Name:

Instructions:

- This is a 55 -minute exam. Closed-book. No notes/homework.
- Provide your solutions in a simple and clear manner. In particular, you should be able to read them out aloud without any modification.
- You may want to read all the questions first before starting.

1. Consider random variables $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ defined in a common probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
(a) State the definitions of $X_{n} \rightarrow 0$ in probability and $X_{n} \rightarrow 0$ almost surely.
(b) Suppose in addition that $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ are independent random variables, each with the following distribution:

$$
\mathbb{P}\left(X_{n}=0\right)=\left(1-p_{n}\right)^{2}, \mathbb{P}\left(X_{n}=1\right)=2 p_{n}\left(1-p_{n}\right), \mathbb{P}\left(X_{n}=2\right)=p_{n}^{2}
$$

for some $p_{n} \in(0,1)$. (That is, X_{n} has Binomial distribution with parameter $\left(2, p_{n}\right)$.)
Provide an appropriate choice of $\left\{p_{n}\right\}_{n \in \mathbb{N}}$ such that as $n \rightarrow \infty$, $X_{n} \rightarrow 0$ in probability, but not almost surely, and $X_{n^{2}} \rightarrow 0$ almost surely. Justify your answer.
2. Let X_{1}, X_{2}, \ldots be i.i.d. random variables with $\mathbb{P}\left(X_{1}=-1\right)=\mathbb{P}\left(X_{1}=\right.$ 1) $=1 / 2$. Consider $Y_{n}:=X_{n} X_{n+2}$ and $T_{n}:=Y_{1}+\cdots+Y_{n}, n \in \mathbb{N}$.

Show that

$$
\frac{T_{n}}{n} \rightarrow 0 \text { in probability. }
$$

3. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be independent random variables with

$$
\mathbb{P}\left(X_{n}=1\right)=\mathbb{P}\left(X_{n}=-1\right)=\frac{1}{2}\left(1-2^{-n}\right), \mathbb{P}\left(X_{n}=2^{n}\right)=2^{-n}, n \in \mathbb{N} .
$$

Set $S_{n}:=X_{1}+\cdots+X_{n}$.
(a) Consider $Y_{n}:=X_{n} \mathbf{1}_{\left\{\left|X_{n}\right| \leq 1\right\}}$ and $T_{n}:=Y_{1}+\cdots+Y_{n}, n \in \mathbb{N}$. Show that $S_{n}-T_{n}$ is a finite random variable almost surely.
(b) Prove that

$$
\frac{S_{n}}{n} \rightarrow 0 \text { a.s. }
$$

You may use the statement in part (a) directly.

