Due Fri. January 20 in class. Problems with $(* *)$ are for extra credits only.

1. Read lecture notes Sections 1.1, 1.2.
2. Let $\Omega=\mathbb{N}$, and \mathcal{F} be the collection of all subsets A of \mathbb{N} such that either A or A^{c} is finite. For all $A \in \mathcal{F}$, set $\mu(A)=0$ if A is finite, and $\mu(A)=1$ if A^{c} is finite.
(i) Show that \mathcal{F} is not a σ-algebra.
(ii) $\left.{ }^{(* *}\right)$ Does there exist a measure space $\left(\mathbb{N}, \mathcal{G}, \mu^{*}\right)$ such that: $\mathcal{F} \subset \mathcal{G}$, and $\mu^{*}(A)=\mu(A)$ for all $A \in \mathcal{F}$?
3. Provide an example of a measure space $(\Omega, \mathcal{F}, \mu)$ with a family of measurable sets $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ such that $A_{n} \downarrow A \in \mathcal{F}$ as $n \rightarrow \infty$ but $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \neq \mu(A)$.
4. Consider the measurable space $((0,1), \mathcal{B}((0,1)))$ and subsets $A_{n}=\left[2^{-2 n}, 2^{-2 n+1}\right), n \in$ $\mathbb{N}:=\{1,2, \ldots\}$. Let μ_{F} denote the measure determined by the Stieltjes measure function F below. Compute $\mu_{F}\left(\bigcup_{n=1}^{\infty} A_{n}\right)$ in each case.
(i) $F(x)=x^{2}$.
(ii) $F(x)=\mathbf{1}_{(-\infty, 1 / 4)}(x)+6 x \mathbf{1}_{[1 / 4, \infty)}(x)$.
5. Consider $\Omega=\{1,2,3,4\}$.
(i) Find a strictly increasing sequence of σ-algebras $\mathcal{F}_{1} \subsetneq \mathcal{F}_{2} \subsetneq \cdots \subsetneq \mathcal{F}_{n}(\mathcal{A} \subsetneq \mathcal{B}$ means $\mathcal{A} \subset \mathcal{B}$ and $\mathcal{A} \neq \mathcal{B})$ of Ω. What is the largest n that you can get?
(ii) Consider $\mathcal{F}=\sigma(\{\{1,2\},\{3,4\}\})$ and $\mathcal{G}=\sigma(\{\{1\},\{2\},\{3,4\}\})$. Provide an example of a function $f: \Omega \rightarrow \mathbb{R}$ such that f is measurable with respect to \mathcal{G}, but not with respect to \mathcal{F}.
6. Consider the following functions

$$
f_{1}(x)=0, f_{2}(x)=\mathbf{1}_{\{1 / 2\}}(x), f_{3}(x)=\mathbf{1}_{\mathbb{Q} \cap(0,1)}(x),
$$

on the measurable space $((0,1), \mathcal{B}((0,1)))$. We examine these functions under the following different measures respectively,

$$
\mu_{1}=\mathrm{Leb}, \mu_{2}=\delta_{1 / 2}, \mu_{3}=\frac{1}{2} \delta_{1 / 2}, \mu_{4}=\sum_{q \in \mathbb{Q} \cap(0,1)} \delta_{q}, \mu_{5}=\mu_{1}+\mu_{2}
$$

(i) Recall that f and g belong to the same μ-equivalent class, if $f=g \mu$-a.e. For each μ_{i} above, f_{1}, f_{2} and f_{3} belong to how many different equivalent classes? No need to justify your answer.
(ii) Compute

$$
\mu(\{f=1\}) \equiv \mu(\{\omega \in(0,1): f(\omega)=1\})
$$

for each $\mu_{i}, i=4,5$ and $f_{j}, j=1,2,3$.
7. $(* *)$ Exercise 1.1.17 from Lecture notes.

