Due Fri. January 20 in class. Problems with (**) are for extra credits only.

- 1. Read lecture notes Sections 1.1, 1.2.
- 2. Let $\Omega = \mathbb{N}$, and \mathcal{F} be the collection of all subsets A of \mathbb{N} such that either A or A^c is finite. For all $A \in \mathcal{F}$, set $\mu(A) = 0$ if A is finite, and $\mu(A) = 1$ if A^c is finite.
 - (i) Show that \mathcal{F} is *not* a σ -algebra.
 - (ii) (**) Does there exist a measure space $(\mathbb{N}, \mathcal{G}, \mu^*)$ such that: $\mathcal{F} \subset \mathcal{G}$, and $\mu^*(A) = \mu(A)$ for all $A \in \mathcal{F}$?
- 3. Provide an example of a measure space $(\Omega, \mathcal{F}, \mu)$ with a family of measurable sets $\{A_n\}_{n \in \mathbb{N}}$ such that $A_n \downarrow A \in \mathcal{F}$ as $n \to \infty$ but $\lim_{n \to \infty} \mu(A_n) \neq \mu(A)$.
- 4. Consider the measurable space $((0,1), \mathcal{B}((0,1)))$ and subsets $A_n = [2^{-2n}, 2^{-2n+1}), n \in \mathbb{N} := \{1, 2, \ldots\}$. Let μ_F denote the measure determined by the Stieltjes measure function F below. Compute $\mu_F(\bigcup_{n=1}^{\infty} A_n)$ in each case.
 - (i) $F(x) = x^2$.

(ii)
$$F(x) = \mathbf{1}_{(-\infty,1/4)}(x) + 6x\mathbf{1}_{[1/4,\infty)}(x).$$

- 5. Consider $\Omega = \{1, 2, 3, 4\}.$
 - (i) Find a strictly increasing sequence of σ -algebras $\mathcal{F}_1 \subsetneq \mathcal{F}_2 \subsetneq \cdots \subsetneq \mathcal{F}_n$ ($\mathcal{A} \subsetneq \mathcal{B}$ means $\mathcal{A} \subset \mathcal{B}$ and $\mathcal{A} \neq \mathcal{B}$) of Ω . What is the largest *n* that you can get?
 - (ii) Consider $\mathcal{F} = \sigma(\{\{1,2\},\{3,4\}\})$ and $\mathcal{G} = \sigma(\{\{1\},\{2\},\{3,4\}\})$. Provide an example of a function $f: \Omega \to \mathbb{R}$ such that f is measurable with respect to \mathcal{G} , but not with respect to \mathcal{F} .
- 6. Consider the following functions

$$f_1(x) = 0, f_2(x) = \mathbf{1}_{\{1/2\}}(x), f_3(x) = \mathbf{1}_{\mathbb{Q}\cap(0,1)}(x),$$

on the measurable space $((0, 1), \mathcal{B}((0, 1)))$. We examine these functions under the following *different* measures respectively,

$$\mu_1 = \text{Leb}, \mu_2 = \delta_{1/2}, \mu_3 = \frac{1}{2}\delta_{1/2}, \mu_4 = \sum_{q \in \mathbb{Q} \cap (0,1)} \delta_q, \mu_5 = \mu_1 + \mu_2.$$

- (i) Recall that f and g belong to the same μ -equivalent class, if $f = g \mu$ -a.e. For each μ_i above, f_1, f_2 and f_3 belong to how many different equivalent classes? No need to justify your answer.
- (ii) Compute

$$\mu(\{f = 1\}) \equiv \mu(\{\omega \in (0, 1) : f(\omega) = 1\})$$

for each μ_i , i = 4, 5 and f_i , j = 1, 2, 3.

7. (**) Exercise 1.1.17 from Lecture notes.