.
(ii) Given that a new recruit reaches retirement with the police force, the
probability that she is not married at the time of retirement is 0.25.
(iii) The number of pensions that the city will provide on behalf of each new
hire is independent of the number of pensions it will provide on behalf of any
other new hire.
Determine the probability that the city will provide at most 90 pensions to
the 100 new hires and their husbands.

(A) 0.60
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(B) 0.67
(C) 0.75
(D) 0.93
(E) 0.99
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Answers
1. D
2. D
3. C
4. B
5. C
6. B
7. D
8. C
9. E
10. E
11. A
12. E
13. C
14. B
15. A
16. C
17. C
18. D
19. B
20. D
21. D
22. E
23. D
24. C
25. E
26. C
27. E
28. E
29. D
30. C
31. C
32. A
33. C
34. E
35. B
36. B
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37. C
38. B
39. E
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Sample Exam 2

Problem 1 ‡
An auto insurance has 10,000 policyholders. Each policyholder is classified
as

(i) young or old;
(ii) male or female;
(iii) married or single.

Of these policyholders, 3,000 are young, 4,600 are male, and 7,000 are mar-
ried. The policyholders can also be classified as 1,320 young males, 3,010
married males, and 1,400 young married persons. Finally, 600 of the policy-
holders are young married males.
How many of the company’s policyholders are young, female, and single?

(A) 280
(B) 423
(C) 486
(D) 880
(E) 896

Problem 2 ‡
A doctor is studying the relationship between blood pressure and heartbeat
abnormalities in her patients. She tests a random sample of her patients
and notes their blood pressures (high, low, or normal) and their heartbeats
(regular or irregular). She finds that:

475
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(i) 14% have high blood pressure.
(ii) 22% have low blood pressure.
(iii) 15% have an irregular heartbeat.
(iv) Of those with an irregular heartbeat, one-third have high blood pressure.
(v) Of those with normal blood pressure, one-eighth have an irregular heartbeat.

What portion of the patients selected have a regular heartbeat and low blood
pressure?

(A) 2%
(B) 5%
(C) 8%
(D) 9%
(E) 20%

Problem 3 ‡
You are given Pr(A ∪B) = 0.7 and Pr(A ∪Bc) = 0.9. Determine Pr(A).

(A) 0.2
(B) 0.3
(C) 0.4
(D) 0.6
(E) 0.8

Problem 4 ‡
A mattress store sells only king, queen and twin-size mattresses. Sales records
at the store indicate that one-fourth as many queen-size mattresses are sold
as king and twin-size mattresses combined. Records also indicate that three
times as many king-size mattresses are sold as twin-size mattresses.
Calculate the probability that the next mattress sold is either king or queen-
size.

(A) 0.12
(B) 0.15
(C) 0.80
(D) 0.85
(E) 0.95
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Problem 5 ‡
A public health researcher examines the medical records of a group of 937
men who died in 1999 and discovers that 210 of the men died from causes
related to heart disease. Moreover, 312 of the 937 men had at least one par-
ent who suffered from heart disease, and, of these 312 men, 102 died from
causes related to heart disease.
Determine the probability that a man randomly selected from this group died
of causes related to heart disease, given that neither of his parents suffered
from heart disease.

(A) 0.115
(B) 0.173
(C) 0.224
(D) 0.327
(E) 0.514

Problem 6 ‡
An insurance company issues life insurance policies in three separate cate-
gories: standard, preferred, and ultra-preferred. Of the company’s policy-
holders, 50% are standard, 40% are preferred, and 10% are ultra-preferred.
Each standard policyholder has probability 0.010 of dying in the next year,
each preferred policyholder has probability 0.005 of dying in the next year,
and each ultra-preferred policyholder has probability 0.001 of dying in the
next year.
A policyholder dies in the next year. What is the probability that the de-
ceased policyholder was ultra-preferred?

(A) 0.0001
(B) 0.0010
(C) 0.0071
(D) 0.0141
(E) 0.2817

Problem 7 ‡
A blood test indicates the presence of a particular disease 95% of the time
when the disease is actually present. The same test indicates the presence of
the disease 0.5% of the time when the disease is not present. One percent of
the population actually has the disease.
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Calculate the probability that a person has the disease given that the test
indicates the presence of the disease.

(A) 0.324
(B) 0.657
(C) 0.945
(D) 0.950
(E) 0.995

Problem 8 ‡
One urn contains 4 red balls and 6 blue balls. A second urn contains 16 red
balls and x blue balls. A single ball is drawn from each urn. The probability
that both balls are the same color is 0.44 .
Calculate x.

(A) 4
(B) 20
(C) 24
(D) 44
(E) 64

Problem 9 ‡
The number of injury claims per month is modeled by a random variable N
with

Pr(N = n) =
1

(n+ 1)(n+ 2)
, n ≥ 0.

Determine the probability of at least one claim during a particular month,
given that there have been at most four claims during that month.

(A) 1
3

(B) 2
5

(C) 1
2

(D) 3
5

(E) 5
6

Problem 10 ‡
An auto insurance company is implementing a new bonus system. In each
month, if a policyholder does not have an accident, he or she will receive a
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5.00 cash-back bonus from the insurer.
Among the 1,000 policyholders of the auto insurance company, 400 are clas-
sified as low-risk drivers and 600 are classified as high-risk drivers.
In each month, the probability of zero accidents for high-risk drivers is 0.80
and the probability of zero accidents for low-risk drivers is 0.90.
Calculate the expected bonus payment from the insurer to the 1000 policy-
holders in one year.

(A) 48,000
(B) 50,400
(C) 51,000
(D) 54,000
(E) 60,000

Problem 11 ‡
The annual cost of maintaining and repairing a car averages 200 with a vari-
ance of 260. what will be the variance of the annual cost of maintaining
and repairing a car if 20% tax is introduced on all items associated with the
maintenance and repair of cars?

(A) 208
(B) 260
(C) 270
(D) 312
(E) 374

Problem 12 ‡
A tour operator has a bus that can accommodate 20 tourists. The operator
knows that tourists may not show up, so he sells 21 tickets. The probability
that an individual tourist will not show up is 0.02, independent of all other
tourists.
Each ticket costs 50, and is non-refundable if a tourist fails to show up. If
a tourist shows up and a seat is not available, the tour operator has to pay
100 (ticket cost + 50 penalty) to the tourist.
What is the expected revenue of the tour operator?

(A) 935
(B) 950
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(C) 967
(D) 976
(E) 985

Problem 13 ‡
A baseball team has scheduled its opening game for April 1. If it rains on
April 1, the game is postponed and will be played on the next day that it
does not rain. The team purchases insurance against rain. The policy will
pay 1000 for each day, up to 2 days, that the opening game is postponed.
The insurance company determines that the number of consecutive days of
rain beginning on April 1 is a Poisson random variable with mean 0.6 .
What is the standard deviation of the amount the insurance company will
have to pay?

(A) 668
(B) 699
(C) 775
(D) 817
(E) 904

Problem 14 ‡
The lifetime of a machine part has a continuous distribution on the inter-
val (0, 40) with probability density function f, where f(x) is proportional to
(10 + x)−2.
Calculate the probability that the lifetime of the machine part is less than 6.

(A) 0.04
(B) 0.15
(C) 0.47
(D) 0.53
(E) 0.94

Problem 15 ‡
An insurance policy pays for a random loss X subject to a deductible of
C, where 0 < C < 1. The loss amount is modeled as a continuous random
variable with density function

f(x) =

{
2x 0 < x < 1
0 otherwise



481

Given a random loss X, the probability that the insurance payment is less
than 0.5 is equal to 0.64 . Calculate C.

(A) 0.1
(B) 0.3
(C) 0.4
(D) 0.6
(E) 0.8

Problem 16 ‡
Let X be a continuous random variable with density function

f(x) =

{ |x|
10
−2 ≤ x ≤ 4

0 otherwise.

Calculate the expected value of X.

(A) 1
5

(B) 3
5

(C) 1
(D) 28

15

(E) 12
5

Problem 17 ‡
A company agrees to accept the highest of four sealed bids on a property. The
four bids are regarded as four independent random variables with common
cumulative distribution function

F (x) =
1

2
(1 + sin πx),

3

2
≤ x ≤ 5

2

and 0 otherwise. What is the expected value of the accepted bid?

(A) π
∫ 5

2
3
2

x cos (πx)dx

(B) 1
16

∫ 5
2
3
2

(1 + sin (πx))4dx

(C) 1
16

∫ 5
2
3
2

x(1 + sin (πx))4dx

(D) 1
4
π
∫ 5

2
3
2

cos (πx)(1 + sin (πx))3dx

(E) 1
4
π
∫ 5

2
3
2

x cos (πx)(1 + sin (πx))3dx



482 SAMPLE EXAM 2

Problem 18 ‡
An automobile insurance company issues a one-year policy with a deductible
of 500. The probability is 0.8 that the insured automobile has no accident
and 0.0 that the automobile has more than one accident. If there is an acci-
dent, the loss before application of the deductible is exponentially distributed
with mean 3000.
Calculate the 95th percentile of the insurance company payout on this policy.

(A) 3466
(B) 3659
(C) 4159
(D) 8487
(E) 8987

Problem 19 ‡
For Company A there is a 60% chance that no claim is made during the com-
ing year. If one or more claims are made, the total claim amount is normally
distributed with mean 10,000 and standard deviation 2,000 .
For Company B there is a 70% chance that no claim is made during the com-
ing year. If one or more claims are made, the total claim amount is normally
distributed with mean 9,000 and standard deviation 2,000 .
Assuming that the total claim amounts of the two companies are indepen-
dent, what is the probability that, in the coming year, Company B’s total
claim amount will exceed Company A’s total claim amount?

(A) 0.180
(B) 0.185
(C) 0.217
(D) 0.223
(E) 0.240

Problem 20 ‡
A device that continuously measures and records seismic activity is placed
in a remote region. The time, T, to failure of this device is exponentially dis-
tributed with mean 3 years. Since the device will not be monitored during its
first two years of service, the time to discovery of its failure is X = max (T, 2).
Determine E[X].
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(A) 2 + 1
3
e−6

(B) 2− 2e−
2
3 + 5e−

4
3

(C) 3

(D) 2 + 3e−
2
3

(E) 5

Problem 21 ‡
The cumulative distribution function for health care costs experienced by a
policyholder is modeled by the function

F (x) =

{
1− e− x

100 , for x > 0
0, otherwise.

The policy has a deductible of 20. An insurer reimburses the policyholder
for 100% of health care costs between 20 and 120 less the deductible. Health
care costs above 120 are reimbursed at 50%. Let G be the cumulative distri-
bution function of reimbursements given that the reimbursement is positive.
Calculate G(115).

(A) 0.683
(B) 0.727
(C) 0.741
(D) 0.757
(E) 0.777

Problem 22 ‡
Let T denote the time in minutes for a customer service representative to
respond to 10 telephone inquiries. T is uniformly distributed on the interval
with endpoints 8 minutes and 12 minutes. Let R denote the average rate, in
customers per minute, at which the representative responds to inquiries.
Find the density function fR(r) of R.

(A) 12
5

(B) 3− 5
2r

(C) 3r − 5 ln r
2

(D) 10
r2

(E) 5
2r2
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Problem 23 ‡
An insurance company insures a large number of drivers. Let X be the
random variable representing the company’s losses under collision insurance,
and let Y represent the company’s losses under liability insurance. X and Y
have joint density function

fXY (x, y) =

{
2x+2−y

4
0 < x < 1, 0 < y < 2

0 otherwise

What is the probability that the total loss is at least 1 ?

(A) 0.33
(B) 0.38
(C) 0.41
(D) 0.71
(E) 0.75

Problem 24 ‡
A device contains two circuits. The second circuit is a backup for the first,
so the second is used only when the first has failed. The device fails when
and only when the second circuit fails.
Let X and Y be the times at which the first and second circuits fail, respec-
tively. X and Y have joint probability density function

fXY (x, y) =

{
6e−xe−2y 0 < x < y <∞

0 otherwise.

What is the expected time at which the device fails?

(A) 0.33
(B) 0.50
(C) 0.67
(D) 0.83
(E) 1.50

Problem 25 ‡
A client spends X minutes in an insurance agent’s waiting room and Y
minutes meeting with the agent. The joint density function of X and Y can
be modeled by

f(x, y) =

{
1

800
e
x
40

+ y
20 for x > 0, y > 0

0 otherwise.
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Find the probability that a client spends less than 60 minutes at the agent’s
office. You do NOT have to evaluate the integrals.

(A) 1
800

∫ 40

0

∫ 20

0
e−

x
40 e−

y
20

(B) 1
800

∫ 40

0

∫ 20−x
0

e−
x
40 e−

y
20

(C) 1
800

∫ 20

0

∫ 40−x
0

e−
x
40 e−

y
20

(D) 1
800

∫ 60

0

∫ 60

0
e−

x
40 e−

y
20

(E) 1
800

∫ 60

0

∫ 60−x
0

e−
x
40 e−

y
20

Problem 26 ‡
An insurance company sells two types of auto insurance policies: Basic and
Deluxe. The time until the next Basic Policy claim is an exponential random
variable with mean two days. The time until the next Deluxe Policy claim
is an independent exponential random variable with mean three days.
What is the probability that the next claim will be a Deluxe Policy claim?

(A) 0.172
(B) 0.223
(C) 0.400
(D) 0.487
(E) 0.500

Problem 27 ‡
A device containing two key components fails when, and only when, both
components fail. The lifetimes, X and Y , of these components are inde-
pendent with common density function f(t) = e−t, t > 0. The cost, Z, of
operating the device until failure is 2X + Y.
Find the probability density function of Z.

(A) e−
x
2 − e−x

(B) 2(e−
x
2 − e−x)

(C) x2e−x

2

(D) e−
x
2

2

(E) e−
x
3

3

Problem 28 ‡
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Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
24xy 0 < x < 1, 0 < y < 1− x

0 otherwise.

Calculate Pr
(
Y < X|X = 1

3

)
.

(A) 1
27

(B) 2
27

(C) 1
4

(D) 1
3

(E) 4
9

Problem 29 ‡
You are given the following information about N, the annual number of
claims for a randomly selected insured:

Pr(N = 0) =
1

2

Pr(N = 1) =
1

3

Pr(N > 1) =
1

6

Let S denote the total annual claim amount for an insured. When N = 1, S
is exponentially distributed with mean 5 . When N > 1, S is exponentially
distributed with mean 8 . Determine Pr(4 < S < 8).

(A) 0.04
(B) 0.08
(C) 0.12
(D) 0.24
(E) 0.25

Problem 30 ‡
Let T1 and T2 represent the lifetimes in hours of two linked components in
an electronic device. The joint density function for T1 and T2 is uniform over
the region defined by 0 ≤ t1 ≤ t2 ≤ L, where L is a positive constant.
Determine the expected value of the sum of the squares of T1 and T2.
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(A) L2

3

(B) L2

2

(C) 2L2

3

(D) 3L2

4

(E) L2

Problem 31 ‡
The profit for a new product is given by Z = 3X − Y − 5. X and Y are
independent random variables with Var(X) = 1 and Var(Y) = 2.
What is the variance of Z?

(A) 1
(B) 5
(C) 7
(D) 11
(E) 16

Problem 32 ‡
Let X and Y denote the values of two stocks at the end of a five-year pe-
riod. X is uniformly distributed on the interval (0, 12) . Given X = x, Y is
uniformly distributed on the interval (0, x).
Determine Cov(X, Y ) according to this model.

(A) 0
(B) 4
(C) 6
(D) 12
(E) 24

Problem 33 ‡
The stock prices of two companies at the end of any given year are modeled
with random variables X and Y that follow a distribution with joint density
function

fXY (x, y) =

{
2x 0 < x < 1, x < y < x+ 1
0 otherwise.

What is the conditional variance of Y given that X = x?

(A) 1
12
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(B) 7
6

(C) x+1
2

(D) x2−1
6

(E) x2+x+1
3

Problem 34 ‡
A fair die is rolled repeatedly. Let X be the number of rolls needed to obtain
a 5 and Y the number of rolls needed to obtain a 6. Calculate E(X|Y = 2).

(A) 5.0
(B) 5.2
(C) 6.0
(D) 6.6
(E) 6.8

Problem 35 ‡
The number of hurricanes that will hit a certain house in the next ten years
is Poisson distributed with mean 4.
Each hurricane results in a loss that is exponentially distributed with mean
1000. Losses are mutually independent and independent of the number of
hurricanes.
Calculate the variance of the total loss due to hurricanes hitting this house
in the next ten years.

(A) 4,000,000
(B) 4,004,000
(C) 8,000,000
(D) 16,000,000
(E) 20,000,000

Problem 36 ‡
A company insures homes in three cities, J, K, and L . Since sufficient distance
separates the cities, it is reasonable to assume that the losses occurring in
these cities are independent.
The moment generating functions for the loss distributions of the cities are:

MJ(t) =(1− 2t)−3

MK(t) =(1− 2t)−2.5

ML(t) =(1− 2t)−4.5
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Let X represent the combined losses from the three cities. Calculate E(X3).

(A) 1,320
(B) 2,082
(C) 5,760
(D) 8,000
(E) 10,560

Problem 37 ‡
Let X and Y be identically distributed independent random variables such
that the moment generating function of X + Y is

M(t) = 0.09e−2t + 0.24e−t + 0.34 + 0.24et + 0.09e2t, −∞ < t <∞.

Calculate Pr(X ≤ 0).

(A) 0.33
(B) 0.34
(C) 0.50
(D) 0.67
(E) 0.70

Problem 38 ‡
A company manufactures a brand of light bulb with a lifetime in months
that is normally distributed with mean 3 and variance 1 . A consumer buys
a number of these bulbs with the intention of replacing them successively as
they burn out. The light bulbs have independent lifetimes.
What is the smallest number of bulbs to be purchased so that the succession
of light bulbs produces light for at least 40 months with probability at least
0.9772?

(A) 14
(B) 16
(C) 20
(D) 40
(E) 55
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Answers

1. D
2. E
3. E
4. C
5. B
6. D
7. B
8. A
9. B
10. B
11. E
12. E
13. B
14. C
15. B
16. D
17. E
18. B
19. D
20. D
21. B
22. E
23. D
24. D
25. E
26. C
27. A
28. C
29. C
30. C
31. D
32. C
33. A
34. D
35. C
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36. E
37. E
38. B
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Problem 1 ‡
A marketing survey indicates that 60% of the population owns an automo-
bile, 30% owns a house, and 20% owns both an automobile and a house.
What percentage of the population owns an automobile or a house, but not
both?

(A) 0.4
(B) 0.5
(C) 0.6
(D) 0.7
(E) 0.9

Problem 2 ‡
A survey of 100 TV watchers revealed that over the last year:
i) 34 watched CBS.
ii) 15 watched NBC.
iii) 10 watched ABC.
iv) 7 watched CBS and NBC.
v) 6 watched CBS and ABC.
vi) 5 watched NBC and ABC.
vii) 4 watched CBS, NBC, and ABC.
viii) 18 watched HGTV and of these, none watched CBS, NBC, or ABC.
Calculate how many of the 100 TV watchers did not watch any of the four
channels (CBS, NBC, ABC or HGTV).

(A) 1

493
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(B) 37
(C) 45
(D) 55
(E) 82

Problem 3 ‡
Among a large group of patients recovering from shoulder injuries, it is found
that 22% visit both a physical therapist and a chiropractor, whereas 12% visit
neither of these. The probability that a patient visits a chiropractor exceeds
by 14% the probability that a patient visits a physical therapist.
Determine the probability that a randomly chosen member of this group vis-
its a physical therapist.

(A) 0.26
(B) 0.38
(C) 0.40
(D) 0.48
(E) 0.62

Problem 4 ‡
The probability that a member of a certain class of homeowners with liability
and property coverage will file a liability claim is 0.04, and the probability
that a member of this class will file a property claim is 0.10. The probability
that a member of this class will file a liability claim but not a property claim
is 0.01.
Calculate the probability that a randomly selected member of this class of
homeowners will not file a claim of either type.

(A) 0.850
(B) 0.860
(C) 0.864
(D) 0.870
(E) 0.890

Problem 5 ‡
An insurance company examines its pool of auto insurance customers and
gathers the following information:
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(i) All customers insure at least one car.
(ii) 70% of the customers insure more than one car.
(iii) 20% of the customers insure a sports car.
(iv) Of those customers who insure more than one car, 15% insure a sports car.

Calculate the probability that a randomly selected customer insures exactly
one car and that car is not a sports car.

(A) 0.13
(B) 0.21
(C) 0.24
(D) 0.25
(E) 0.30

Problem 6 ‡
Upon arrival at a hospital’s emergency room, patients are categorized ac-
cording to their condition as critical, serious, or stable. In the past year:

(i) 10% of the emergency room patients were critical;
(ii) 30% of the emergency room patients were serious;
(iii) the rest of the emergency room patients were stable;
(iv) 40% of the critical patients died;
(v) 10% of the serious patients died; and
(vi) 1% of the stable patients died.

Given that a patient survived, what is the probability that the patient was
categorized as serious upon arrival?

(A) 0.06
(B) 0.29
(C) 0.30
(D) 0.39
(E) 0.64

Problem 7 ‡
The probability that a randomly chosen male has a circulation problem is
0.25 . Males who have a circulation problem are twice as likely to be smokers
as those who do not have a circulation problem.
What is the conditional probability that a male has a circulation problem,
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given that he is a smoker?

(A) 1
4

(B) 1
3

(C) 2
5

(D) 1
2

(E) 2
3

Problem 8 ‡
An actuary studying the insurance preferences of automobile owners makes
the following conclusions:
(i) An automobile owner is twice as likely to purchase a collision coverage as
opposed to a disability coverage.
(ii) The event that an automobile owner purchases a collision coverage is
independent of the event that he or she purchases a disability coverage.
(iii) The probability that an automobile owner purchases both collision and
disability coverages is 0.15.
What is the probability that an automobile owner purchases neither collision
nor disability coverage?

(A) 0.18
(B) 0.33
(C) 0.48
(D) 0.67
(E) 0.82

Problem 9 ‡
Under an insurance policy, a maximum of five claims may be filed per year
by a policyholder. Let pn be the probability that a policyholder files n claims
during a given year, where n = 0, 1, 2, 3, 4, 5. An actuary makes the following
observations:
(i) pn ≥ pn+1 for 0 ≤ n ≤ 4
(ii) The difference between pn and pn+1 is the same for 0 ≤ n ≤ 4
(iii) Exactly 40% of policyholders file fewer than two claims during a given
year.
Calculate the probability that a random policyholder will file more than three
claims during a given year.
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(A) 0.14
(B) 0.16
(C) 0.27
(D) 0.29
(E) 0.33

Problem 10 ‡
An insurance policy pays 100 per day for up to 3 days of hospitalization and
50 per day for each day of hospitalization thereafter.
The number of days of hospitalization, X, is a discrete random variable with
probability function

p(k) =

{
6−k
15

k = 1, 2, 3, 4, 5
0 otherwise

Determine the expected payment for hospitalization under this policy.

(A) 123
(B) 210
(C) 220
(D) 270
(E) 367

Problem 11 ‡
A hospital receives 1/5 of its flu vaccine shipments from Company X and the
remainder of its shipments from other companies. Each shipment contains a
very large number of vaccine vials.
For Company Xs shipments, 10% of the vials are ineffective. For every other
company, 2% of the vials are ineffective. The hospital tests 30 randomly
selected vials from a shipment and finds that one vial is ineffective.
What is the probability that this shipment came from Company X?

(A) 0.10
(B) 0.14
(C) 0.37
(D) 0.63
(E) 0.86

Problem 12 ‡
Let X represent the number of customers arriving during the morning hours
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and let Y represent the number of customers arriving during the afternoon
hours at a diner. You are given:
i) X and Y are Poisson distributed.
ii) The first moment of X is less than the first moment of Y by 8.
iii) The second moment of X is 60% of the second moment of Y.
Calculate the variance of Y.

(A) 4
(B) 12
(C) 16
(D) 27
(E) 35

Problem 13 ‡
As part of the underwriting process for insurance, each prospective policy-
holder is tested for high blood pressure. Let X represent the number of tests
completed when the first person with high blood pressure is found. The ex-
pected value of X is 12.5.
Calculate the probability that the sixth person tested is the first one with
high blood pressure.

(A) 0.000
(B) 0.053
(C) 0.080
(D) 0.316
(E) 0.394

Problem 14 ‡
A group insurance policy covers the medical claims of the employees of a
small company. The value, V, of the claims made in one year is described by

V = 100000Y

where Y is a random variable with density function

f(x) =

{
k(1− y)4 0 < y < 1

0 otherwise

where k is a constant.
What is the conditional probability that V exceeds 40,000, given that V ex-
ceeds 10,000?
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(A) 0.08
(B) 0.13
(C) 0.17
(D) 0.20
(E) 0.51

Problem 15 ‡
An insurance policy reimburses a loss up to a benefit limit of 10 . The
policyholder’s loss, X, follows a distribution with density function:

f(x) =

{
2
x3

x > 1
0 otherwise.

What is the expected value of the benefit paid under the insurance policy?

(A) 1.0
(B) 1.3
(C) 1.8
(D) 1.9
(E) 2.0

Problem 16 ‡
An auto insurance company insures an automobile worth 15,000 for one year
under a policy with a 1,000 deductible. During the policy year there is a
0.04 chance of partial damage to the car and a 0.02 chance of a total loss of
the car. If there is partial damage to the car, the amount X of damage (in
thousands) follows a distribution with density function

f(x) =

{
0.5003e−0.5x 0 < x < 15

0 otherwise.

What is the expected claim payment?

(A) 320
(B) 328
(C) 352
(D) 380
(E) 540
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Problem 17 ‡
An insurance policy on an electrical device pays a benefit of 4000 if the de-
vice fails during the first year. The amount of the benefit decreases by 1000
each successive year until it reaches 0 . If the device has not failed by the
beginning of any given year, the probability of failure during that year is 0.4.
What is the expected benefit under this policy?

(A) 2234
(B) 2400
(C) 2500
(D) 2667
(E) 2694

Problem 18 ‡
An insurance policy is written to cover a loss, X, where X has a uniform
distribution on [0, 1000].
At what level must a deductible be set in order for the expected payment to
be 25% of what it would be with no deductible?

(A) 250
(B) 375
(C) 500
(D) 625
(E) 750

Problem 19 ‡
Ten years ago at a certain insurance company, the size of claims under home-
owner insurance policies had an exponential distribution. Furthermore, 25%
of claims were less than $1000. Today, the size of claims still has an expo-
nential distribution but, owing to inflation, every claim made today is twice
the size of a similar claim made 10 years ago. Determine the probability that
a claim made today is less than $1000.

(A) 0.063
(B) 0.125
(C) 0.134
(D) 0.163
(E) 0.250
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Problem 20 ‡
A piece of equipment is being insured against early failure. The time from
purchase until failure of the equipment is exponentially distributed with mean
10 years. The insurance will pay an amount x if the equipment fails during
the first year, and it will pay 0.5x if failure occurs during the second or third
year. If failure occurs after the first three years, no payment will be made.
At what level must x be set if the expected payment made under this insur-
ance is to be 1000 ?

(A) 3858
(B) 4449
(C) 5382
(D) 5644
(E) 7235

Problem 21 ‡
The time, T, that a manufacturing system is out of operation has cumulative
distribution function

F (t) =

{
1−

(
2
t

)2
t > 2

0 otherwise

The resulting cost to the company is Y = T 2. Determine the density function
of Y, for y > 4.

(A) 4
y2

(B) 8

y
3
2

(C) 8
y3

(D) 16
y

(E) 1024
y5

Problem 22 ‡
The monthly profit of Company A can be modeled by a continuous random
variable with density function fA. Company B has a monthly profit that is
twice that of Company A.
Determine the probability density function of the monthly profit of Company
B.
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(A) 1
2
f
(
x
2

)
(B) f

(
x
2

)
(C) 2f

(
x
2

)
(D) 2f(x)
(E) 2f(2x)

Problem 23 ‡
A car dealership sells 0, 1, or 2 luxury cars on any day. When selling a car,
the dealer also tries to persuade the customer to buy an extended warranty
for the car. Let X denote the number of luxury cars sold in a given day, and
let Y denote the number of extended warranties sold. Given the following
information

Pr(X = 0, Y = 0) =
1

6

Pr(X = 1, Y = 0) =
1

12

Pr(X = 1, Y = 1) =
1

6

Pr(X = 2, Y = 0) =
1

12

Pr(X = 2, Y = 1) =
1

3

Pr(X = 2, Y = 2) =
1

6

What is the variance of X?

(A) 0.47
(B) 0.58
(C) 0.83
(D) 1.42
(E) 2.58

Problem 24 ‡
The future lifetimes (in months) of two components of a machine have the
following joint density function:

fXY (x, y) =

{
6

125000
(50− x− y) 0 < x < 50− y < 50

0 otherwise.
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What is the probability that both components are still functioning 20 months
from now?

(A) 6
125,000

∫ 20

0

∫ 20

0
(50− x− y)dydx

(B) 6
125,000

∫ 30

20

∫ 50−x
02

(50− x− y)dydx

(C) 6
125,000

∫ 30

20

∫ 50−x−y
20

(50− x− y)dydx

(D) 6
125,000

∫ 50

20

∫ 50−x
20

(50− x− y)dydx

(E) 6
125,000

∫ 50

20

∫ 50−x−y
20

(50− x− y)dydx

Problem 25 ‡
Automobile policies are separated into two groups: low-risk and high-risk.
Actuary Rahul examines low-risk policies, continuing until a policy with a
claim is found and then stopping. Actuary Toby follows the same procedure
with high-risk policies. Each low-risk policy has a 10% probability of having
a claim. Each high-risk policy has a 20% probability of having a claim. The
claim statuses of polices are mutually independent.
Calculate the probability that Actuary Rahul examines fewer policies than
Actuary Toby.

(A) 0.2857
(B) 0.3214
(C) 0.3333
(D) 0.3571
(E) 0.4000

Problem 26 ‡
Two insurers provide bids on an insurance policy to a large company. The
bids must be between 2000 and 2200 . The company decides to accept the
lower bid if the two bids differ by 20 or more. Otherwise, the company will
consider the two bids further. Assume that the two bids are independent
and are both uniformly distributed on the interval from 2000 to 2200.
Determine the probability that the company considers the two bids further.

(A) 0.10
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(B) 0.19
(C) 0.20
(D) 0.41
(E) 0.60

Problem 27 ‡
A company offers earthquake insurance. Annual premiums are modeled by
an exponential random variable with mean 2. Annual claims are modeled
by an exponential random variable with mean 1. Premiums and claims are
independent. Let X denote the ratio of claims to premiums.
What is the density function of X?

(A) 1
2x+1

(B) 2
(2x+1)2

(C) e−x

(D) 2e−2x

(E) xe−x

Problem 28 ‡
Once a fire is reported to a fire insurance company, the company makes an
initial estimate, X, of the amount it will pay to the claimant for the fire loss.
When the claim is finally settled, the company pays an amount, Y, to the
claimant. The company has determined that X and Y have the joint density
function

fXY (x, y) =

{
2

x2(x−1)
y−(2x−1)/(x−1) x > 1, y > 1

0 otherwise.

Given that the initial claim estimated by the company is 2, determine the
probability that the final settlement amount is between 1 and 3 .

(A) 1
9

(B) 2
9

(C) 1
3

(D) 2
3

(E) 8
9

Problem 29 ‡
The distribution of Y, given X, is uniform on the interval [0, X]. The marginal
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density of X is

fX(x) =

{
2x for 0 < x < 1
0 otherwise.

Determine the conditional density of X, given Y = y > 0.

(A) 1
(B) 2
(C) 2x
(D) 1

y

(E) 1
1−y

Problem 30 ‡
A machine consists of two components, whose lifetimes have the joint density
function

f(x, y) =

{
1
50

for x > 0, y > 0, x+ y < 10
0 otherwise.

The machine operates until both components fail. Calculate the expected
operational time of the machine.

(A) 1.7
(B) 2.5
(C) 3.3
(D) 5.0
(E) 6.7

Problem 31 ‡
A company has two electric generators. The time until failure for each gen-
erator follows an exponential distribution with mean 10. The company will
begin using the second generator immediately after the first one fails.
What is the variance of the total time that the generators produce electricity?

(A) 10
(B) 20
(C) 50
(D) 100
(E) 200
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Problem 32 ‡
Let X denote the size of a surgical claim and let Y denote the size of the
associated hospital claim. An actuary is using a model in which E(X) =
5, E(X2) = 27.4, E(Y ) = 7, E(Y 2) = 51.4, and V ar(X + Y ) = 8.
Let C1 = X+Y denote the size of the combined claims before the application
of a 20% surcharge on the hospital portion of the claim, and let C2 denote
the size of the combined claims after the application of that surcharge.
Calculate Cov(C1, C2).

(A) 8.80
(B) 9.60
(C) 9.76
(D) 11.52
(E) 12.32

Problem 33 ‡
An actuary determines that the annual numbers of tornadoes in counties P
and Q are jointly distributed as follows:

X\Y 0 1 2 PX(x)
0 0.12 0.13 0.05 0.30
1 0.06 0.15 0.15 0.36
2 0.05 0.12 0.10 0.27
3 0.02 0.03 0.02 0.07
pY (y) 0.25 0.43 0.32 1

where X is the number of tornadoes in county Q and Y that of county P.
Calculate the conditional variance of the annual number of tornadoes in
county Q, given that there are no tornadoes in county P.

(A) 0.51
(B) 0.84
(C) 0.88
(D) 0.99
(E) 1.76

Problem 34 ‡
A driver and a passenger are in a car accident. Each of them independently
has probability 0.3 of being hospitalized. When a hospitalization occurs, the
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loss is uniformly distributed on [0, 1]. When two hospitalizations occur, the
losses are independent.
Calculate the expected number of people in the car who are hospitalized,
given that the total loss due to hospitalizations from the accident is less than
1.

(A) 0.510
(B) 0.534
(C) 0.600
(D) 0.628
(E) 0.800

Problem 35 ‡
An insurance company insures two types of cars, economy cars and luxury
cars. The damage claim resulting from an accident involving an economy car
has normal N(7, 1) distribution, the claim from a luxury car accident has
normal N(20, 6) distribution.
Suppose the company receives three claims from economy car accidents and
one claim from a luxury car accident. Assuming that these four claims are
mutually independent, what is the probability that the total claim amount
from the three economy car accidents exceeds the claim amount from the
luxury car accident?

(A) 0.731
(B) 0.803
(C) 0.629
(D) 0.235
(E) 0.296

Problem 36 ‡
Let X1, X2, X3 be independent discrete random variables with common prob-
ability mass function

Pr(x) =


1
3

x = 0
2
3

x = 1
0 otherwise

Determine the moment generating function M(t), of Y = X1X2X3.
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(A) 19
27

+ 8
27
et

(B) 1 + 2et

(C)
(

1
3

+ 2
3
et
)3

(D) 1
27

+ 8
27
e3t

(E) 1
3

+ 2
3
e3t

Problem 37 ‡
In an analysis of healthcare data, ages have been rounded to the nearest
multiple of 5 years. The difference between the true age and the rounded age
is assumed to be uniformly distributed on the interval from −2.5 years to 2.5
years. The healthcare data are based on a random sample of 48 people.
What is the approximate probability that the mean of the rounded ages is
within 0.25 years of the mean of the true ages?

(A) 0.14
(B) 0.38
(C) 0.57
(D) 0.77
(E) 0.88

Problem 38 ‡
Let X and Y be the number of hours that a randomly selected person watches
movies and sporting events, respectively, during a three-month period. The
following information is known about X and Y :

E(X) = 50
E(Y) = 20
Var(X) = 50
Var(Y) = 30
Cov (X,Y) = 10

One hundred people are randomly selected and observed for these three
months. Let T be the total number of hours that these one hundred people
watch movies or sporting events during this three-month period.
Approximate the value of Pr(T < 7100).

(A) 0.62
(B) 0.84
(C) 0.87
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(D) 0.92
(E) 0.97
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Answers

1. B
2. B
3. D
4. E
5. B
6. B
7. C
8. B
9. C
10. C
11. A
12. E
13. B
14. B
15. D
16. B
17. E
18. C
19. C
20. D
21. A
22. A
23. B
24. D
25. A
26. B
27. B
28. E
29. E
30. D
31. E
32. A
33. D
34. B
35. C
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36. A
37. D
38. B
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Sample Exam 4

Problem 1 ‡
35% of visits to a primary care physicians (PCP) office results in neither lab
work nor referral to a specialist. Of those coming to a PCPs office, 30% are
referred to specialists and 40% require lab work.
What percentage of visit to a PCPs office results in both lab work and refer-
ral to a specialist?

(A) 0.05
(B) 0.12
(C) 0.18
(D) 0.25
(E) 0.35

Problem 2 ‡
Thirty items are arranged in a 6-by-5 array as shown.

A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

A11 A12 A13 A14 A15

A16 A17 A18 A19 A20

A21 A22 A23 A24 A25

A26 A27 A28 A29 A30

Calculate the number of ways to form a set of three distinct items such that
no two of the selected items are in the same row or same column.

(A) 200

513



514 SAMPLE EXAM 4

(B) 760
(C) 1200
(D) 4560
(E) 7200

Problem 3 ‡
In modeling the number of claims filed by an individual under an auto-
mobile policy during a three-year period, an actuary makes the simplifying
assumption that for all integers n ≥ 0, pn+1 = 1

5
pn, where pn represents the

probability that the policyholder files n claims during the period.
Under this assumption, what is the probability that a policyholder files more
than one claim during the period?

(A) 0.04
(B) 0.16
(C) 0.20
(D) 0.80
(E) 0.96

Problem 4 ‡
A store has 80 modems in its inventory, 30 coming from Source A and the
remainder from Source B. Of the modems from Source A, 20% are defective.
Of the modems from Source B, 8% are defective.
Calculate the probability that exactly two out of a random sample of five
modems from the store’s inventory are defective.

(A) 0.010
(B) 0.078
(C) 0.102
(D) 0.105
(E) 0.125

Problem 5 ‡
An actuary is studying the prevalence of three health risk factors, denoted
by A,B, and C, within a population of women. For each of the three factors,
the probability is 0.1 that a woman in the population has only this risk factor
(and no others). For any two of the three factors, the probability is 0.12 that
she has exactly these two risk factors (but not the other). The probability
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that a woman has all three risk factors, given that she has A and B, is 1
3
.

What is the probability that a woman has none of the three risk factors,
given that she does not have risk factor A?

(A) 0.280
(B) 0.311
(C) 0.467
(D) 0.484
(E) 0.700

Problem 6 ‡
A health study tracked a group of persons for five years. At the beginning of
the study, 20% were classified as heavy smokers, 30% as light smokers, and
50% as nonsmokers.
Results of the study showed that light smokers were twice as likely as non-
smokers to die during the five-year study, but only half as likely as heavy
smokers.
A randomly selected participant from the study died over the five-year pe-
riod. Calculate the probability that the participant was a heavy smoker.

(A) 0.20
(B) 0.25
(C) 0.35
(D) 0.42
(E) 0.57

Problem 7 ‡
A study of automobile accidents produced the following data:

Probability of
Model Proportion of involvement
year all vehicles in an accident
1997 0.16 0.05
1998 0.18 0.02
1999 0.20 0.03
Other 0.46 0.04

An automobile from one of the model years 1997, 1998, and 1999 was in-
volved in an accident. Determine the probability that the model year of this
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automobile is 1997.

(A) 0.22
(B) 0.30
(C) 0.33
(D) 0.45
(E) 0.50

Problem 8 ‡
An insurance company pays hospital claims. The number of claims that
include emergency room or operating room charges is 85% of the total num-
ber of claims. The number of claims that do not include emergency room
charges is 25% of the total number of claims. The occurrence of emergency
room charges is independent of the occurrence of operating room charges on
hospital claims.
Calculate the probability that a claim submitted to the insurance company
includes operating room charges.

(A) 0.10
(B) 0.20
(C) 0.25
(D) 0.40
(E) 0.80

Problem 9 ‡
Suppose that an insurance company has broken down yearly automobile
claims for drivers from age 16 through 21 as shown in the following table.

Amount of claim Probability
$ 0 0.80

$ 2000 0.10
$ 4000 0.05
$ 6000 0.03
$ 8000 0.01
$ 10000 0.01

How much should the company charge as its average premium in order to
break even on costs for claims?



517

(A) 706
(B) 760
(C) 746
(D) 766
(E) 700

Problem 10 ‡
An insurance company sells a one-year automobile policy with a deductible
of 2 . The probability that the insured will incur a loss is 0.05 . If there is
a loss, the probability of a loss of amount N is K

N
, for N = 1, · · · , 5 and K

a constant. These are the only possible loss amounts and no more than one
loss can occur.
Determine the net premium for this policy.

(A) 0.031
(B) 0.066
(C) 0.072
(D) 0.110
(E) 0.150

Problem 11 ‡
A company establishes a fund of 120 from which it wants to pay an amount,
C, to any of its 20 employees who achieve a high performance level during
the coming year. Each employee has a 2% chance of achieving a high perfor-
mance level during the coming year, independent of any other employee.
Determine the maximum value of C for which the probability is less than 1%
that the fund will be inadequate to cover all payments for high performance.

(A) 24
(B) 30
(C) 40
(D) 60
(E) 120

Problem 12 ‡
An actuary has discovered that policyholders are three times as likely to file
two claims as to file four claims.
If the number of claims filed has a Poisson distribution, what is the variance
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of the number of claims filed?

(A) 1√
3

(B) 1
(C)
√

2
(D) 2
(E) 4

Problem 13 ‡
A company takes out an insurance policy to cover accidents that occur at its
manufacturing plant. The probability that one or more accidents will occur
during any given month is 3

5
.

The number of accidents that occur in any given month is independent of
the number of accidents that occur in all other months.
Calculate the probability that there will be at least four months in which no
accidents occur before the fourth month in which at least one accident occurs.

(A) 0.01
(B) 0.12
(C) 0.23
(D) 0.29
(E) 0.41

Problem 14 ‡
The loss due to a fire in a commercial building is modeled by a random
variable X with density function

f(x) =

{
0.005(20− x) 0 < x < 20

0 otherwise

Given that a fire loss exceeds 8, what is the probability that it exceeds 16 ?

(A) 1
25

(B) 1
9

(C) 1
8

(D) 1
3

(E) 3
7
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Problem 15 ‡
Claim amounts for wind damage to insured homes are independent random
variables with common density function

f(x) =

{
3
x4

x > 1
0 otherwise

where x is the amount of a claim in thousands.
Suppose 3 such claims will be made, what is the expected value of the largest
of the three claims?

(A) 2025
(B) 2700
(C) 3232
(D) 3375
(E) 4500

Problem 16 ‡
An insurance company’s monthly claims are modeled by a continuous, pos-
itive random variable X, whose probability density function is proportional
to (1 + x)−4, where 0 < x <∞ and 0 otherwise.
Determine the company’s expected monthly claims.

(A) 1
6

(B) 1
3

(C) 1
2

(D) 1
(E) 3

Problem 17 ‡
A man purchases a life insurance policy on his 40th birthday. The policy will
pay 5000 only if he dies before his 50th birthday and will pay 0 otherwise.
The length of lifetime, in years, of a male born the same year as the insured
has the cumulative distribution function

F (t) =

{
1− e 1−1.1t

1000 , t > 0
0 t ≤ 0

Calculate the expected payment to the man under this policy.
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(A) 333
(B) 348
(C) 421
(D) 549
(E) 574

Problem 18 ‡
The warranty on a machine specifies that it will be replaced at failure or
age 4, whichever occurs first. The machine’s age at failure, X, has density
function

f(x) =

{
1
5

0 < x < 5
0 otherwise

Let Y be the age of the machine at the time of replacement. Determine the
variance of Y.

(A) 1.3
(B) 1.4
(C) 1.7
(D) 2.1
(E) 7.5

Problem 19 ‡
The number of days that elapse between the beginning of a calendar year
and the moment a high-risk driver is involved in an accident is exponentially
distributed. An insurance company expects that 30% of high-risk drivers will
be involved in an accident during the first 50 days of a calendar year.
What portion of high-risk drivers are expected to be involved in an accident
during the first 80 days of a calendar year?

(A) 0.15
(B) 0.34
(C) 0.43
(D) 0.57
(E) 0.66

Problem 20 ‡
An insurance policy reimburses dental expense, X, up to a maximum benefit
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of 250 . The probability density function for X is:

f(x) =

{
ce−0.004x x ≥ 0

0 otherwise

where c is a constant. Calculate the median benefit for this policy.

(A) 161
(B) 165
(C) 173
(D) 182
(E) 250

Problem 21 ‡
An investment account earns an annual interest rate R that follows a uni-
form distribution on the interval (0.04, 0.08). The value of a 10,000 initial
investment in this account after one year is given by V = 10, 000eR.
Determine the cumulative distribution function, FV (v) of V.

(A) 10,000e
v

10,000−10,408
425

(B) 25e
v

10,000 − 0.04
(C) v−10,408

10,833−10,408

(D) 25
v

(E) 25
[
ln
(

v
10,000

)
− 0.04

]
Problem 22 ‡
A company is reviewing tornado damage claims under a farm insurance pol-
icy. Let X be the portion of a claim representing damage to the house and
let Y be the portion of the same claim representing damage to the rest of
the property. The joint density function of X and Y is

fXY (x, y) =

{
6[1− (x+ y)] x > 0, y > 0, x+ y < 1

0 otherwise.

Determine the probability that the portion of a claim representing damage
to the house is less than 0.2.

(A) 0.360
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(B) 0.480
(C) 0.488
(D) 0.512
(E) 0.520

Problem 23 ‡
Let X and Y be continuous random variables with joint density function

fXY (x, y) =

{
15y x2 ≤ y ≤ x
0 otherwise.

Find the marginal density function of Y.

(A)

g(y) =

{
15y 0 < y < 1
0 otherwise

(B)

g(y) =

{
15y2

2
x2 < y < x

0 otherwise

(C)

g(y) =

{
15y2

2
0 < y < 1

0 otherwise

(D)

g(y) =

{
15y

3
2 (1− y 1

2 ) x2 < y < x
0 otherwise

(E)

g(y) =

{
15y

3
2 (1− y 1

2 ) 0 < y < 1
0 otherwise
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Problem 24 ‡
Let X and Y be random losses with joint density function

fXY (x, y) = e−(x+y), x > 0, y > 0

and 0 otherwise. An insurance policy is written to reimburse X + Y.
Calculate the probability that the reimbursement is less than 1.

(A) e−2

(B) e−1

(C) 1− e−1

(D) 1− 2e−1

(E) 1− 2e−2

Problem 25 ‡
A study is being conducted in which the health of two independent groups
of ten policyholders is being monitored over a one-year period of time. In-
dividual participants in the study drop out before the end of the study with
probability 0.2 (independently of the other participants).
What is the probability that at least 9 participants complete the study in
one of the two groups, but not in both groups?

(A) 0.096
(B) 0.192
(C) 0.235
(D) 0.376
(E) 0.469

Problem 26 ‡
A family buys two policies from the same insurance company. Losses under
the two policies are independent and have continuous uniform distributions
on the interval from 0 to 10. One policy has a deductible of 1 and the other
has a deductible of 2. The family experiences exactly one loss under each
policy.
Calculate the probability that the total benefit paid to the family does not
exceed 5.

(A) 0.13
(B) 0.25
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(C) 0.30
(D) 0.32
(E) 0.42

Problem 27 ‡
An insurance company determines that N, the number of claims received
in a week, is a random variable with P [N = n] = 1

2n+1 , where n ≥ 0. The
company also determines that the number of claims received in a given week
is independent of the number of claims received in any other week.
Determine the probability that exactly seven claims will be received during
a given two-week period.

(A) 1
256

(B) 1
128

(C) 7
512

(D) 1
64

(E) 1
32

Problem 28 ‡
A company offers a basic life insurance policy to its employees, as well as a
supplemental life insurance policy. To purchase the supplemental policy, an
employee must first purchase the basic policy.
Let X denote the proportion of employees who purchase the basic policy, and
Y the proportion of employees who purchase the supplemental policy. Let
X and Y have the joint density function fXY (x, y) = 2(x+ y) on the region
where the density is positive.
Given that 10% of the employees buy the basic policy, what is the probability
that fewer than 5% buy the supplemental policy?

(A) 0.010
(B) 0.013
(C) 0.108
(D) 0.417
(E) 0.500

Problem 29 ‡
An insurance policy is written to cover a loss X where X has density function

fX(x) =

{
3
8
x2 0 ≤ x ≤ 2
0 otherwise.
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The time T (in hours) to process a claim of size x, where 0 ≤ x ≤ 2, is
uniformly distributed on the interval from x to 2x.
Calculate the probability that a randomly chosen claim on this policy is pro-
cessed in three hours or more.

(A) 0.17
(B) 0.25
(C) 0.32
(D) 0.58
(E) 0.83

Problem 30 ‡
The profit for a new product is given by Z = 3X − Y − 5, where X and Y
are independent random variables with Var(X) = 1 and Var(Y ) = 2. What
is the variance of Z?

(A) 1
(B) 5
(C) 7
(D) 11
(E) 16

Problem 31 ‡
A joint density function is given by

fXY (x, y) =

{
kx 0 < x, y < 1
0 otherwise

Find Cov(X, Y )

(A) −1
6

(B) 0
(C) 1

9

(D) 1
6

(E) 2
3

Problem 32 ‡
Claims filed under auto insurance policies follow a normal distribution with
mean 19,400 and standard deviation 5,000.
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What is the probability that the average of 25 randomly selected claims ex-
ceeds 20,000 ?

(A) 0.01
(B) 0.15
(C) 0.27
(D) 0.33
(E) 0.45

Problem 33 ‡
The joint probability density for X and Y is

f(x, y) =

{
2e−(x+2y), for x > 0, y > 0

0 otherwise.

Calculate the variance of Y given that X > 3 and Y > 3.

(A) 0.25
(B) 0.50
(C) 1.00
(D) 3.25
(E) 3.50

Problem 34 ‡
New dental and medical plan options will be offered to state employees next
year. An actuary uses the following density function to model the joint
distribution of the proportion X of state employees who will choose Dental
Option 1 and the proportion Y who will choose Medical Option 1 under the
new plan options:

f(x, y) =


0.50 for 0 < x, y < 0.5
1.25 for 0 < x < 0.5, 0.5 < y < 1
1.50 for 0.5 < x < 1, 0 < y < 0.5
0.75 for 0.5 < x < 1, 0.5 < y < 1.

Calculate Var(Y |X = 0.75).

(A) 0.000
(B) 0.061
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(C) 0.076
(D) 0.083
(E) 0.141

Problem 35 ‡
X and Y are independent random variables with common moment generat-

ing function M(t) = e
t2

2 . Let W = X + Y and Z = X − Y. Determine the
joint moment generating function, M(t1, t2) of W and Z.

(A) e2t21+2t22

(B) e(t1−t2)2

(C) e(t1+t2)2

(D) e2t1t2

(E) et
2
1+t22

Problem 36 ‡
Two instruments are used to measure the height, h, of a tower. The error
made by the less accurate instrument is normally distributed with mean 0
and standard deviation 0.0056h. The error made by the more accurate instru-
ment is normally distributed with mean 0 and standard deviation 0.0044h.
Assuming the two measurements are independent random variables, what is
the probability that their average value is within 0.005h of the height of the
tower?

(A) 0.38
(B) 0.47
(C) 0.68
(D) 0.84
(E) 0.90

Problem 37 ‡
A charity receives 2025 contributions. Contributions are assumed to be inde-
pendent and identically distributed with mean 3125 and standard deviation
250.
Calculate the approximate 90th percentile for the distribution of the total
contributions received.

(A) 6,328,000
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(B) 6,338,000
(C) 6,343,000
(D) 6,784,000
(E) 6,977,000

Problem 38 ‡
The total claim amount for a health insurance policy follows a distribution
with density function

f(x) =

{
1

1000
e−

x
1000 x > 0

0 otherwise

The premium for the policy is set at 100 over the expected total claim
amount. If 100 policies are sold, what is the approximate probability that
the insurance company will have claims exceeding the premiums collected?

(A) 0.001
(B) 0.159
(C) 0.333
(D) 0.407
(E) 0.460
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Answers

1. A
2. C
3. A
4. C
5. C
6. D
7. D
8. D
9. B
10. A
11. D
12. D
13. D
14. B
15. A
16. C
17. B
18. C
19. C
20. C
21. E
22. C
23. D
24. D
25. E
26. C
27. D
28. D
29. A
30. D
31. B
32. C
33. A
34. C
35. E
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36. D
37. C
38. B



Answer Keys

Section 1

1.1 A = {2, 3, 5}
1.2 (a)S = {TTT, TTH, THT, THH,HTT,HTH,HHT,HHH}
(b)E = {TTT, TTH,HTT, THT}
(c)F = {x : x is an element of S with more than one head}
1.3 F ⊂ E
1.4 E = ∅
1.5 (a) Since every element of A is in A, A ⊆ A.
(b) Since every element in A is in B and every element in B is in A, A = B.
(c) If x is in A then x is in B since A ⊆ B. But B ⊆ C and this implies that
x is in C. Hence, every element of A is also in C. This shows that A ⊆ C
1.6 The result is true for n = 1 since 1 = 1(1+1)

2
. Assume that the equality is

true for 1, 2, · · · , n. Then

1 + 2 + · · ·+ n+ 1 =(1 + 2 + · · ·+ n) + n+ 1

=
n(n+ 1)

2
+ n+ 1 = (n+ 1)[

n

2
+ 1]

=
(n+ 1)(n+ 2)

2

1.7 Let Sn = 12 + 22 + 32 + · · · + n2. For n = 1, we have S1 = 1 =
1(1+1)(2+1)

6
. Suppose that Sn = n(n+1)(2n+1)

6
. We next want to show that

Sn+1 = (n+1)(n+2)(2n+3)
6

. Indeed, Sn+1 = 12 + 22 + 32 + · · · + n2 + (n + 1)2 =
n(n+1)(2n+1)

6
+ (n+ 1)2 = (n+ 1)

[
n(2n+1)

6
+ n+ 1

]
= (n+1)(n+2)(2n+3)

6

531
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1.8 The result is true for n = 1. Suppose true up to n. Then

(1 + x)n+1 =(1 + x)(1 + x)n

≥(1 + x)(1 + nx), since 1 + x > 0

=1 + nx+ x+ nx2

=1 + nx2 + (n+ 1)x ≥ 1 + (n+ 1)x

1.9 The identity is valid for n = 1. Assume true for 1, 2, · · · , n. Then

1 + a+ a2 + · · ·+ an =[1 + a+ a2 + · · ·+ an−1] + an

=
1− an

1− a
+ an =

1− an+1

1− a

1.10 (a) 55 sandwiches with tomatoes or onions.
(b) There are 40 sandwiches with onions.
(c) There are 10 sandwiches with onions but not tomatoes

1.11 (a) 20 (b) 5 (c) 11 (d) 42 (e) 46 (f) 46
1.12 Since We have

S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T,H), (T, T )}

and n(S) = 8.
1.13 Suppose that f(a) = f(b). Then 3a + 5 = 3b + 5 =⇒ 3a + 5 − 5 =
3b+ 5− 5 =⇒ 3a = 3b =⇒ 3a

3
= 3b

3
=⇒ a = b. That is, f is one-to-one.

Let y ∈ R. From the equation y = 3x + 5 we find x = y−5
3
∈ R and

f(x) = f
(

3y−5
3

)
= y. That is, f is onto.

1.14 5
1.15 (a) The condition f(n) = f(m) with n even and m odd leads to
n+m = 1 with n,m ∈ N which cannot happen.
(b) Suppose that f(n) = f(m). If n and m are even, we have n

2
= m

2
=⇒ n =

m. If n and m are odd then −n−1
2

= −m−1
2

=⇒ n = m. Thus, f is one-to-one.
Now, if m = 0 then n = 1 and f(n) = m. If m ∈ N = Z+ then n = 2m and
f(n) = m. If n ∈ Z− then n = 2|m| + 1 and f(n) = m. Thus, f is onto. If
follows that Z is countable.
1.16 Suppose the contrary. That is, there is a b ∈ A such that f(b) = B.
Since B ⊆ A, either b ∈ B or b 6∈ B. If b ∈ B then b 6∈ f(b). But B = f(b) so
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b ∈ B implies b ∈ f(b), a contradiction. If b 6∈ B then b ∈ f(b) = B which is
again a contradiction. Hence, we conclude that there is no onto map from A
to its power set.
1.17 By the previous problem there is no onto map from N to P(N) so that
P(N) is uncountable.

Section 2

2.1

2.2 Since A ⊆ B, we have A ∪ B = B. Now the result follows from the
previous problem.
2.3 Let

G = event that a viewer watched gymnastics
B = event that a viewer watched baseball
S = event that a viewer watched soccer

Then the event “the group that watched none of the three sports during the
last year” is the set (G ∪B ∪ S)c

2.4 The events R1 ∩R2 and B1 ∩B2 represent the events that both ball are
the same color and therefore as sets they are disjoint
2.5 880
2.6 50%
2.7 5%
2.8 60
2.9 53%
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2.10 Using Theorem 2.3, we find

n(A ∪B ∪ C) =n(A ∪ (B ∪ C))

=n(A) + n(B ∪ C)− n(A ∩ (B ∪ C))

=n(A) + (n(B) + n(C)− n(B ∩ C))

−n((A ∩B) ∪ (A ∩ C))

=n(A) + (n(B) + n(C)− n(B ∩ C))

−(n(A ∩B) + n(A ∩ C)− n(A ∩B ∩ C))

=n(A) + n(B) + n(C)− n(A ∩B)− n(A ∩ C)

−n(B ∩ C) + n(A ∩B ∩ C)

2.11 50
2.12 10
2.13 (a) 3 (b) 6
2.14 20%
2.15 (a) Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C. Thus, x ∈ A
and (x ∈ B or x ∈ C). This implies that (x ∈ A and x ∈ B) or (x ∈ A and
x ∈ C). Hence, x ∈ A ∩ B or x ∈ A ∩ C, i.e. x ∈ (A ∩ B) ∪ (A ∩ C). The
converse is similar.
(b) Let x ∈ A ∪ (B ∩ C). Then x ∈ A or x ∈ B ∩ C. Thus, x ∈ A or (x ∈ B
and x ∈ C). This implies that (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C).
Hence, x ∈ A ∪ B and x ∈ A ∪ C, i.e. x ∈ (A ∪ B) ∩ (A ∪ C). The converse
is similar.
2.16 (a) B ⊆ A
(b) A ∩B = ∅ or A ⊆ Bc.
(c) A ∪B − A ∩B
(d) (A ∪B)c

2.17 37

Section 3

3.1 (a) 100 (b) 900 (c) 5,040 (d) 90,000
3.2 (a) 336 (b) 6
3.3 6
3.4 90
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3.5

3.6 412

3.7 380
3.8 255,024
3.9 5,040
3.10 384

Section 4

4.1 m = 9 and n = 3
4.2 (a) 456,976 (b) 358,800
4.3 (a) 15,600,000 (b) 11,232,000
4.4 (a) 64,000 (b) 59,280
4.5 (a) 479,001,600 (b) 604,800
4.6 (a) 5 (b) 20 (c) 60 (d) 120
4.7 60
4.8 15,600

Section 5

5.1 m = 13 and n = 1 or n = 12
5.2 11,480
5.3 300
5.4 10
5.5 28
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5.6 4,060
5.7 Recall that mPn = m!

(m−n)!
= n!mCn. Since n! ≥ 1, we can multiply both

sides by mCn to obtain mPn = n!mCn ≥m Cn.
5.8 (a) Combination (b) Permutation
5.9 (a+ b)7 = a7 + 7a6b+ 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7ab6 + b7

5.10 22, 680a3b4

5.11 1,200

Section 6

6.1 (a) S = {1, 2, 3, 4, 5, 6} (b) {2, 4, 6}
6.2 S = {(H, 1), (H, 2), (H, 3), (H, 4), (H, 5), (H, 6), (T,H), (T, T )}
6.3 50%
6.4 (a) (i, j), i, j = 1, · · · , 6 (b) Ec = {(5, 6), (6, 5), (6, 6)} (c) 11

12
(d) 5

6
(e) 7

9

6.5 (a) 0.5 (b) 0 (c) 1 (d) 0.4 (e) 0.3
6.6 (a) 0.75 (b) 0.25 (c) 0.5 (d) 0 (e) 0.375 (f) 0.125
6.7 25%
6.8 6

128

6.9 1− 6.6× 10−14

6.10 (a) 10 (b) 40%
6.11 (a) S = {D1D2, D1N1, D1N2, D1N3, D2N1, D2N2, D2N3, N1N2, N1N3, N2N3} (b)
10%

Section 7

7.1 (a) 0.78 (b) 0.57 (c) 0
7.2 0.32
7.3 0.308
7.4 0.555
7.5 Since Pr(A ∪B) ≤ 1, we have −Pr(A ∪B) ≥ −1. Add Pr(A) + Pr(B)
to both sides to obtain Pr(A) + Pr(B)− Pr(A ∪B) ≥ Pr(A) + Pr(B)− 1.
But the left hand side is just Pr(A ∩B).
7.6 (a) 0.181 (b) 0.818 (c) 0.545
7.7 0.889
7.8 No
7.9 0.52
7.10 0.05
7.11 0.6
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7.12 0.48
7.13 0.04
7.14 0.5
7.15 10%
7.16 80%
7.17 0.89

Section 8

8.1

8.2

8.3 Pr(A) = 0.6,Pr(B) = 0.3,Pr(C) = 0.1
8.4 0.1875
8.5 0.444
8.6 0.167
8.7 The probability is 3

5
· 2

4
+ 2

5
· 3

4
= 3

5
= 0.6
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8.8 The probability is 3
5
· 2

5
+ 2

5
· 3

5
= 12

25
= 0.48

8.9 0.14
8.10 36

65

8.11 0.102
8.12 0.27

Section 9

9.1 0.173
9.2 0.205
9.3 0.467
9.4 0.5
9.5 (a) 0.19 (b) 0.60 (c) 0.31 (d) 0.317 (e) 0.613
9.6 0.151
9.7 0.133
9.8 0.978
9.9 7

1912

9.10 (a) 1
221

(b) 1
169

9.11 1
114

9.12 80.2%
9.13 (a) 0.021 (b) 0.2381, 0.2857, 0.476
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9.14 (a) 0.57 (b) 0.211 (c) 0.651

Section 10

10.1 (a) 0.26 (b) 6
13

10.2 0.1584
10.3 0.0141
10.4 0.29
10.5 0.42
10.6 0.22
10.7 0.657
10.8 0.4
10.9 0.45
10.10 0.66
10.11 (a) 0.22 (b) 15

22

10.12 (a) 0.56 (b) 4
7

10.13 0.36
10.14 1

3

10.15 (a) 17
140

(b) 7
17

10.16 15
74

.
10.17 72

73
.

Section 11

11.1 (a) Dependent (b) Independent
11.2 0.02
11.3 (a) 21.3% (b) 21.7%
11.4 0.72
11.5 4
11.6 0.328
11.7 0.4
11.8 We have

Pr(A ∩B) =Pr({1}) =
1

4
=

1

2
× 1

2
= Pr(A)Pr(B)

Pr(A ∩ C) =Pr({1}) =
1

4
=

1

2
× 1

2
= Pr(A)Pr(C)

Pr(B ∩ C) =Pr({1}) =
1

4
=

1

2
× 1

2
= Pr(B)Pr(C)
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It follows that the events A,B, and C are pairwise independent. However,

Pr(A ∩B ∩ C) = Pr({1}) =
1

4
6= 1

8
= Pr(A)Pr(B)Pr(C).

Thus, the events A,B, and C are not independent
11.9 Pr(C) = 0.56, Pr(D) = 0.38
11.10 0.93
11.11 0.43
11.12 (a) We have Pr(A|B ∩ C) = Pr(A∩B∩C)

Pr(B∩C)
= Pr(A)Pr(B)Pr(C)

Pr(B)Pr(C)
= Pr(A).

Thus, A and B ∩ C are independent.
(b) We have Pr(A|B∪C) = Pr(A∩(B∪C))

Pr(B∪C)
= Pr((A∩B)∪(A∩C))

Pr(B∪C)
= Pr(A∩B)+Pr(A∩C)−Pr(A∩B∩C)

Pr(B)+Pr(C)−Pr(B∩C)
=

Pr(A)Pr(B)+Pr(A)Pr(C)−Pr(A)Pr(B)Pr(C)
Pr(A)+Pr(B)−Pr(A)Pr(B)

= Pr(A)Pr(B)[1−Pr(C)]+Pr(A)Pr(C)
Pr(B)+Pr(C)−Pr(B)Pr(C)

= Pr(A)Pr(B)Pr(Cc)+Pr(A)Pr(C)
Pr(B)Pr(Cc)+Pr(C)

=
Pr(A)[Pr(B)Pr(Cc)+Pr(C)]

Pr(B)Pr(Cc)+Pr(C)
= Pr(A). Hence, A and B ∪ C are independent

11.13 (a) We have

S ={HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}
A ={HHH,HHT,HTH, THH, TTH}
B ={HHH,THH,HTH, TTH}
C ={HHH,HTH, THT, TTT}

(b) Pr(A) = 5
8
, Pr(B) = 0.5, Pr(C) = 1

2

(c) 4
5

(d) We have B ∩ C = {HHH,HTH}, so Pr(B ∩ C) = 1
4
. That is equal to

Pr(B)Pr(C), so B and C are independent
11.14 0.65
11.15 (a) 0.70 (b) 0.06 (c) 0.24 (d) 0.72 (e) 0.4615

Section 12

12.1 15:1
12.2 62.5%
12.3 1:1
12.4 4:6
12.5 4%
12.6 (a) 1:5 (b) 1:1 (c) 1:0 (d) 0:1
12.7 1:3
12.8 (a) 43% (b) 0.3
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Section 13

13.1 (a) Continuous (b) Discrete (c) Discrete (d) Continuous (e) mixed.
13.2 If G and R stand for golden and red, the probabilities for GG,GR,RG,
and RR are, respectively 5

8
· 4

7
= 5

14
, 5

8
· 3

7
= 15

56
, 3

8
· 5

7
= 15

56
, and 3

8
· 2

7
= 3

28
. The

results are shown in the following table.

Element of sample space Probability x
GG 5

14
2

GR 15
56

1
RG 15

56
1

RR 3
28

0

13.3 0.139
13.4 0.85
13.5

(
1
2

)n
13.6 1

2

13.7 0.4
13.8 0.9722
13.9 (a)

X(s) =


0 s ∈ {(NS,NS,NS)}
1 s ∈ {(S,NS,NS), (NS, S,NS), (NS,NS, S)}
2 s ∈ {(S, S,NS), (S,NS, S), (NS, S, S)}
3 s ∈ {(S, S, S)}

(b) 0.09 (c) 0.36 (d) 0.41 (e) 0.14
13.10 1

1+e

13.11 0.267

Section 14

14.1 (a)

x 0 1 2 3
p(x) 1

8
3
8

3
8

1
8
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(b)

14.2

F (x) =


0, x < 0
1
8
, 0 ≤ x < 1

1
2
, 1 ≤ x < 2

7
8
, 2 ≤ x < 3

1, 3 ≤ x

14.3

x 2 3 4 5 6 7 8 9 10 11 12
p(x) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

14.4
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X Event Pr(x)
1 R 1

6

2 (NR,R) 5
6
· 1

5
= 1

6

3 (NR,NR,R) 5
6
· 4

5
· 1

4
= 1

6

4 (NR,NR,NR,R) 5
6
· 4

5
· 3

4
· 1

3
= 1

6

5 (NR,NR,NR,NR,R) 5
6
· 4

5
· 3

4
· 2

3
· 1

2
= 1

6

6 (NR,NR,NR,NR,NR,R) 5
6
· 4

5
· 3

4
· 2

3
· 1

2
= 1

6

14.5

x 0 1 2
p(x) 1/4 1/2 1/4

14.6

F (n) =Pr(X ≤ n) =
n∑
k=0

Pr(X = k)

=
n∑
k=0

1

3

(
2

3

)k
=

1

3

1−
(

2
3

)n+1

1− 2
3

=1−
(

2

3

)n+1

14.7 (a) For n = 2, 3, · · · , 96 we have

Pr(X = n) =
95

100
· 94

99
· · · 95− n+ 2

100− n+ 2

5

100− n+ 1
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and Pr(X = 1) = 5
100

(b)

Pr(Y = n) =

(
5
n

)(
95

10− n

)
(

100
10

) , n = 0, 1, 2, 3, 4, 5

14.8

p(x) =


3
10

x = −4
4
10

x = 1
3
10

x = 4

14.9

Pr(X = 2) =Pr(RR) + Pr(BB) =
3C2

7C2

+
4C2

7C2

=
3

21
+

6

21
=

9

21
=

3

7

and

Pr(X = −1) = 1− Pr(X = 2) = 1− 3

7
=

4

7

14.10 (a)

p(0) =

(
2

3

)3

p(1) =3

(
1

3

)(
2

3

)2

p(2) =3

(
1

3

)2(
2

3

)
p(3) =

(
1

3

)3
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(b)

14.11

p(0) =
220

455

p(1) =
198

455

p(2) =
36

455

p(3) =
1

455

14.12 p(2) = 1
36
, p(3) = 2

36
, p(4) = 3

36
, p(5) = 4

36
, p(6) = 5

36
, p(7) = 6

36
, p(8) =

5
36
, p(9) = 4

36
, p(10) = 3

36
, p(11) = 2

36
, and p(12) = 1

36
and 0 otherwise

Section 15

15.1 7
15.2 $ 16.67
15.3 E(X) = 10× 1

6
− 2× 5

6
= 0 Therefore, you should come out about even

if you play for a long time
15.4 −1
15.5 $26
15.6 E(X) = −$0.125 So the owner will make on average 12.5 cents per spin
15.7 $110
15.8 −0.54
15.9 897
15.10 (a) 0.267 (b) 0.449 (c) 1.067
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15.11 (a) 0.3 (b) 0.7 (c) p(0) = 0.3, p(1) = 0, p(Pr(X ≤ 0)) = 0 (d)

Pr(x) =



0.2 x = −2
0.3 x = 0
0.1 x = 2.2
0.3 x = 3
0.1 x = 4
0 otherwise

(e) 1.12
15.12 (a) 390 (b) Since E(V ) < 400 the answer is no.
15.13 (a)

p(1) =Pr(X = 1) =
3C3 · 7C1

210
=

7

210

p(2) =Pr(X = 2) =
3C2 · 7C2

210
=

63

210

p(3) =Pr(X = 3) =
3C1 · 7C3

210
=

105

210

p(4) =Pr(X = 4) =
3C0 · 7C4

210
=

35

210

(b)

F (x) =


0 x < 1
7

210
1 ≤ x < 2

70
210

2 ≤ x < 3
175
210

3 ≤ x < 4
1 x ≥ 4

(c) 2.8
15.14 $50,400

Section 16

16.1 (a) c = 1
30

(b) 3.333 (c) 8.467
16.2 (a) c = 1

9
(b) p(−1) = 2

9
, p(1) = 3

9
, p(2) = 4

9
(c) E(X) = 1 and

E(X2) = 7
3

16.3 (a)

p(x) =

{
x
21

x = 1, 2, 3, 4, 5, 6
0 otherwise
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(b) 4
7

(c) E(X) = 4.333
16.4 Let D denote the range of X. Then

E(aX2 + bX + c) =
∑
x∈D

(ax2 + bx+ c)p(x)

=
∑
x∈D

ax2p(x) +
∑
x∈D

bxp(x) +
∑
x∈D

cp(x)

=a
∑
x∈D

x2p(x) + b
∑
x∈D

xp(x) + c
∑
x∈D

p(x)

=aE(X2) + bE(X) + c

16.5 0.62
16.6 $220
16.7 0.0314
16.8 0.24
16.9 (a)

Pr(X = 2) =Pr(RR) + Pr(BB) =
3C2

7C2

+
4C2

7C2

=
3

21
+

6

21
=

9

21
=

3

7

and

Pr(X = −1) = 1− Pr(X = 2) = 1− 3

7
=

4

7

(b) E(2X) = 2
16.10 (a) P = 3C + 8A+ 5S − 300 (b) $1,101

Section 17

17.1 0.45
17.2 374
17.3 (a) c = 1

55
(b) E(X) = −1.09 Var(X) = 1.064



548 ANSWER KEYS

17.4 (a)

p(1) =
3C3 · 7C1

10C4

=
1

30

p(2) =
3C2 · 7C2

10C4

=
3

10

p(3) =
3C1 · 7C3

10C4

=
1

2

p(4) =
3C0 · 7C4

10C4

=
1

6

(b) E(X) = 2.8 Var(X) = 0.56
17.5 (a) c = 1

30
(b) E(X) = 3.33 and E(X(X−1)) = 8.467 (c) E(X2) = 11.8

and Var(X) = 0.6889
17.6 E(Y ) = 21 and Var(Y ) = 144
17.7 (a)

Pr(X = 2) =Pr(RR) + Pr(BB) =
3C2

7C2

+
4C2

7C2

=
3

21
+

6

21
=

9

21
=

3

7

and

Pr(X = −1) = 1− Pr(X = 2) = 1− 3

7
=

4

7

(b) E(X) = 2
7

and E(X2) = 16
7

(c) Var(X) = 108
49

17.8 E(X) = 4
10

; Var(X) = 9.84; σX = 3.137
17.9 E(X) = p Var(X) == p(1− p)

Section 18

18.1 0.3826
18.2 0.211
18.3

p(x) =


1
8
, if x = 0, 3

3
8
, if x = 1, 2

0, otherwise

18.4 0.096
18.5 $60
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18.6 0.925
18.7 0.144
18.8 (a) 0.5 (b) 0.1875
18.9 0.1198
18.10 0.6242
18.11 0.784
18.12 (a) 0.2321 (b) 0.2649 (c) 0.1238
18.13 0.2639

Section 19

19.1 154
19.2 $985
19.3

n E(Y ) E(Y 2) E(S)
1 0.20 0.20 100+10-2 = 108
2 0.40 0.48 100+20-4.8 = 115.2
3 0.60 0.84 100+30-8.4 = 121.6

19.4 E(X) = 400 and σX = 15.492
19.5 (a) p(x) = 5Cx(0.4)x(0.6)5−x, x = 0, 1, 2, 3, 4, 5.
(b)

p(0) =5C0(0.4)0(0.6)5−0 = 0.078

p(1) =5C1(0.4)1(0.6)5−1 = 0.259

p(2) =5C2(0.4)2(0.6)5−2 = 0.346

p(3) =5C3(0.4)3(0.6)5−3 = 0.230

p(4) =5C4(0.4)4(0.6)5−4 = 0.077

p(5) =5C5(0.4)5(0.6)5−5 = 0.01.
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(c)

(d) E(X) = 2 and σX = 1.095.

19.6 (a) p(x) = 2Cx
(

1
3

)x (2
3

)2−x
.

(b)

p(0) =2C0

(
1

3

)0(
2

3

)2−0

= 0.44

p(1) =2C1

(
1

3

)1(
2

3

)2−1

= 0.44

p(2) =2C2

(
1

3

)2(
2

3

)2−2

= 0.11.

(c)

(d) E(X) = 0.667 and σX = 0.667.
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Section 20

20.1 0.0183 and 0.0027
20.2 0.1251
20.3 3.06× 10−7

20.4 (a) 0.577 (b) 0.05
20.5 (a) 0.947 (b) 0.762 (c) 0.161
20.6 0.761897
20.7 (a) 0.5654 (b) 0.4963
20.8 2
20.9 $7231.30
20.10 699
20.11 0.1550
20.12 0.7586
20.13 4
20.14 (a) 0.2873 (b) mean = 20 and standard deviation = 4.47

Section 21

21.1 n ≥ 20 and p ≤ 0.05. Pr(X ≥ 2) ≈ 0.9084
21.2 0.3293
21.3 0.0144
21.4 0.3679
21.5 (a) 0.177 (b) 0.876

Section 22

22.1 (a) 0.1 (b) 0.09 (c)
(

9
10

)n−1 ( 1
10

)
22.2 0.387
22.3 0.916
22.4 (a) 0.001999 (b) 1000
22.5 (a) 0.1406 (b) 0.3164
22.6 (a) 0.1481 and 7.842× 10−10 (b) 3
22.7 (a) pX(x) = (0.85)(0.15)x−1, x = 1, 2, · · · and 0 otherwise (b) pY (y) =
(0.85)(0.15)y−1, y = 1, 2, 3, · · · and 0 otherwise. Thus, Y is a geometric
random variable with parameter 0.85
22.8 (a) 0.1198 (b) 0.3999
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22.9 We have

Pr(X > i+ j|X > i) =
Pr(X > i+ j,X > i)

Pr(X > i)

=
Pr(X > i+ j)

Pr(X > i)
=

(1− p)i+j

(1− p)i

=(1− p)j = Pr(X > j)

22.10 0.053
22.11 (a) 10 (b) 0.81
22.12 (a) X is a geometric distribution with pmf p(x) = 0.4(0.6)x−1, x =
1, 2, · · · (b)X is a binomial random variable with pmf p(x) = 20Cx(0.60)x(0.40)20−x

where x = 0, 1, · · · , 20

Section 23

23.1 (a) 0.0103 (b) E(X) = 80; σX = 26.833
23.2 0.0307
23.3 (a) X is negative binomial distribution with r = 3 and p = 4

52
= 1

13
. So

p(n) = k−1C2

(
1
13

)3 (12
13

)n−3
(b) 0.01793

23.4 E(X) = 24 and Var(X) = 120
23.5 0.109375
23.6 0.1875
23.7 0.2898
23.8 0.022
23.9 (a) 0.1198 (b) 0.0254

23.10 E(X) = r
p

= 20 and σX =
√

r(1−p
p2

= 13.416

23.11 0.0645
23.12 n−1C2

(
1
6

)3 (5
6

)n−3

23.13 3

Section 24

24.1 0.32513
24.2 0.1988
24.3
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k 0 1 2 3 4 5 6
Pr(X = k) 0.468 0.401 0.117 0.014 7.06× 10−4 1.22× 10−5 4.36× 10−8

24.4 0.247678
24.5 0.073
24.6 (a) 0.214 (b) E(X) = 3 and Var(X) = 0.429
24.7 0.793
24.8 2477C3·121373C97

123850C100

24.9 0.033
24.10 0.2880
24.11 0.375
24.12 0.956

Section 25

25.1 (a)

Pr(2) =
C(2, 2)

C(5, 2)
= 0.1

Pr(6) =
C(2, 1)C(2, 1)

C(5, 2)
= 0.4

Pr(10) =
C(2, 2)

C(5, 2)
= 0.1

Pr(11) =
C(1, 1)C(2, 1)

C(5, 2)
= 0.2

Pr(15) =
C(1, 1)C(2, 1)

C(5, 2)
= 0.2

(b)

F (x) =



0 x < 2
0.1 2 ≤ x < 6
0.5 6 ≤ x < 10
0.6 10 ≤ x < 11
0.8 11 ≤ x < 15
1 x ≥ 15

(c) 8.8
25.2
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x (−∞, 0) [0, 1) [1, 2) [2, 3) [3,∞)
Pr(X ≤ x) 0 0.495 0.909 0.996 1

25.3 (a)

Pr(X = 1) =Pr(X ≤ 1)− Pr(X < 1) = F (1)− lim
n→∞

F

(
1− 1

n

)
=

1

2
− 1

4
=

1

4

Pr(X = 2) =Pr(X ≤ 2)− Pr(X < 2) = F (2)− lim
n→∞

F

(
2− 1

n

)
=

11

12
−
(

1

2
− 2− 1

4

)
=

1

6

Pr(X = 3) =Pr(X ≤ 3)− Pr(X < 3) = F (3)− lim
n→∞

F

(
3− 1

n

)
=1− 11

12
=

1

12

(b) 0.5
25.4

Pr(X = 0) =F (1) =
1

2

Pr(X = 1) =F (1)− F (1−) =
3

5
− 1

2
=

1

10

Pr(X = 2) =F (2)− F (2−) =
4

5
− 3

5
=

1

5

Pr(X = 3) =F (3)− F (3−) =
9

10
− 4

5
=

1

10

Pr(X = 3.5) =F (3.5)− F (3.5−) = 1− 9

10
=

1

10

and 0 otherwise.
25.5 (a)

Pr(x) =


0.1 x = −2
0.2 x = 1.1
0.3 x = 2
0.4 x = 3
0 otherwise
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(b) 0 (c) 0.4 (d) 0.444
25.6 (a) 0.1
(b)

F (x) =



0 x < −1.9
0.1 −1.9 ≤ x < −0.1
0.2 −0.1 ≤ x < 2
0.5 2 ≤ x < 3
0.6 3 ≤ x < 4
1 x ≥ 4

The graph of F (x) is shown below.

(c) F (0) = 0.2;F (2) = 0.5;F (F (3.1)) = 0.2. (d) 0.5 (e) 0.64
25.7 (a)

Pr(x) =


0.3 x = −4
0.4 x = 1
0.3 x = 4
0 otherwise

(b)E(X) = 0.4, Var(X) = 9.84, and SD(X) = 3.137
25.8 (a)

Pr(x) =


1
12

x = 1, 3, 5, 8, 10, 12
2
12

x = 2, 4, 6
0 otherwise
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(b)

F (x) =



0 x < 1
1
12

1 ≤ x < 2
3
12

2 ≤ x < 3
4
12

3 ≤ x < 4
6
12

4 ≤ x < 5
7
12

5 ≤ x < 6
9
12

6 ≤ x < 8
10
12

8 ≤ x < 10
11
12

10 ≤ x < 12
1 x ≥ 12

(c) Pr(X < 4) = 0.333. This is not the same as F (4) which is the probability
that X ≤ 4. The difference between them is the probability that X is EQUAL
to 4.
25.9 (a) We have

Pr(X = 0) =(jump in F (x) at x = 0) = 0

Pr(X = 1) =(jump in F (x) at x = 1) =
1

2
− 1

4
=

1

4

Pr(X = 2) =(jump in F (x) at x = 2) = 1− 3

4
=

1

4

(b) 7
16

(c) 3
16

(d) 3
8

25.10 (a) 0.125 (b) 0.584 (c) 0.5 (d) 0.25
(e)
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Section 26

26.1 (a) We have

F (x) =


0, x < 0

1− 1
10

(100− x)
1
2 , 0 ≤ x ≤ 100

1, x > 100.

(b) 0.092
26.2 (a) 0.3 (b) 0.3
26.3 Using the fundamental theorem of calculus, we have

S ′(x) =

(∫ ∞
x

f(t)dt

)′
=

(
−
∫ x

∞
f(t)dt

)′
= −f(x)

26.4

f(x) =

{
0, x ≤ 0

λe−λx, x > 0.

26.5

S(x) =


1, x ≤ 0

1− x, 0 < x < 1
0, x ≥ 1

Section 27

27.1
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27.2

27.3



559

27.4

27.5
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27.6

27.7



561

27.8

Section 28

28.1 Divergent
28.2 Divergent
28.3 Divergent
28.4 6
28.5 π

2

28.6 π
4

28.7 1
28.8 Divergent
28.9 Divergent
28.10 Divergent
28.11 2π
28.12 1
28.13 2

3

28.14 Divergent
28.15 Divergent
28.16 Divergent
28.17 convergent

Section 29

29.1
∫ 1

0

∫ x+1

x
f(x, y)dydx

29.2
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∫ 1

0

∫ x
2

0
f(x, y)dydx or

∫ 1
2

0

∫ 1

2y
f(x, y)dxdy

29.3
∫ 1

1
2

∫ 1
1
2
f(x, y)dydx

29.4
∫ 1

2

0

∫ 1
1
2
f(x, y)dydx+

∫ 1
1
2

∫ 1

0
f(x, y)dydx

29.5
∫ 30

20

∫ 50−x
20

f(x, y)dydx

29.6
∫ 1

0

∫ x+1

0
f(x, y)dydx+

∫∞
1

∫ x+1

x−1
f(x, y)dydx

29.7 1− 2e−1

29.8 1
6

29.9 L4

3

29.10
∫ 1

0.5

∫ 1

0.5
f(x, y)dydx

29.11 7
8

29.12 3
8

Section 30

30.1 2
30.2 (a) 0.135 (b) 0.233
(c)

F (x) =

{
1− e−x5 x ≥ 0

0 x < 0

30.3 k = 0.003, 0.027
30.4 0.938
30.5 (b)

f(x) = F ′(x) =


0 x < 0

1/2 0 ≤ x < 1
1/6 1 ≤ x < 4
0 x ≥ 4

30.6 (a) 1 (b) 0.736
30.7(a) f(x) = F ′(x) = ex

(1+ex)2
(b) 0.231

30.8 About 4 gallons
30.9 1

9

30.10 0.469
30.11 0.132
30.12 0.578
30.13 0.3
30.14 511

512
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30.15 2

Section 31
31.1 (a) 1.2
(b) The cdf is given by

F (x) =


0 x ≤ −1

0.2 + 0.2x −1 < x ≤ 0
0.2 + 0.2x+ 0.6x2 0 < x ≤ 1

1 x > 1

(c) 0.25 (d) 0.4
31.2 (a) a = 3

5
and b = 6

5
.

(b)

F (x) =

∫ x

−∞
f(u)du =


∫ x
−∞ 0du = 0 x < 0∫ x

−∞
1
5
(3 + 5u2)du = 3

5
x+ 2

5
x3 0 ≤ x ≤ 1∫ 1

0
1
5
(3 + 6u2)du = 1 x > 1

31.3 (a) 4 (b) 0 (c) ∞
31.4 E(X) = 2

3
and Var(X) = 2

9

31.5 (a) E(X) = 1
3

and Var(X) = 2
9
. SD =≈ 0.471 (b) 0.938

31.6 0.5
31.7 .06
31.8 E(Y ) = 7

3
and Var(Y ) = 0.756

31.9 1.867
31.10 $328
31.11 0.5
31.12 0.139
31.13 2.227
31.14 2694
31.15 6
31.16 347.96

Section 32

32.1 The median is 1 and the 70th percentile is 2
32.2 0.693
32.3 a+ 2

√
ln 2



564 ANSWER KEYS

32.4 3 ln 2
32.5 0.8409
32.6 3659
32.7 1120 is the twentieth percentile or 1120 is the one-fifth quantile
32.8 3
32.9 2
32.10 − ln (1− p)
32.11 − ln [2(1− p)]
32.12 2
32.13 0.4472
32.14 6299.61
32.15 2.3811
32.16 2.71

Section 33

33.1 (a) The pdf is given by

f(x) =

{
1
4

3 ≤ x ≤ 7
0 otherwise

(b) 0 (c) 0.5
33.2 (a) The pdf is given by

f(x) =

{
1
10

5 ≤ x ≤ 15
0 otherwise

(b) 0.3 (c) E(X) = 10 and Var(X) = 8.33
33.3 (a)

F (x) =


0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

(b) Pr(a ≤ X ≤ a+ b) = F (a+ b)− F (a) = a+ b− a = b
33.4 1

n+1

33.5 0.693
33.6 0.667
33.7 500
33.8 1.707
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33.9 403.44
33.10 (a) e2−1

2e
(b) 1

2
− 1

2e2

33.11 3
33.12 7

10

Section 34

34.1 (a) 0.2389 (b) 0.1423 (c) 0.6188 (d) 88
34.2 (a) 0.7517 (b) 0.8926 (c) 0.0238
34.3 (a) 0.5 (b) 0.9876
34.4 (a) 0.4772 (b) 0.004
34.5 0.0228
34.6 (a) 0.9452 (b) 0.8186
34.7 0.223584
34.8 75
34.9 0.4721 (b) 0.1389 (c) 0.6664 (d) 0.58
34.10 0.86
34.11 (a) 0.1056 (b) 362.84
34.12 1:18pm

Section 35

35.1 (a) 0.2578 (b) 0.832
35.2 0.1788
35.3 (a) 0.8281 (b) 0.0021
35.4 0.0158
35.5 0.9854

Section 36

36.1 0.593
36.2
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36.3 0.393
36.4 0.1175
36.5 0.549
36.6 (a) 0.189 (b) 0.250
36.7 (a) 0.1353 (b) 0.167 (c) 0.05
36.8 0.134
36.9 0.186
36.10 0.435
36.11 10256
36.12 3.540
36.13 5644.23
36.14 173.29
36.15 0.420
36.16 4

(ln 2)2

36.17 0.727

Section 37
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37.1 We have

FY (y) =Pr(Y ≤ y) = Pr
(
X ≤ y

c

)
=

λα

Γ(α)

∫ y
c

0

tα−1e−λtdt

=
(λ/c)α

Γ(α)

∫ y

0

zα−1e−λ
z
c dz.

37.2 E(X) = 1.5 and Var(X) = 0.75
37.3 0.0948
37.4 0.014
37.5 480
37.6 For t ≥ 0 we have

FX2(t) = Pr(X2 ≤ t) = Pr(−
√
t < X <

√
t) = Φ(

√
t)− Φ(−

√
t)

Now, taking the derivative (and using the chain rule) we find

fX2(t) =
1

2
√
t
Φ′(
√
t) +

1

2
√
t
Φ′(−

√
t)

=
1√
t
Φ′(
√
t) =

1√
2π
t−

1
2
e−

1
2

which is the density function of gamma distribution with α = λ = 1
2

37.7 E(etX) =
(

λ
λ−t

)α
, t < λ

37.8 We have

f ′(x) = −λ
2e−λx(λx)α−2

Γ(α)
(λx− α + 1).

Thus, the only critical point of f(x) is x = 1
λ
(α − 1). One can easily show

that f ′′
(

1
λ
(α− 1)

)
< 0

37.9 (a) The density function is

f(x) =

{
x2

432
e−

x
6 x ≥ 0

0 otherwise

E(X) = 18 and σ = 10.39 (b) 1313
37.10 The density function is

f(x) =

{
2−

n
2 x

n
2−1e−

x
2

Γ(n2 )
x ≥ 0

0 elsewhere
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The expected value is E(X) = n and the variance is Var(X) = 2n.

Section 38

38.1 fY (y) = 1
|a|
√

2π
e−

(
y−b
a −µ)

2

2 , a 6= 0

38.2 fY (y) = 2(y+1)
9

for −1 ≤ y ≤ 2 and fY (y) = 0 otherwise

38.3 For 0 ≤ y ≤ 8 we have fY (y) = y−
1
3

6
and 0 otherwise

38.4 For y ≥ 1 we have fY (y) = λy−λ−1 and 0 otherwise

38.5 For y > 0 we have fY (y) = c
m

√
2y
m
e−

2βy
m and 0 otherwise

38.6 For y > 0 we have fY (y) = e−y and 0 otherwise
38.7 For −1 < y < 1 we have fY (y) = 1

π
1√

1−y2
and 0 otherwise

38.8 (a) For 0 < y < 1 we have fY (y) = 1
α
y

1−α
α and 0 otherwise, E(Y ) = 1

α+1

(b) For y < 0 we have fY (y) = ey and 0 otherwise, E(Y ) = −1
(c) For 1 < y < e we have fY (y) = 1

y
and 0 otherwise, E(Y ) =

∫ e
1
dy = e− 1.

(d) For 0 < y < 1 we have fY (y) = 2

π
√

1−y2
, E(Y ) = 2

π
and 0 otherwise.

38.9 For y > 4 fY (y) = 4y−2 and 0 otherwise

38.10 For 10, 000e0.04 < v < 10, 000e0.08 FV (v) = FR(g−1(v)) = 25
(

ln
(

v
10,000

)
− 0.04

)
and FV (v) = 0 for v ≤ 10, 000e0.04 and FV (v) = 1 for v ≥ 10, 000e0.08

38.11 For y > 0 we have fY (y) = 1
8

(
y
10

) 1
4 e−( y

10)
5
4

and 0 otherwise
38.12 fR(r) = 5

2r2
for 5

6
< r < 5

4
and 0 otherwise

38.13 fY (y) = 1
2
fX
(
y
2

)
where X and Y are the monthly profits of Company

A and Company B, respectively.
38.14 (a) 0.341 (b) fY (y) = 1

2y
√

2π
exp

(
− 1

2·22 (ln y − 1)2
)

for y > 0 and 0 oth-

erwise.
38.15 The cdf is given by

FY (a) =


0 a ≤ 0√
a 0 < a < 1

1 a ≥ 1

Thus, the density function of Y is

fY (a) = F ′Y (a) =

{
1
2
a−

1
2 0 < a < 1

0 otherwise
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Hence, Y is a beta random variable with parameters (1
2
, 1)

38.16 (a)

fY (a) =

{
a2

18
−3 < a < 3

0 otherwise

(b)

fZ(a) =

{
3
2
(3− a)2 2 < a < 4

0 otherwise

38.17 fY (y) = 1√
y
− 1, 0 < y ≤ 1

38.18 fY (y) = e2y− 1
2
e2y

38.19 (a) fY (y) = 8−y
50

for −2 ≤ y ≤ 8 and 0 elsewhere.
(b) We have E(Y ) = 4

3
(c) 9

25

Section 39

39.1 (a) From the table we see that the sum of all the entries is 1.
(b) 0.25 (c) 0.55 (d) pX(0) = 0.3, pX(1) = 0.5, pX(2) = 0.125, pX(3) = 0.075
and 0 otherwise
39.2 0.25
39.3 (a) 0.08 (b) 0.36 (c) 0.86 (d) 0.35 (e) 0.6 (f) 0.65 (g) 0.4
39.4 (a) 0.4 (b) 0.8
39.5 0.0423
39.6 (a) The cdf od X and Y is

FXY (x, y) =

∫ x

−∞

∫ y

−∞
fXY (u, v)dudv

=

(∫ x

0

ue−
u2

2 du

)(∫ y

0

ve−
v2

2 du

)
=(1− e−

x2

2 )(1− e−
y2

2 ), x > 0, y > 0

and 0 otherwise.
(b) The marginal pdf for X is

fX(x) =

∫ ∞
−∞

fXY (x, y)dy =

∫ ∞
0

xye−
x2+y2

2 dy = xe−
x2

2 , x > 0

and 0 otherwise. The marginal pdf for Y is

fY (y) =

∫ ∞
−∞

fXY (x, y)dx =

∫ ∞
0

xye−
x2+y2

2 dx = ye−
y2

2
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for y > 0 and 0 otherwise
39.7 We have∫ ∞

−∞

∫ ∞
−∞

fXY (x, y)dxdy =

∫ ∞
−∞

∫ ∞
−∞

xay1−adxdy =

∫ 1

0

∫ 1

0

xay1−adxdy

=(2 + a− a2)−1 6= 1

so fXY (x, y) is not a density function. However one can easily turn it into a
density function by multiplying f(x, y) by (2 + a− a2) to obtain the density
function

fXY (x, y) =

{
(2 + a− a2)xay1−a 0 ≤ x, y ≤ 1

0 otherwise

39.8 0.625
39.9 0.708
39.10 0.576
39.11 0.488
39.12 fY (y) =

∫ √y
y

15ydx = 15y
3
2 (1− y 1

2 ), 0 < y < 1 and 0 otherwise
39.13 5.778
39.14 0.83
39.15 0.008
39.16 7

20

39.17 1− 2e−1

39.18 12
25

39.19 3
8

39.20 (a) We have

X\ Y 1 2 pX(x)
1 0.2 0.5 0.7
2 0.2 0.1 0.3
pY (y) 0.4 0.6 1

(b) We have

FXY (x, y) =


0 x < 1 or y < 1

0.2 1 ≤ x < 2 and 1 ≤ y < 2
0.7 1 ≤ x < 2 and y ≥ 2
0.4 x ≥ 2 and 1 ≤ y < 2
1 x ≥ 2 and y ≥ 2
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39.21
∫ 1

2

0

∫ 1
1
2
f(s, t)dsdt+

∫ 1

0

∫ 1
2

0
f(s, t)dsdt

39.22 1
800

∫ 60

0

∫ 60−x
0

e
x
40

+ y
20dydx

Section 40

40.1 (a) Yes (b) 0.5 (c) 1− e−a
40.2 (a) The joint density over the region R must integrate to 1, so we have

1 =

∫ ∫
(x,y)∈R

cdxdy = cA(R).

(b) Note that A(R) = 4 so that fXY (x, y) = 1
4

= 1
2

1
2
. Hence, by Theorem

40.2, X and Y are independent with each distributed uniformly over (−1, 1).
(c) Pr(X2 + Y 2 ≤ 1) =

∫ ∫
x2+y2≤1

1
4
dxdy = π

4

40.3 (a) 0.484375 (b) We have

fX(x) =

∫ 1

x

6(1− y)dy = 6y − 3y2
∣∣1
x

= 3x2 − 6x+ 3, 0 ≤ x ≤ 1

and 0 otherwise. Similarly,

fY (y) =

∫ y

0

6(1− y)dy = 6

[
y − y2

2

]y
0

= 6y(1− y), 0 ≤ y ≤ 1

and 0 otherwise.
(c) X and Y are dependent
40.4 (a) k = 4 (b) We have

fX(x) =

∫ 1

0

4xydy = 2x, 0 ≤ x ≤ 1

and 0 otherwise. Similarly,

fY (y) =

∫ 1

0

4xydx = 2y, 0 ≤ y ≤ 1

and 0 otherwise.
(c) Since fXY (x, y) = fX(x)fY (y), X and Y are independent.
40.5 (a) k = 6 (b) We have

fX(x) =

∫ 1

0

6xy2dy = 2x, 0 ≤ x ≤ 1, 0 otherwise
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and

fY (y) =

∫ 1

0

6xy2dy = 3y2, 0 ≤ y ≤ 1, 0 otherwise

(c) 0.15 (d) 0.875 (e) X and Y are independent
40.6 (a) k = 8

7
(b) Yes (c) 16

21

40.7 (a) We have

fX(x) =

∫ 2

0

3x2 + 2y

24
dy =

6x2 + 4

24
, 0 ≤ x ≤ 2, 0 otherwise

and

fY (y) =

∫ 2

0

3x2 + 2y

24
dx =

8 + 4y

24
, 0 ≤ y ≤ 2, 0 otherwise

(b) X and Y are dependent. (c) 0.340
40.8 (a) We have

fX(x) =

∫ 3−x

x

4

9
dy =

4

3
− 8

9
x, 0 ≤ x ≤ 3

2
, 0 otherwise

and

fY (y) =


4
9
y 0 ≤ y ≤ 3

2
4
9
(3− y) 3

2
≤ y ≤ 3

0 otherwise

(b) 2
3

(c) X and Y are dependent
40.9 0.469
40.10 0.191
40.11 0.4
40.12 0.19
40.13 0.295
40.14 0.414
40.15 f(z) = e−

1
2
z − e−z, z > 0, 0 otherwise

40.16 f(x) = 2
(2x+1)2

, x > 0, 0 otherwise

40.17 3
5

40.18 Suppose that X and Y are independent. Then Pr(X = 0|Y = 1) =
Pr(X = 0) = 0.6 and Pr(X = 1|Y = 0) = 0.7. Since Pr(X = 0) + Pr(X =
1) = 0.6 + 0.7 6= 1, it follows that X and Y can not be independent.

40.19 θ1 = 1
4

and θ2 = 0



573

Section 41

41.1

Pr(Z = 0) =Pr(X = 0)Pr(Y = 0) = (0.1)(0.25) = 0.025

Pr(Z = 1) =Pr(X = 1)Pr(Y = 0) + Pr(Y = 1)Pr(X = 0)

=(0.2)(0.25) + (0.4)(0.1) = 0.09

Pr(Z = 2) =Pr(X = 1)Pr(Y = 1) + Pr(X = 2)Pr(Y = 0) + Pr(Y = 2)Pr(X = 0)

=(0.2)(0.4) + (0.3)(0.25) + (0.35)(0.1) = 0.19

Pr(Z = 3) =Pr(X = 2)Pr(Y = 1) + Pr(Y = 2)Pr(X = 1) + Pr(X = 3)Pr(Y = 0)

=(0.3)(0.4) + (0.35)(0.2) + (0.4)(0.25) = 0.29

Pr(Z = 4) =Pr(X = 2)Pr(Y = 2) + Pr(X = 3)Pr(Y = 1)

=(0.3)(0.35) + (0.4)(0.4) = 0.265

Pr(Z = 5) =Pr(X = 3)Pr(X = 2) = (0.4)(0.35) = 0.14

and 0 otherwise

41.2 pX+Y (k) =

(
30
k

)
0.2k0.830−k for 0 ≤ k ≤ 30 and 0 otherwise.

41.3 pX+Y (n) = (n−1)p2(1−p)n−2, n = 2, · · · and pX+Y (a) = 0 otherwise.
41.4

pX+Y (3) =pX(0)pY (3) =
1

3
· 1

4
=

1

12

pX+Y (4) =pX(0)pY (4) + pX(1)pY (3) =
4

12

pX+Y (5) =pX(1)pY (4) + pX(2)pY (3) =
4

12

pX+Y (6) =pX(2)pY (4) =
3

12

and 0 otherwise.
41.5 1

64

41.6 0.03368
41.7 Pr(X + Y = 2) = e−λp(1− p) + e−λλp (b) Pr(Y > X) = e−λp
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41.8

pX+Y (0) =pX(0)pY (0) =
1

2
· 1

2
=

1

4

pX+Y (1) =pX(0)pY (1) + pX(1)pY (0) =
1

2
· 1

4
+

1

4
· 1

2
=

1

4

pX+Y (2) =pX(0)pY (2) + pX(2)pY (0) + pX(1)pY (1) =
5

16

pX+Y (3) =pX(1)pY (2) + pX(2)pY (1) =
1

8

pX+Y (4) =pX(2)pY (2) =
1

16

and 0 otherwise.
41.9

pX+Y (1) =pX(0)pY (1) + pX(1)pY (0) =
1

6

pX+Y (2) =pX(0)pY (2) + pX(2)pY (0) + pX(1)pY (1) =
5

18

pX+Y (3) =pX(0)pY (3) + pX(1)pY (2) + pX(2)pY (1) + pX(3)pY (0) =
6

18

pX+Y (4) =pX(0)pY (4) + pX(1)pY (3) + pX(2)pY (2) + pX(3)pY (1) + pX(4)pY (0) =
3

18
pX+Y (5) =pX(0)pY (5) + pX(1)pY (4) + pX(2)pY (3) + pX(3)pY (2)

+pX(4)pY (1) + pX(4)pY (1) =
1

18

and 0 otherwise.
41.10 We have

pX+Y (a) =
a∑

n=0

p(1− p)np(1− p)a−n = (a+ 1)p2(1− p)a = a+1Cap
2(1− p)a

Thus, X + Y is a negative binomial with parameters (2, p).
41.11 9e−8

41.12 e−10λ (10λ)10

10!

Section 42

42.1

fX+Y (a) =

{
2λe−λa(1− e−λa) 0 ≤ a

0 otherwise
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42.2

fX+Y (a) =


1− e−λa 0 ≤ a ≤ 1

e−λa(eλ − 1) a ≥ 1
0 otherwise

42.3 fX+2Y (a) =
∫∞
−∞ fX(a− 2y)fY (y)dy

42.4 If 0 ≤ a ≤ 1 then fX+Y (a) = 2a − 3
2
a2 + a3

6
. If 1 ≤ a ≤ 2 then

fX+Y (a) = 7
6
− a

2
. If 2 ≤ a ≤ 3 then fX+Y (a) = 9

2
− 9

2
a+ 3

2
a2 − 1

6
a3. If a > 3

then fX+Y (a) = 0.
42.5 If 0 ≤ a ≤ 1 then fX+Y (a) = 2

3
a3. If 1 < a < 2 then fX+Y (a) =

−2
3
a3 + 4a− 8

3
. If a ≥ 2 then fX+Y (a) = 0 and 0 otherwise.

42.6 fX+Y (a) = αβ
α−β

(
e−βa − e−αa

)
for a > 0 and 0 otherwise.

42.7 fW (a) = e−
a
2 − e−a, a > 0 and 0 otherwise.

42.8 If 2 ≤ a ≤ 4 then fX+Y (a) = a
4
− 1

2
. If 4 ≤ a ≤ 6, then fX+Y (a) = 3

2
− a

4

and fX+Y (a) = 0 otherwise.
42.9 If 0 < a ≤ 2 then fX+Y (a) = a2

8
. If 2 < a < 4 then fX+Y (a) = −a2

8
+ a

2

and 0 otherwise.
42.10 fX+Y (a) = 1√

2π(σ2
1+σ2

2)
e−(a−(µ1+µ2))2/[2(σ2

1+σ2
2)].

42.11 1
8

42.12 fZ(z) =
∫ z

0
e−zds = ze−z for z > 0 and 0 otherwise.

42.13 1− 2e−1

Section 43

43.1 pX|Y (0|1) = 0.25 and pX|Y (1|1) = 0.75 and 0 otherwise.
43.2 (a) For 1 ≤ x ≤ 5 and y = 1, · · · , x we have pXY (x, y) =

(
1
5

) (
1
x

)
and 0

otherwise.
(b) pX|Y (x|y) =

1
5x∑5

k=y( 1
5k)

and 0 otherwise.

(c) X and Y are dependent
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43.3

Pr(X = 3|Y = 4) =
Pr(X = 3, Y = 4)

Pr(Y = 4)
=

0.10

0.35
=

2

7

Pr(X = 4|Y = 4) =
Pr(X = 4, Y = 4)

Pr(Y = 4)
=

0.15

0.35
=

3

7

Pr(X = 5|Y = 4) =
Pr(X = 5, Y = 4)

Pr(Y = 4)
=

0.10

0.35
=

2

7

43.4

Pr(X = 0|Y = 1) =
Pr(X = 0, Y = 1)

Pr(Y = 1)
=

1/16

6/16
=

1

6

Pr(X = 1|Y = 1) =
Pr(X = 1, Y = 1)

Pr(Y = 1)
=

3/16

6/16
=

1

2

Pr(X = 2|Y = 1) =
Pr(X = 2, Y = 1)

Pr(Y = 1)
=

2/16

6/16
=

1

3

Pr(X = 3|Y = 1) =
Pr(X = 3, Y = 1)

Pr(Y = 1)
=

0/16

6/16
= 0

and 0 otherwise.
43.5

y 1 2 3 4 5 6
pY |X(1|x)) 1 2

3
2
5

2
7

2
9

2
11

pY |X(2|x) 0 1
3

2
5

2
7

2
9

2
11

pY |X(3|x) 0 0 1
5

2
7

2
9

2
11

pY |X(4|x) 0 0 0 1
7

2
9

2
11

pY |X(5|x) 0 0 0 0 1
9

2
11

pY |X(6|x) 0 0 0 0 0 1
11

and 0 otherwise. X and Y are dependent since pY |X(1|1) = 1 6= 11
36

= pY (1).
43.6 (a) pY (y) = nCyp

y(1 − p)n−y and 0 otherwise. Thus, Y is a binomial
distribution with parameters n and p.
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(b)

pX|Y (x|y) =
pXY (x, y)

pY (y)

=

n!yx(pe−1)y(1−p)n−y
y!(n−y)!x!

nCypy(1− p)n−y

=
yxe−y

x!
, x = 0, 1, 2, · · ·

=0, otherwise

Thus, X|Y = y is a Poisson distribution with parameter y.
X and Y are not independent.
43.7

pX|Y (x|0) =
pXY (x, 0)

pY (0)
=


1/11 x = 0
4/11 x = 1
6/11 x = 2

0 otherwise

pX|Y (x|1) =
pXY (x, 1)

pY (1)
=


3/7 x = 0
3/7 x = 1
1/7 x = 2
0 otherwise

The conditional probability distribution for Y given X = x is

pY |X(y|0) =
pXY (0, y)

pX(0)
=


1/4 y = 0
3/4 y = 1
0 otherwise

pY |X(y|1) =
pXY (1, y)

pX(1)
=


4/7 y = 0
3/7 y = 1
0 otherwise

pY |X(y|2) =
pXY (2, y)

pX(2)
=


6/7 y = 0
1/7 y = 1
0 otherwise

43.8 (a) 1
2N−1

(b) pX(x) = 2x

2N−1
for x = 0, 1, · · · , N − 1 and 0 otherwise. (c)

pY |X(y|x) = 2−x(1 − 2−x)y for x = 0, 1, · · · , N − 1, y = 0, 1, 2, · · · and 0
otherwise
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43.9 Pr(X = k|X + Y = n) = C(n, k)
(

1
2

)n
for k = 0, 1, · · · , n and 0

otherwise.
43.10 (a)

Pr(X = 0, Y = 0) =
48

52

47

51
=

188

221

Pr(X = 1, Y = 0) =
48

52

4

51
=

16

221

Pr(X = 1, Y = 1) =
4

52

48

51
=

16

221

Pr(X = 2, Y = 1) =
4

52

3

51
=

1

221

and 0 otherwise.
(b) Pr(Y = 0) = Pr(X = 0, Y = 0) + Pr(X = 1, Y = 0) = 204

221
= 12

13
and

Pr(Y = 1) = Pr(X = 1, Y = 1) + Pr(X = 2, Y = 2) = 1
13

and 0 otherwise.
(c) pX|Y (1|1) = 13× 16

221
= 16

17
and pX|Y (2|1) = 13× 1

221
= 1

17
and 0 otherwise

43.11 e2

Section 44

44.1 For y ≤ |x| ≤ 1, 0 ≤ y ≤ 1 we have

fX|Y (x|y) =
3

2

[
x2

1− y3

]
If y = 0.5 then

fX|Y (x|0.5) =
12

7
x2, 0.5 ≤ |x| ≤ 1.

The graph of fX|Y (x|0.5) is given below

44.2 fX|Y (x|y) = 2x
y2
, 0 ≤ x < y ≤ 1

44.3 fY |X(y|x) = 3y2

x3
, 0 ≤ y < x ≤ 1

44.4 fX|Y (x|y) = (y + 1)2xe−x(y+1), x ≥ 0 and fY |X(x|y) = xe−xy, y ≥ 0
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44.5 (a) For 0 < y < x we have fXY (x, y) = y2

2
e−x

(b) fX|Y (x|y) = e−(x−y), 0 < y < x
44.6 (a) fX|Y (x|y) = 6x(1− x), 0 < x < 1. X and Y are independent.
(b) 0.25

44.7 fX|Y (x|y) =
1
3
x−y+1
3
2
−y (b) 11

24

44.8 0.25
44.9 8

9

44.10 0.4167
44.11 7

8

44.12 0.1222
44.13 fX(x) =

∫ 1

x2
1√
y
dy = 2(1− x), 0 < x < 1 and 0 otherwise

44.14 1
1−y for 0 < y < x < 1

44.15 mean=1
3

and Var(Y ) = 1
18

44.16 0.172

Section 45

45.1 fZW (z, w) =
fXY ( zd−bw

ad−bc ,
aw−cz
ad−bc )

|ad−bc|

45.2 fY1Y2(y1, y2) = λ2

y2
e−λy1 , y2 > 1, y1 ≥ ln y2

45.3 fRΦ(r, φ) = rfXY (r cosφ, r sinφ), r > 0, − π < φ ≤ π
45.4

fZW (z, w) =
z

1 + w2
[fXY (z(

√
1 + w2)−1, wz(

√
1 + w2)−1)

+fXY (−z(
√

1 + w2)−1,−wz(
√

1 + w2)−1)]

45.5 fUV (u, v) = λe−λu(λu)α+β−1

Γ(α+β)
vα−1(1−v)β−1Γ(α+β)

Γ(α)Γ(β)
. Hence X + Y and X

X+Y

are independent, with X + Y having a gamma distribution with parameters
(α + β, λ) and X

X+Y
having a beta distribution with parameters (α, β).

45.6

fY1Y2(y1, y2) =

{
e−y1y1 y1 ≥ 0, 0 < y2 < 1

0 otherwise

45.7 fY1Y2(y1, y2) = 1√
2π
e−( 3

7
y1+ 1

7
y2)2/2 1√

8π
e−( 1

7
y1− 2

7
y2)2/8 · 1

7

45.8 We have u = g1(x, y) =
√

2y cosx and v = g2(x, y) =
√

2y sinx. The
Jacobian of the transformation is

J =

∣∣∣∣∣ −
√

2y sinx cosx√
2y√

2y cosx sinx√
2y

∣∣∣∣∣ = −1
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Also,

y =
u2 + v2

2

Thus,

fUV (u, v) = fXY (x(u, v), y(u, v))|J |−1 =
1

2π
e−

u2+v2

2 .

This is the joint density of two independent standard normal random vari-
ables.
45.9 fX+Y (a) =

∫∞
−∞ fXY (a − y, y)dy If X and Y are independent then

fX+Y (a) =
∫∞
−∞ fX(a− y)fY (y)dy

45.10 fY−X(a) =
∫∞
−∞ fXY (y − a, y)dy. If X and Y are independent then

fY−X(a) =
∫∞
−∞ fX(y − a)fY (y)dy =

∫∞
−∞ fX(y)fY (a+ y)dy

45.11 fU(u) =
∫∞
−∞

1
|v|fXY (v, u

v
)dv. If X and Y are independent then fU(u) =∫∞

−∞
1
|v|fX(v)fY (u

v
)dv

45.12 fU(u) = 1
(u+1)2

for u > 0 and 0 elsewhere.

Section 46

46.1 (m+1)(m−1)
3m

46.2 E(XY ) = 7
12

46.3 E(|X − Y |) = 1
3

46.4 E(X2Y ) = 7
36

and E(X2 + Y 2) = 5
6
.

46.5 0
46.6 33
46.7 L

3

46.8 30
19

46.9 (a) 0.9 (b) 4.9 (c) 4.2
46.10 (a) 14 (b) 45
46.11 5.725
46.12 2

3
L2

46.13 27
46.14 5

Section 47

47.1 2σ2

47.2 coveraince is −0.123 and correlation is −0.33
47.3 covariance is 1

12
and correlation is

√
2

2
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47.4 (a) fXY (x, y) = 5, − 1 < x < 1, x2 < y < x2 + 0.1 and 0 otherwise.
(b) covariance is 0 and correlation is 0
47.5 We have

E(X) =
1

2π

∫ 2π

0

cos θdθ = 0

E(Y ) =
1

2π

∫ 2π

0

sin θdθ = 0

E(XY ) =
1

2π

∫ 2π

0

cos θ sin θdθ = 0

Thus X and Y are uncorrelated, but they are clearly not independent, since
they are both functions of θ
47.6 (a) ρ(X1 +X2, X2 +X3) = 0.5 (b) ρ(X1 +X2, X3 +X4) = 0
47.7 − n

36

47.8 We have

E(X) =
1

2

∫ 1

−1

xdx = 0

E(XY ) = E(X3) =
1

2

∫ 1

−1

x3dx = 0

Thus, ρ(X, Y ) = Cov(X, Y ) = 0
47.9 Cov(X, Y ) = 3

160
and ρ(X, Y ) = 0.397

47.10 24
47.11 19,300
47.12 11
47.13 200
47.14 0
47.15 0.04
47.16 6
47.17 8.8
47.18 0.2743
47.19 (a)

fXY (x, y) = fX(x)fY (y) =

{
1
2

0 < x < 1, 0 < y < 2
0 otherwise
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(b)

fZ(a) =


0 a ≤ 0
a
2

0 < a ≤ 1
1
2

1 < a ≤ 2
3−a

2
2 < a ≤ 3

0 a > 3

(c) E(X) = 0.5, Var(X) = 1
12
, E(Y ) = 1, Var(Y ) = 1

3

(d) E(Z) = 1.5 and Var(Z) = 5
12

47.20 (a) fZ(z) = dFz
dz

(z) = z
2
, 0 < z < 2 and 0 otherwise.

(b) fX(x) = 1 − x
2
, 0 < x < 2 and 0 otherwise; fY (y) = 1 − y

2
, 0 < y < 2

and 0 otherwise.
(c) E(X) = 2

3
and Var(X) = 2

9

(d) Cov(X, Y ) = −1
9

47.21 −0.15
47.22 1

6

47.23 5
12

47.24 1.04
47.25

√
π

2

47.26 E(W ) = 4 and Var(W ) = 67
47.27 −1

5

47.28 2
47.29 n−2

n+2

47.30 (a) We have

X \ Y 0 1 2 pX(x)
0 0.25 0.08 0.05 0.38
1 0.12 0.20 0.10 0.42
2 0.03 0.07 0.10 0.2
PY (y) 0.4 0.35 0.25 1

(b) E(X) = 0.82 and E(Y ) = 0.85.
(c) 0.243 (d) 145.75

Section 48

48.1 E(X|Y ) = 2
3
Y and E(Y |X) = 2

3

(
1−X3

1−X2

)
48.2 E(X) = 1

2
, E(X2) = 1

3
, V ar(X) = 1

12
, E(Y |X) = 3

4
X, V ar(Y |X) =

3
80
X2, E[V ar(Y |X)] = 1

80
, V ar[E(Y |X)] = 3

64
, Var(Y ) = 19

320
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48.3 λ
λ+µ

48.4 0.75
48.5 2.3
48.6 2

3

(
1−X6

1−X4

)
48.7 A first way for finding E(Y ) is

E(Y ) =

∫ 1

0

y
7

2
y

5
2dy =

∫ 1

0

y
7

2
y

7
2dy =

7

9
.

For the second way, we use the double expectation result

E(Y ) = E(E(Y |X)) =

∫ 1

−1

E(Y |X)fX(x)dx =

∫ 1

−1

2

3

(
1− x6

1− x4

)
21

8
x2(1−x6) =

7

9

48.8 E(X) = 15 and E(Y ) = 5
48.9 −1.4 48.10 15
48.11 E(X|Y = 1) = 2, E(X|Y = 2) = 5

3
, E(X|Y = 3) =

∑
x
pXY (x,1)
pY (3)

= 12
5
.

X and Y are dependent.
48.12 0.20
48.13 1

12

48.14 0.9856
48.15 13
48.16 (1−x)2

12

48.17 Mean is αλ and variance is β2(λ+ λ2) + α2λ
48.18 0.25
48.19 2.25
48.20 6.6
48.21 0.534
48.22 0.076
48.23 0.0756
48.24 8,000,000
48.25 2

3
1+x+x2

1+x

Section 49

49.1 E(X) = n+1
2

and Var(X) = n2−1
12

49.2 E(X) = 1
p

and Var(X) = 1−p
p2

49.3 The moment generating function is

MX(t) =
∞∑
n=1

etn
6

π2n2
.
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By the ratio test we have

lim
n→∞

et(n+1) 6
π2(n+1)2

etn 6
π2n2

= lim
n→∞

et
n2

(n+ 1)2
= et > 1

and so the summation diverges whenever t > 0. Hence there does not exist
a neighborhood about 0 in which the mgf is finite.
49.4 E(X) = α

λ
and Var(X) = α

λ2

49.5 Let Y = X1 + X2 + · · · + Xn where each Xi is an exponential random
variable with parameter λ. Then

MY (t) =
n∏
k=1

MXk(t) =
n∏
k=1

(
λ

λ− t

)
=

(
λ

λ− t

)n
, t < λ.

Since this is the mgf of a gamma random variable with parameters n and λ
we can conclude that Y is a gamma random variable with parameters n and
λ.

49.6 MX(t) =

{
1 t = 0
∞ otherwise

{t ∈ R : MX(t) <∞} = {0}

49.7 MY (t) = E(etY ) = e−2t λ
λ−3t

, 3t < λ

49.8 This is a binomial random variable with p = 3
4

and n = 15
49.9 Y has the same distribution as 3X−2 where X is a binomial distribution
with n = 15 and p = 3

4
.

49.10 E(t1W + t2Z) = e
(t1+t2)

2

2 e
(t1−t2)

2

2 = et
2
1+t22

49.11 5,000
49.12 10,560
49.13 M(t) = E(ety) = 19

27
+ 8

27
et

49.14 0.84
49.15 (a) MXi(t) = pet

1−(1−p)et , t < − ln (1− p)

(b) MX(t) =
(

pet

1−(1−p)et

)n
, t < − ln (1− p).

(c) Because X1, X2, · · · , Xn are independent then

MY (t) =
n∏
k=1

MXi(t) =
n∏
k=1

pet

1− (1− p)et

=

(
pet

1− (1− p)et

)n
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Because
(

pet

1−(1−p)et

)n
is the moment generating function of a negative bino-

mial random variable with parameters (n, p) then X1 + X2 + · · · + Xn is a
negative binomial random variable with the same pmf
49.16 0.6915
49.17 2
49.18 MX(t) = et(6−6t+3t2)−6

t3

49.19 −38
49.20 1

2e

49.21 e
k2

2

49.22 4
49.23 (et1−1)(et2−1)

t1t2

49.24 2
9

49.25 e13t2+4t

49.26 0.4
49.27 −15

16

49.28 (0.7 + 0.3et)9

49.29 41.9
49.30 0.70

Section 50

50.1 Clearly E(X) = − ε
2

+ ε
2

= 0, E(X2) = ε2 and V ar(X) = ε2. Thus,

Pr(|X − 0| ≥ ε) = 1 = σ2

ε2
= 1

50.2 100
50.3 0.4444
50.4 Pr(X ≥ 104) ≤ 103

104
= 0.1

50.5 Pr(0 < X < 40) = Pr(|X − 20| < 20) = 1 − Pr(|X − 20| ≥ 20) ≥
1− 20

202
= 19

20

50.6 Pr(X1 +X2 + · · ·+X20 > 15) ≤ 1
50.7 Pr(|X − 75| ≤ 10) ≥ 1− Pr(|X − 75| ≥ 10) ≥ 1− 25

100
= 3

4

50.8 Using Markov’s inequality we find

Pr(X ≥ ε) = Pr(etX ≥ eεt) ≤ E(etX)

eεt
, t > 0

50.9 Pr(X > 75) = Pr(X ≥ 76) ≤ 50
76
≈ 0.658

50.10Pr(0.475 ≤ X ≤ 0.525) = Pr(|X−0.5| ≤ 0.025) ≥ 1− 25×10−7

625×10−6 = 0.996
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50.11 By Markov’s inequality Pr(X ≥ 2µ) ≤ E(X)
2µ

= µ
2µ

= 1
2

50.12 100
121

; Pr(|X − 100| ≥ 30) ≤ σ2

302
= 1

180
and Pr(|X − 100| < 30) ≥

1 − 1
180

= 179
180
. Therefore, the probability that the factory’s production will

be between 70 and 130 in a day is not smaller than 179
180

50.13 Pr(100 ≤ X ≤ 140) = 1− Pr(|X − 120| ≥ 21) ≥ 1− 84
212
≈ 0.810

50.14 We have E(X) =
∫ 1

0
x(2x)dx = 2

3
< ∞ and E(X2) =

∫ 1

0
x2(2x)dx =

1
2
<∞ so that Var(X) = 1

2
− 4

9
= 1

18
<∞. Thus, by the Weak Law of Large

Numbers we know that X converges in probability to E(X) = 2
3

50.15 (a)

FYn(x) =Pr(Yn ≤ x) = 1− Pr(Yn > x)

=1− Pr(X1 > x,X2 > x, · · · , Xn > x)

=1− Pr(X1 > x)Pr(X2 > x) · · ·Pr(Xn > x)

=1− (1− x)n

for 0 < x < 1. Also, FYn(x) = 0 for x ≤ 0 and FYn(x) = 1 for x ≥ 1.
(b) Let ε > 0 be given. Then

Pr(|Yn − 0| ≤ ε) = Pr(Yn ≤ ε) =

{
1 ε ≥ 1

1− (1− ε)n 0 < ε < 1

Considering the non-trivial case 0 < ε < 1 we find

lim
n→∞

Pr(|Yn − 0| ≤ ε) = lim
n→∞

[1− (1− ε)n] = 1− lim
n→∞

1− 0 = 1.

Hence, Yn → 0 in probability.

Section 51

51.1 0.2119
51.2 0.9876
51.3 0.0094
51.4 0.692
51.5 0.1367
51.6 0.383
51.7 0.0088 51.8 0
51.9 23
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51.10 6,342,637.5
51.11 0.8185
51.12 16
51.13 0.8413
51.14 0.1587
51.15 0.9887
51.16 (a) X is approximated by a normal distribution with mean 100 and
variance 400

100
= 4. (b) 0.9544.

51.17 (a) 0.79 (b) 0.9709

Section 52

52.1 (a) 0.167 (b) 0.5833 (c) 0.467 (d) 0.318
52.2 For t > 0 we have Pr(X ≥ a) ≤ e−ta(pet + 1 − p)n and for t < 0 we
have Pr(X ≤ a) ≤ e−ta(pet + 1− p)n
52.3 0.692
52.4 0.0625
52.5 For t > 0 we have Pr(X ≥ n) ≤ e−nteλ(et−1) and for t < 0 we have
Pr(X ≤ n) ≤ e−nteλ(et−1)

52.6 (a) 0.769 (b) Pr(X ≥ 26) ≤ e−26te20(et−1) (c) 0.357 (d) 0.1093
52.7 Follow from Jensen’s inequality
52.8 (a) a

a−1
(b) a

a+1

(c) We have g′(x) = − 1
x2

and g′′(x) = 2
x3
. Since g′′(x) > 0 for all x in (0,∞)

we conclude that g(x) is convex there.
(d) We have

1

E(X)
=
a− 1

a
=

a2 − 1

a(a+ 1)

and

E(
1

X
) =

a

a+ 1
=

a2

a(a+ 1)
.

Since a2 ≥ a2 − 1, we have a2

a(a+1)
≥ a2−1

a(a+1)
. That is, E( 1

X
) ≥ 1

E(X)
), which

verifies Jensen’s inequality in this case.
52.9 Let X be a random variable such that Pr(X = xi) = 1

n
for 1 ≤ i ≤ n.

Let g(x) = lnx2. By Jensen’s inequality we have for X > 0

E[− ln (X2)] ≥ − ln [E(X2)].
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That is
E[ln (X2)] ≤ ln [E(X2)].

But

E[ln (X2)] =
1

n

n∑
i=1

lnx2
i =

1

n
ln (x1 · x2 · · · · · xn)2.

and

ln [E(X2)] = ln

(
x2

1 + x2
2 + · · ·+ x2

n

n

)
It follows that

ln (x1 · x2 · · · · · xn)
2
n ≤ ln

(
x2

1 + x2
2 + · · ·+ x2

n

n

)
or

(x1 · x2 · · · · · xn)
2
n ≤ x2

1 + x2
2 + · · ·+ x2

n

n

Section 53
53.1 (a) 3420 (b) 4995 (c) 5000
53.2 (a)

f(y) =


0.80 y = 0, x = 0

20%(0.50) = 0.10 y = 0, x = 500
20%(0.40) = 0.08 y = 1800, x = 5000
20%(0.10) = 0.02 y = 5800, x = 15000

(b) 260 (c) 929.73 (d) 490 (e) 1515.55 (f) 0.9940
53.3 0.8201
54.4 1% reduction on the variance
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Equally likely, 48
Event, 45
Expected value of a continuous RV,

234
Expected value of a discrete random
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Probability trees, 64
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Random experiment, 45
Random variable, 99
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Sample space, 45
Scale parameter, 284
Set, 6
Set-builder, 6
Severity, 446
Severity distribution, 446
Shape parameter, 284
Standard Deviation, 129

Standard deviation, 244
Standard normal distribution, 262
Standard uniform distribution, 256
Strong law of large numbers, 418
Subset, 8
Survival function, 194

test point, 199
Tree diagram, 27

Uncountable sets, 7
Uniform distribution, 256
Union of events, 54
Union of sets, 14
Universal Set, 14

Variance, 129, 241
Vendermonde’s identity, 176
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