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Random sup measures

G the collection of open sets in Rd .

A sup measure: a map m : G → [0,∞] with m(∅) = 0 and
m(∪γGγ) = supγ m(Gγ) for any collection of open sets {Gγ}.

The sup derivative d∨m of a sup measure m:

d∨m(t) := inf
t∈G

m(G ), G ∈ G .
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The sup integral of f : Rd → [0,∞]:

i∨f (G ) := sup
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f (t), G ∈ G .

m = i∨d∨m.

The space SM of sup measures with sup vague topology is
compact and metrizable.

=⇒: a random sup measure.
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Stable regenerative sets

The β-stable regenerative set: the closure of the range of the
β-subordinator, 0 < β < 1.

R
(i)
βi

: independent βi -stable regenerative sets, 0 < βi < 1,
i = 1, . . . , d .

v (i) > 0, i = 1, . . . , d ,

R̃β :=
d∏

i=1

(
v (i) + R

(i)
βi

)
.
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{R̃β,j}j≥1 independent.

Suppose the shift vectors have different components.

For any m = 1, 2, . . .,

P(∩mj=1R̃β,j 6= ∅) = 0 or 1 ,

the probability is 1 if and only if m < mini=1,...,d(1− βi )−1.
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The model

A discrete time stationary random field X =
(
Xt, t ∈ Zd

)
.

What does “memory” mean for random fields?

We consider a class of stationary symmetric α-stable (SαS)
random fields, 0 < α < 2.

There is a natural parametrization of “memory”.
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d σ-finite, infinite measures on
(
ZZ,B(ZZ)

)
:

µi =
∑
k∈Z

π
(i)
k P

(i)
k .

For i = 1, . . . , d , P
(i)
k : the law of an irreducible aperiodic

null-recurrent Markov chain (Y
(i)
n )n≥0 on Z, Y

(i)
0 = k ∈ Z.

(π
(i)
k )k∈Z: the invariant measure satisfying π

(i)
0 = 1.
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The first return time to the origin: for
x = (. . . , x−1, x0, x1, x2 . . .) ∈ ZZ, ϕ(x) = inf{n ≥ 1 : xn = 0}.

The key assumption:

P
(i)
0 (ϕ > n) ∈ RV−βi , some 0 < βi < 1, i = 1, . . . , d .

Overall space:

(E , E) =
(
ZZ × · × ZZ, B(ZZ)× · × B(ZZ)

)
,

µ = µ1 × · × µd .
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Left shift operator on ZZ:

T
(
(. . . , x−1, x0, x1, x2 . . .)

)
= (. . . , x0, x1, x2, x3 . . .) .

A group action of Zd on E : for n = (n1, . . . , nd) ∈ Zd ,

T nx = (T n1x(1), . . . ,T ndx(d)) ∈ E

if x = (x(1), . . . , x(d))
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A stationary SαS random field:

Xn =

∫
E
f ◦ T n(x)M(dx), n ∈ Zd ,

M: a SαS random measure on (E , E) with control measure µ,

f (x) = 1(x(i) ∈ A, i = 1, . . . , d), x = (x(1), . . . , x(d)) .

A = {x ∈ ZZ : x0 = 0}.
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Extreme Value Theory for Random fields

Extremes of the random field over growing hypercubes

[0,n] =
{
0 ≤ k ≤ n

}
, n→∞ .

A random sup measure:

ηn(B) := max
k/n∈B

Xk, B ∈ B([0,∞)d) .

Under what normalization ηn converges and what is the limit?
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Denote for n = 1, 2, . . . and i = 1, . . . , d ,

b
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.

b
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)
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b
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ni , n = (n1, . . . , nd) ∈ Nd
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Theorem: convergence in the space of sup measures

As n→∞, weakly,

1

bn
ηn ⇒

(
Cα
2

)1/α

ηα,β .

Cα =

(∫ ∞
0

x−α sin xdx

)−1

=

{
1−α

Γ(2−α) cos(πα/2) α 6= 1

2/π α = 1
.
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The limit sup measure

ηα,β(B) = sup
t∈B

∞∑
j=1

Uα,j1{t∈Vβ,j+Rβ,j}, B ∈ B([0,∞)d) .

(Uα,j ,Vβ,j)j≥1: the points of a Poisson point process on
R× Rd , with mean measure

αu−1−αdu
d∏

i=1

(1− βi )v−βii dvi , u, v1, . . . , vd > 0 .



The limit sup measure

ηα,β(B) = sup
t∈B

∞∑
j=1

Uα,j1{t∈Vβ,j+Rβ,j}, B ∈ B([0,∞)d) .

(Uα,j ,Vβ,j)j≥1: the points of a Poisson point process on
R× Rd , with mean measure

αu−1−αdu
d∏

i=1

(1− βi )v−βii dvi , u, v1, . . . , vd > 0 .



{Rβi ,j}j≥1: iid products of stable regenerative sets.

The limiting measure is stationary and self-similar.

It has the Fréchet distribution if and only if βi ≤ 1/2 for some
i = 1, . . . , d .
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