Due Fri. Apr. 7 in class.

1. Read lecture notes Chapter 4.1.
2. Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be i.i.d. standard exponential random variables. That is, $\mathbb{P}\left(X_{1}>x\right)=e^{-x}, x>0$. Show that

$$
\max _{i=1, \ldots, n} X_{i}-\log n
$$

converges weakly as $n \rightarrow \infty$ to the so-called Gumbel distribution, which has cumulative distribution function $F(x)=\exp \left(-e^{-x}\right), x \in \mathbb{R}$. Hint: prove by definition.
3. (Prelim April 2014 (4a)) Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be i.i.d. random variables distributed uniformly in $(0, \theta)$, for some $\theta>0$. That is, $\mathbb{P}\left(X_{1} \leq x\right)=$ $x / \theta, x \in(0, \theta)$. Set $M_{n}:=\max _{i=1, \ldots, n} X_{i}$. Prove that

$$
Z_{n}:=n\left(\theta-\frac{n+1}{n} M_{n}\right)
$$

converges weakly to a non-degenerate distribution, as $n \rightarrow \infty$. Identify the limit distribution.
Hint: prove by definition.
4. (Prelim May 2015, 3(a)) Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be i.i.d. random variables with probability density function, for some fixed $\theta>0$,

$$
p(x)=\theta(\theta+1) x^{\theta-1}(1-x), 0<x<1 .
$$

Consider

$$
T_{n}:=\frac{2 S_{n} / n}{1-S_{n} / n}, n \in \mathbb{N}
$$

Show that

$$
\sqrt{n}\left(T_{n}-\theta\right) \Rightarrow \mathcal{N}\left(0, \sigma^{2}(\theta)\right),
$$

and identify the expression of $\sigma^{2}(\theta)$.
Hint: first verify $\mathbb{E} X_{1}=\theta /(\theta+2)$. Then $\sqrt{n}\left(T_{n}-\theta\right)$ can be rewritten in the form of

$$
\sqrt{n}\left(T_{n}-\theta\right)=\frac{S_{n}-\mathbb{E} S_{n}}{\sqrt{n}} \cdot Z_{n}
$$

for some random variable Z_{n}.
5. (Problem for fun and extra credit) Simulate a sequence of i.i.d. random variables $\left\{X_{n}\right\}_{n \in \mathbb{N}}$, and plot the partial sums S_{1}, \ldots, S_{n} as a (random) line. Start with $\mathbb{P}\left(X_{i}= \pm 1\right)=1 / 2$.
(a) How does the plot change as n becomes larger and larger?
(b) What about taking other distributions for the steps $\left\{X_{n}\right\}_{n \in \mathbb{N}}$? Say, Gaussian, exponential, uniform, etc...
(c) What happens if each X_{i} is a Cauchy random variable?

Comment: the sequence $\left\{S_{n}\right\}_{n \in \mathbb{N}}$ is known as a random walk.

