Asymptotics of bivariate local Whittle estimators with some applications

Vladas Pipiras (UNC–Chapel Hill) With C. Baek (Sungkyunkwan), S. Kechagias (SAS)

AMS meeting, October 20, 2018

A bivariate stationary time series $\{X_n\}_{n \in \mathbb{Z}} = \{(X_{1,n}, X_{2,n})'\}_{n \in \mathbb{Z}}$ is **long memory** if its spectral density matrix satisfies:

 $f(\lambda) = \begin{pmatrix} f_{11}(\lambda) & f_{12}(\lambda) \\ f_{21}(\lambda) & f_{22}(\lambda) \end{pmatrix} \sim \begin{pmatrix} \omega_{11}\lambda^{-2d_1} & \omega_{12}e^{-i\phi}\lambda^{-(d_1+d_2)} \\ \omega_{12}e^{i\phi}\lambda^{-(d_1+d_2)} & \omega_{22}\lambda^{-2d_2} \end{pmatrix}, \ \lambda \to 0^+,$ where $d_1, d_2 \in (0, 1/2), \ \omega_{11}, \omega_{22} > 0, \ \omega_{12} \in \mathbb{R}$ and $\phi \in (-\pi/2, \pi/2)$, or in

matrix notation,

 $f(\lambda) \sim \Phi_{D,\phi}(\lambda)^{-1} \Omega \overline{\Phi}_{D,\phi}(\lambda)^{-1}, \ \lambda \to 0^+,$

where $\Phi_{D,\phi}(\lambda) = \operatorname{diag}(\lambda^{d_1}, \lambda^{d_2}e^{-i\phi})$, $D = \operatorname{diag}(d_1, d_2)$ and $\Omega = (\omega_{jk})$ is a real-valued, symmetric, positive semi-definite matrix. It is **short memory** when $d_1 = d_2 = 0$, in which case $\phi = 0$.

Bivariate long/short memory: special cases

Two special cases in the definition of bivariate long memory

 $f(\lambda) \sim \begin{pmatrix} \omega_{11}\lambda^{-2d_1} & \omega_{12}e^{-i\phi}\lambda^{-(d_1+d_2)} \\ \omega_{12}e^{i\phi}\lambda^{-(d_1+d_2)} & \omega_{22}\lambda^{-2d_2} \end{pmatrix} = \Phi_{D,\phi}(\lambda)^{-1}\Omega\overline{\Phi}_{D,\phi}(\lambda)^{-1}.$

Fractal non-connectivity: $\omega_{12} = 0$. (Connectivity: $\omega_{12} \neq 0$.) **Fractional cointegration:** $|\Omega| = \omega_{11}\omega_{22} - \omega_{12}^2 = 0$ and $d_1 = d_2$, $\phi = 0$. (Non-cointegration: $|\Omega| \neq 0$). Fractional (non-)cointegration is tested within the framework

$$Bf(\lambda)B' \sim \Phi_{D,\phi}(\lambda)^{-1}\Omega\overline{\Phi}_{D,\phi}(\lambda)^{-1}, \ \lambda \to 0^+, \quad (d_1 < d_2)$$

with

$$B=egin{pmatrix} 1&-eta\0&1\end{pmatrix},$$

the case $\beta = 0$ corresponding to non-cointegration and the case $\beta \neq 0$ associated with cointegration. (Note that $f(\lambda) \sim \lambda^{-2d_2} [\beta^2 \beta; \beta 1]$.)

Local Whittle estimation

In the **non-cointegrated case**, the local Whittle estimators of *D*, ϕ and Ω are defined as

$$(\widehat{D}, \widehat{\phi}, \widehat{\Omega}) = \operatorname*{argmin}_{(D, \phi, \Omega)} Q(D, \phi, \Omega)$$

with

$$Q(D,\phi,\Omega) = \frac{1}{m} \sum_{j=1}^{m} \log \left| \underbrace{\Phi_{D,\phi}(\lambda_j)^{-1} \Omega \overline{\Phi}_{D,\phi}(\lambda_j)^{-1}}_{\approx f(\lambda_j)} \right| + \operatorname{tr}\left(I(\lambda_j) \underbrace{\overline{\Phi}_{D,\phi}(\lambda_j) \Omega^{-1} \Phi_{D,\phi}(\lambda_j)}_{\approx f(\lambda_j)^{-1}} \right),$$

where $\lambda_j = (2\pi j)/N$ are the Fourier frequencies for a sample size N, $I(\lambda) = \frac{1}{N} (\sum_{n=1}^{N} X_n e^{-in\lambda}) (\sum_{n=1}^{N} X_n e^{in\lambda})'$ is the periodogram and m is the number of frequencies used in estimation. The optimization problem has been reduced explicitly to that over D, ϕ only.

In the **cointegrated case**, as above, but $I(\lambda_j)$ is replaced by $BI(\lambda_j)B'$ and β is added as another parameter.

Asymptotic normality: The asymptotic normality result for $\widehat{D}, \widehat{\phi}$ is provided in Robinson (2008) under suitable assumptions, in particular, on $m = m(N) \rightarrow \infty$. This is carried out in both fractionally non-cointegrated and cointegrated cases. Related work includes M.O. Nielsen (2007), M.O. Nielsen and Shimotsu (2007), Shimotsu (2007, 2012), F.S. Nielsen (2011).

Fractal connectivity: Wavelet-based and other testing procedures for fractal connectivity were considered in Achard, Bassett, Meyer-Lindenberg and Bullmore (2008), Wendt, Scherrer, Abry and Achard (2009), Kristoufek (2013), Wendt, Didier, Combrexelle and Abry (2017). Though the approach is slightly different.

Data applications: (log) spot exchange rates, realized volatilities of stocks in Finance, MEG data in Neuroscience, packet and byte counts in Internet Traffic studies.

(日) (同) (三) (三) (三)

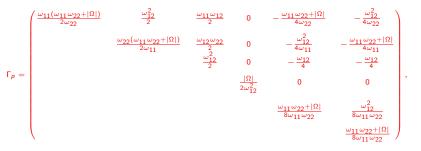
- Asymptotic normality for all model parameters ω₁₁, ω₂₂, ω₁₂, φ, d₁, d₂
 (, β) in Parametrization P, and ω₁₁, ω₂₂, r₁, r₂, d₁, d₂ (, β) in
 Parametrization C, where r₁ + ir₂ = ω₁₂e^{-iφ}. The asymptotic
 covariance matrices in explicit form!
- Reduced optimization to that over D only.
- Resulting tests for fractal non-connectivity.
- Local Whittle plots for fractal (non-)connectivity, phase parameter.
- Local Whittle plots to consider for real data with illustrations.
- Corrected the asymptotic covariance matrix of Robinson (2008).
- Corrected the asymptotic normalization in the univariate case going back to Robinson (1995).

Glance at our contributions: asymptotic normality

E.g. Suppose that the assumptions ... hold. Then, as $N
ightarrow \infty$,

$$\sqrt{m} \begin{pmatrix} \frac{\log[N/m]}{\log[N/m]} (\widehat{\omega}_{11} - \omega_{11}) \\ \frac{1}{\log[N/m]} (\widehat{\omega}_{22} - \omega_{22}) \\ \frac{1}{\log[N/m]} (\widehat{\omega}_{12} - \omega_{12}) \\ \widehat{\phi} - \phi \\ \widehat{d}_1 - d_1 \\ \widehat{d}_2 - d_2 \end{pmatrix} \xrightarrow{d} \mathcal{N}(0, \Gamma_p),$$

where



the entries below the main diagonal are omitted but make Γ_p symmetric, and $|\Omega| = \omega_{11}\omega_{22} - \omega_{12}^2$.

Vladas Pipiras (UNC)

Bivariate local Whittle

Fractal (non-)connectivity tests

In connection to fractal (non-)connectivity (and fractional cointegration), consider

$$\rho^2 = \frac{\omega_{12}^2}{\omega_{11}\omega_{22}} = \frac{r_1^2 + r_2^2}{\omega_{11}\omega_{22}}, \quad \hat{\rho}^2 = \frac{\hat{\omega}_{12}^2}{\hat{\omega}_{11}\hat{\omega}_{22}} = \frac{\hat{r}_1^2 + \hat{r}_2^2}{\hat{\omega}_{11}\hat{\omega}_{22}}$$

both taking values in [0,1]. Under H_0 : $r_1 = r_2 = 0$ (that is, fractal non-connectivity), the asymptotic normality results yield

$$m\widehat{\rho}^2 \xrightarrow{d} \frac{\chi^2(2)}{2}$$

and under the alternative (that is, fractal connectivity),

$$\sqrt{m}\left(\widehat{\rho}^2-\rho^2\right)\stackrel{d}{\rightarrow}\mathcal{N}(0,\sigma_{\rho}^2),$$

where $\sigma_{\rho}^2 = \frac{2\omega_{12}^2 |\Omega|^2}{\omega_{11}^3 \omega_{22}^3}$. Similar statistics are constructed in the case of fractional cointegration.

Vladas Pipiras (UNC)

Local Whittle plots

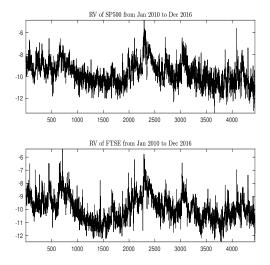
We sugget to examine the followings 9 local Whittle plots. The first 4 plots concern the fractionally non-cointegrated case and are the local Whittle plots of:

- \widehat{d}_1 and \widehat{d}_2 ;
- $\widehat{\phi}$ (modified);
- \widehat{r}_1 and \widehat{r}_2 ;
- $\hat{\rho}^2$.

The other 5 plots concern the fractionally cointegrated case and are the local Whittle plots of:

- *β* ;
- \widehat{d}_1 and \widehat{d}_2 ;
- $\widehat{\phi}$ (modified);
- \hat{r}_1 and \hat{r}_2 ;
- $\hat{\rho}_{fc}^2$.

Illustration 1: SP500 and FTSE realized volatilities

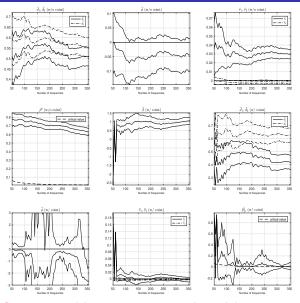


Vladas Pipiras (UNC)

October 20, 2018 10 / 15

- ∢ 🗇 እ

Illustration 1: SP500 and FTSE realized volatilities



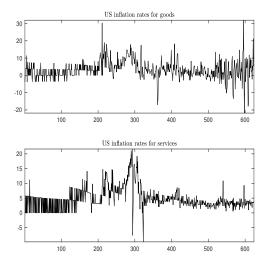
Conclusion: Cointegrated but non-connected model.

Vladas Pipiras (UNC)

Bivariate local Whittle

October 20, 2018 11 / 15

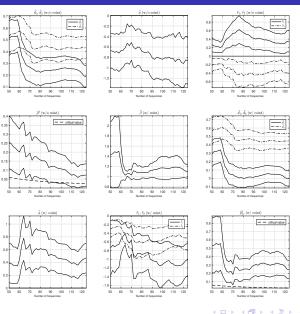
Illustration 2: US inflation rates for goods and services



Vladas Pipiras (UNC)

October 20, 2018 12 / 15

Illustration 2: US inflation rates for goods and services



Conclusion:

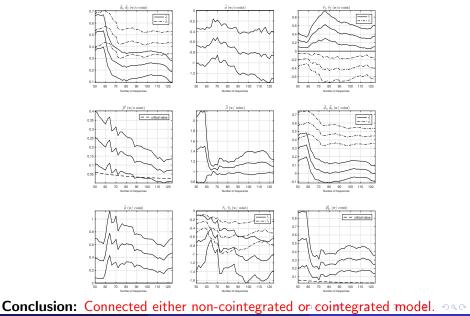
Vladas Pipiras (UNC)

Bivariate local Whittle

э

э.

Illustration 2: US inflation rates for goods and services



Vladas Pipiras (UNC)

Bivariate local Whittle

October 20, 2018 13 / 15

- "Annoying" separate treatment of the cointegrated and non-cointegrated cases.
- Going to higher dimension (possibly with penalization) than 2. Work in progress.
- Extending to non-stationary case allowing for $d_1, d_2 \ge 1/2$.
- Based on "Asymptotics of bivariate local Whittle estimators with applications to fractal connectivity", C. Baek, S. Kechagias and V. Pipiras, Preprint, 2018. Available online.
- Questions?

Some other references

- Achard, S., Bassett, D. S., Meyer-Lindenberg, A. and Bullmore, E. (2008), Fractal connectivity of long-memory networks, *Physical Review E* 77, 036104.
- Nielsen, F. S. (2011), Local Whittle estimation of multi-variate fractionally integrated processes, *Journal of Time Series Analysis* 32(3), 317–335.
- Nielsen, M. O. (2007), Local Whittle analysis of stationary fractional cointegration and the implied realized volatility relation, *Journal of Business* & *Economic Statistics* 25(4), 427446.
- Robinson, P. M. (2008), Multiple local Whittle estimation in stationary systems, *The Annals of Statistics* 36(5), 2508–2530.
- Shimotsu, K. (2007), Gaussian semiparametric estimation of multivariate fractionally integrated processes, *Journal of Econometrics* 137(2), 277–310.
- Wendt, H., Didier, G., Combrexelle, S. and Abry, P. (2017), Multivariate Hadamard self-similarity: Testing fractal connectivity, *Physica D: Nonlinear Phenomena* 356-357, 136.

(日) (同) (三) (三)