Name:

Instructions:

- This is a two-hour exam. Closed-book. No notes/homework.
- Provide your solutions in a simple and clear manner. In particular, you should be able to read them out aloud without any modification.
- When using main theorems/results from the textbook and/or homework, state and verify the conditions carefully.

1. Suppose $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and X are random variables such that $\lim _{n \rightarrow \infty} X_{n}=$ X almost surely.
(a) State the extra condition in the dominated convergence theorem such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E} X_{n}=\mathbb{E} X . \tag{1}
\end{equation*}
$$

(b) By providing a counterexample, show that without the extra condition in part (a), (1) does not necessarily hold.
2. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be i.i.d. Bernoulli random variables with parameter $p \in$ $(0,1): \mathbb{P}\left(X_{1}=1\right)=p=1-\mathbb{P}\left(X_{1}=0\right)$. Consider

$$
S_{n}:=\sum_{k=1}^{n} k X_{k}, n \in \mathbb{N} .
$$

(a) Compute $\mathbb{E} S_{n}$ and $\operatorname{Var}\left(S_{n}\right)$.
(b) Find a sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ of real numbers such that

$$
\frac{S_{n}}{a_{n}} \rightarrow 1 \text { in probability. }
$$

Justify your answer.
You might need the following formulas:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \quad \text { and } \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}, n \in \mathbb{N} .
$$

3. Consider the following version of the renewal problem: let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be i.i.d. non-negative random variables with $\mathbb{E} X_{1} \in(0, \infty)$. Consider $S_{n}:=X_{1}+\cdots+X_{n}$ and

$$
N_{t}:=\max \left\{n \in \mathbb{N}: S_{n} \leq t\right\}, t \geq 0,
$$

with the convention that $\max \emptyset \equiv 0$.
(a) State the strong law of large numbers.
(b) Prove

$$
\lim _{t \rightarrow \infty} \frac{N_{t}}{t}=\frac{1}{\mathbb{E} X_{1}} \text { a.s. }
$$

Hint: observe $S_{N_{t}} \leq t<S_{N_{t}+1}$.
4. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a collection of independent random variables with

$$
\mathbb{P}\left(X_{n}= \pm n\right)=\frac{1}{n^{\beta}} \quad \text { and } \quad \mathbb{P}\left(X_{n}=0\right)=1-\frac{1}{n^{\beta}}, n \in \mathbb{N},
$$

where $\beta \in(0,1)$ is fixed for all $n \in \mathbb{N}$. Consider $S_{n}:=X_{1}+\cdots+X_{n}$.
(a) Show that

$$
\begin{equation*}
\operatorname{Var}\left(S_{n}\right) \sim C n^{3-\beta}, \tag{2}
\end{equation*}
$$

and identify the constant C as a function of β.
You may use the formula

$$
\sum_{k=1}^{n} k^{\theta} \sim \frac{n^{\theta+1}}{\theta+1}
$$

for $\theta>0$. Recall that by $a_{n} \sim b_{n}$ we mean $\lim _{n \rightarrow \infty} a_{n} / b_{n}=1$.
(b) Show that

$$
\frac{S_{n}}{n^{\gamma}} \Rightarrow \mathcal{N}\left(0, \sigma^{2}\right)
$$

for some $\sigma>0, \gamma>0$. Identify σ and γ as functions of β. (Or, to get partial credit, express them in terms of C in (2) and β.)

