Due Fri. February 10 in class. Problems with $(* *)$ are for extra credits only.

1. Read lecture notes Sections $2.1-2.4$.
2. Let $p \in(0,1)$ be arbitrary. Construct 3 Bernoulli random variables X with parameter p, (that is, $\mathbb{P}(X=1)=p=1-\mathbb{P}(X=0))$ in three different probability spaces:
(i) $((0,1), \mathcal{B}((0,1))$, Leb $)$,
(ii) $\left(\{0,1\}, 2^{\{0,1\}}, \mathbb{P}\right)$ for some \mathbb{P} to choose,
(iii) $([0, \infty), \mathcal{B}([0, \infty)), \mathbb{P})$ where \mathbb{P} is determined by $\mathbb{P}((a, b))=\int_{a}^{b} e^{-x} d x, 0 \leq a<b<\infty$.

In each case, express explicitly the random variable as a function on the probability space.
3. Construct two different random variables in a common probability space, so that they have the same Bernoulli distribution with parameter $p \in(0,1)$. Namely, provide explicitly a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and two measurable functions $X:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $Y:(\Omega, \mathcal{F}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, such that the two random variables have the same Bernoulli distribution with parameter p, and $\mathbb{P}(\omega: X(\omega) \neq Y(\omega))>0$.
4. Consider the measurable space $((0,1), \mathcal{B}((0,1)))$, and probability measures $\mathbb{P}_{1}:=$ Leb and

$$
\mathbb{P}_{2}(\cdot):=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \delta_{\frac{1}{n+1}}(\cdot) .
$$

Consider $X(\omega):=\omega^{2}, \omega \in(0,1)$.
(a) Compute $\mathbb{P}_{1}(X \geq 1 / 4)$ and $\mathbb{P}_{2}(X \geq 1 / 4)$.
(b) The random variable X under \mathbb{P}_{1} and \mathbb{P}_{2} has different distributions respectively, denoted by say μ_{1} and μ_{2}. Express μ_{1} and μ_{2}.
(c) $(* *) X$ is a random variable in $\left((0,1), \mathcal{B}((0,1)), \mathbb{P}_{1}\right)$ and $\left((0,1), \mathcal{B}((0,1)), \mathbb{P}_{2}\right)$, respectively. Express its cumulative distribution function $F_{i}(x)=\mathbb{P}_{i}(X \leq x)$ in each case.
5. Let X be a random variable with $\mathbb{E}|X|<\infty$. Show that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(X \mathbf{1}_{\{|X| \leq n\}}\right)=\mathbb{E} X \quad \text { and } \quad \lim _{n \rightarrow \infty} \mathbb{E}\left(X \mathbf{1}_{\{|X|>n\}}\right)=0
$$

If instead of $\mathbb{E}|X|<\infty$ assume that X is non-negative, then do the above conclusions still hold? Justify your answer.
6. ${ }^{* *}$) Consider a non-negative random variable X. Show that

$$
\lim _{y \rightarrow \infty} y \mathbb{E}\left(\frac{1}{X} \mathbf{1}_{\{X>y\}}\right)=0
$$

7. $\left.{ }^{* *}\right)$ Let X and Y be two non-negative random variables defined on a common probability space. Show that

$$
\mathbb{E}\left(\frac{1}{X Y}\right)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{\mathbb{P}(X \leq x, Y \leq y)}{x^{2} y^{2}} d x d y
$$

Hint: Fubini's theorem.
8. Let X be a random variable with uniform $(0,1)$ distribution $(\mathbb{P}(X \leq x)=x, x \in(0,1))$, defined on certain probability space. Consider random variable $Y(\omega):=\max \{X(\omega), 1 / 3\}$.
(i) Describe the distribution μ_{Y} of Y in the form of

$$
\mu_{Y}=\mu_{C}+\mu_{D}
$$

where μ_{1} and μ_{2} are discrete and continuous measures, respectively.
(ii) Compute $\mathbb{E}\left(Y^{2}\right)$.

