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• Lévy processes - Subordinators - Hitting times

• Fractional Cauchy problem on a compact manifold M

• The case M = S
2
1, the unit sphere

• Random fields on S
2
1

• Time dependent coordinates changed random fields on S
2
1
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fractional Cauchy problem on D ⊆ R
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random fields and cosmological applications
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Lévy processes

If X(t), t > 0 is a Lévy processes, then the characteristic function

Eeiξ·X(t) =

∫
eiξ·xp(t;x)dx = p̂(t; ξ) = e−tΨ(ξ) (1)

is written in terms of the following Fourier symbol (Lévy - Khintchine)

Ψ(ξ) = ib · ξ + ξ ·Mξ −
∫
Rd−{0}

(
eiξ·y − 1− iξ · y1(|y|≤1)

)
μ(dy) (2)

where b ∈ R
d, M is a non-negative definite symmetric d × d matrix and μ is a

Lévy measure on R
d − {0}, that is a Borel measure on R

d − {0} such that∫
(|y|2 ∧ 1)μ(dy) < ∞ or equivalently

∫ |y|2
1 + |y|2μ(dy) < ∞. (3)
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Subordinators

If Dt, t > 0 is a subordinator, then its Lévy symbol is written as

η(ξ) = ibξ +

∫ ∞

0

(
eiξy − 1

)
μ(dy) (4)

where b ≥ 0 and the Lévy measure μ satisfies the following requirements:
μ(−∞, 0) = 0 and∫

(y ∧ 1)μ(dy) < ∞ or equivalently

∫
y

1 + y
μ(dy) < ∞. (5)

The Laplace exponent

ψ(ξ) = −η(iξ) = bξ +

∫ ∞

0

(
1− e−ξy

)
μ(dy) (6)

is a Bernstein function (that is f : (−1)kf (k)(x) ≤ 0 for all x ≥ 0).
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Semigroups

Let us consider the Lévy process X(t), t > 0, with associated Feller semigroup

Pt f(x) = Ef(X(t)− x) =

∫
Rd

f(y − x)p(t; y)dy =

∫
Rd

f(y)p(t; y + x)dy

solving ∂tu = Au, u0 = f . In particular, Pt is a positive contraction semigroup
(i.e. 0 ≤ f ≤ 1 ⇒ 0 ≤ Ptf ≤ 1 and Pt+s = PtPs ) on C∞(Rd) such that (Feller
semigroup)

• Pt(C∞(Rd)) ⊂ C∞(Rd), t > 0 (Pt is invariant),

• Ptf → f as t → 0 for all f ∈ C∞(Rd) under the sup-norm (Pt is a strongly
continuous contraction semigroup on the Banach space (C∞(Rd), ‖ · ‖∞) ).
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Pseudo-differential operators

We are able to compute the semigroup and its generator as pseudo-differential
operators. We say that A is the infinitesimal generator of X(t), t > 0 and the
following representation holds

Af(x) = − 1

(2π)d

∫
Rd

e−iξ·xΨ(ξ)f̂(ξ)dξ (7)

(where f̂(ξ) =
∫
Rd e

iξ·xf(x)dx) for all functions in the domain

D(A) =

{
f ∈ L2(Rd,dx) :

∫
Rd

Ψ(ξ)|f̂(ξ)|2dξ < ∞
}

(8)

We say that Pt is a pseudo-differential operator with symbol exp(−tΨ) and, −Ψ is
the Fourier multiplier (or Fourier symbol) of A,

Âf(ξ) = −Ψ(ξ)f̂(ξ) ⇔ P̂tf(ξ) = e−tΨ(ξ)f̂(ξ). (9)
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Bochner subordination rule

Let B(t) = (B1(t), . . . , Bd(t)), t > 0 be a BM on R
d with Ψ(ξ) = |ξ|2

Let Dt, t > 0 be a stable subordinator on [0,+∞) with symbol ψ(ξ) = ξα

What about the symbol and the generator of the process

Z(t) = B(Dt), t > 0 (10)

We get
ψ ◦Ψ(ξ) = |ξ|2α, α ∈ (0, 1] (11)

and
A = − (−Δ)

α (12)

is the fractional Laplacian.
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...fractional Laplacian

the fractional power of the Laplace operator can be expressed as

−(−Δ)αf(x) =Cd(α) p.v.

∫
Rd

f(y)− f(x)

|x− y|2α+d
dy = Cd(α) p.v.

∫
Rd

f(x+ y)− f(x)

|y|2α+d
dy

(13)

where ”p.v.” stands for the ”principal value” of the singular integrals above near
the origin. For α ∈ (0, 1), the fractional Laplace operator can be defined, for
f ∈ S (the space of rapidly decaying C∞ functions), as follows

−(−Δ)αf(x) =
Cd(α)

2

∫
Rd

f(x+ y) + f(x− y)− 2f(x)

|x− y|2α+d
dy

=
Cd(α)

2

∫
Rd

f(x+ y) + f(x− y)− 2f(x)

|y|2α+d
dy, ∀x ∈ R

d. (14)
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The beautiful formula

From the Bernstein function

xα =

∫ ∞

0

(
1− e−sx

) α

Γ(1− α)

ds

sα+1
(15)

and the semigroup Ps = esΔ, we define

− (−Δ)αf(x) =

∫ ∞

0

(Psf(x)− f(x))
α

Γ(1− α)

ds

sα+1
. (16)

12



The beautiful formula

From the Bernstein function

xα =

∫ ∞

0

(
1− e−sx

) α

Γ(1− α)

ds

sα+1
(17)

and the semigroup Ps = esΔ, we define

− (−Δ)αf(x) =

∫ ∞

0

(Psf(x)− f(x))
α

Γ(1− α)

ds

sα+1
. (18)

Let ψ be the Laplace exponent of the subordinator Dt, t > 0, then

− ψ(−Δ)f(x) =

∫ ∞

0

(Psf(x)− f(x))μ(ds) (19)

is the infinitesimal generator of the subordinated process Z(t) = B(Dt), t > 0
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Fourier multiplier

From

− ψ(−A)f(x) =

∫ ∞

0

(Psf(x)− f(x))μ(ds) (20)

where Ps = exp sA, we have that

− ̂ψ(−A)f(ξ) =

∫ ∞

0

(
P̂sf(ξ)− f̂(ξ)

)
μ(ds)

=

∫ ∞

0

(
e−sΨ(ξ)f̂(ξ)− f̂(ξ)

)
μ(ds)

=−
∫ ∞

0

(
1− e−sΨ(ξ)

)
μ(ds)f̂(ξ) = −ψ ◦Ψ(ξ)f̂(ξ)

where

ψ(ξ) =

∫ ∞

0

(
1− e−sξ

)
μ(ds) (21)
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Inverse to a stable subordinator

Let Dα
t be a stable subordinator on [0,+∞) with symbol ψ(ξ) = ξα, α ∈ (0, 1).

Then, Eα
t such that

Eα
t = inf{s ≥ 0 : Dα

s > t} (22)

or such that
Pr{Eα

t < x} = Pr{Dα
x > t} (23)

is the hitting time of or the inverse to Dt. Its probability law solves

∂α
t u(x, t) =

1

Γ(1− α)

∫ t

0

du(x, r)

dr

dr

(t− r)α
= −∂xu(x, t) (24)

The Caputo derivative ∂α
t has Laplace transform∫ ∞

0

e−st∂α
t g(t) ds = sαg̃(s)− sα−1g(0) (25)
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Time-changed Brownian motion on R

X = B(Eα
t ), t > 0 (26)

Figure 1: ”from the web page of Prof. Mark M. Meerschaert ”
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Compact manifold and Laplacian

Let M be a smooth connected Riemannian manifold of dimension n ≥ 1 with
Riemannian metric g. The associated Laplace-Beltrami operator Δ = ΔM in M
is an elliptic, second order, differential operator defined in the space C∞

0 (M). In
local coordinates, this operator is written as

Δ =
1√
g

n∑
i,j=1

∂

∂xi

(
gij

√
g

∂

∂xj

)
(27)

where {gij} is the matrix of the Riemannian metric, {gij} and g are respectively
the inverse and the determinant of {gij}.

The heat kernel is the transition density of a diffusion process on M which is a
Brownian motion generated by Δ.
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Cauchy problem on M
For any y ∈ M, the heat kernel p(x, y, t) is the fundamental solution to the

heat equation
∂tu = Δu (28)

with initial point source at y. Furthermore, p(x, y, t) defines an integral kernel of
the heat semigroup Pt = e−tΔ and p(x, y, t) is the transition density of a diffusion
process on M which is a Brownian motion generated by Δ. If M is compact,
then Pt is a compact operator on L2(M). By the general theory of compact
operators, the transition density (heat kernel) p(x, y, t) can be represented as a
series expansion in terms of the eigenfunctions of −Δ, say φj ∈ C∞ and

0 ≤ λ1 < λ2 ≤ . . . ↑ +∞

such that

p(x, y, t) =

∞∑
j=1

e−λjtφj(x)φj(y) ∀ t > 0 (29)
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Fractional Cauchy problem on M - 1/2

Let

Hs(M) =

{
f ∈ L2(M) :

∞∑
l=0

(λl)
2s

(∫
M

φl(y) f(y)μ(dy)

)2

< ∞
}
. (30)

We say that Δf exists in the strong sense if it exists pointwise and is continuous
in M.

Similarly, we say that ∂β
t f(t, ·) exists in the strong sense if it exists pointwise

and is continuous for t ∈ [0,∞). One sufficient condition is that f is a C1 function
on [0,∞) with |f ′(t, ·)| ≤ c tγ−1 for some γ > 0. Then, the Caputo fractional

derivative ∂β
t f(t, ·) of f exists for every t > 0 and the derivative is continuous in

t > 0.
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Fractional Cauchy problem on M - 2/2

Let β ∈ (0, 1) and s > (3 + 3n)/4. Let M be a connected and compact
manifold (without boundary!). The unique strong solution to the fractional Cauchy
problem {

∂β
t u(m, t) = Δu(m, t), m ∈ M, t > 0

u(m, 0) = f(m), m ∈ M, f ∈ Hs(M)
(31)

is given by

u(m, t) = Ef(Bm
Et
) =

∞∑
j=1

Eβ(−tβλj)φj(m)

∫
M

φj(y)f(y)μ(dy) (32)

where Bm
t is a Brownian motion in M started at m ∈ M and Et = Eβ

t is inverse
to a stable subordinator with index 0 < β < 1.
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Subordinated Brownian motion on M

Let Bm
t be a BM on M started at m ∈ M and Dt be a subordinator with

symbol ψ. Then, the subordinated process X(t) = Bm(Dt) has infinitesimal
generator

− ψ(−Δ) =

∫ ∞

0

(Ps − I)μ(ds) (33)

where Ps is the Brownian semigroup and μ is the Lévy measure corresponding to
the symbol ψ.

In particular, let f ∈ Hs(M) and s > (3n+ 3)/4. Then,

− ψ(−Δ)f(m) = −
∑
j∈N

fjφj(m)ψ(λj) (34)

is absolutely and uniformly convergent (fj =
∫
fφjdμ)
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What about B(Et)?

• fractional Cauchy problem

• memory kernel

• slow time and slow ”diffusion”

What about B(Dt)?

• subordinate problem

• subordinate semigroup

• jumps
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Random fields on the sphere

Cosmic microwave background analysis: thermal radiation filling the observable
universe almost uniformly.

The Big Bang theory predicts that the initial conditions for the universe
are originally random in nature, and inhomogeneities follow a roughly Gaussian
probability distribution. The resulting standard model of the Big Bang uses a
Gaussian random field

23
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Subordinated rotational Brownian motion

First we recall that

�S2r
=

1

sin2 θ

∂2

∂ϕ2
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
(35)

is the Laplace operator on the sphere S
2
1 = {x ∈ R

3 : |x| = 1} for which

�
S21
Ylm = −λl Ylm (36)

with λl = l(l + 1), l ≥ 0. For θ ∈ (0, π), ϕ ∈ (0, 2π)

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(cos θ)eimϕ, |m| ≤ l (37)

are the spherical harmonics and
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Plm(z) = (−1)m(1− z2)m/2 dm

dzm
Pl(z) (38)

are the associated Legendre functions and Pl are the Legendre polynomials defined
by the Rodrigues’ formula

Pl(z) =
1

2ll!

dl

dzl
(z2 − 1)l. (39)

The Legendre polynomials Pl(z), l ≥ 0, satisfy the differential equation

d

dz

(
(1− z2)

d

dz
Pl(z)

)
= −λl Pl(z) (40)

λl = l(l + 1), l ≥ 0.
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The unique strong solution to the fractional Cauchy problem on M = S
2
1 with

initial datum u0 = f is given by

uα(x, t;x0, t0) = Ef
(
Bx(Eα

t−t0
)− x0

)
(41)

Moreover,

uα(x, t;x0, t0) =
∑
l≥0

2l + 1

4π
flEα (−λl (t− t0)

α)Pl(〈x, x0〉) (42)

where Pl, l ≥ 0 are the Legendre polynomilas and (Mittag-Leffler)

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C, �{α} > 0
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Random Field on the unit sphere

Let us consider the n-weakly isotropic random field {T (x); x ∈ S
2
1} for which

ET (gx) = 0, E|T (gx)|n < ∞, T (gx)
d
= T (x), for all g ∈ SO(3).

The following spectral representation

T (x) =
∑
l≥0

+l∑
m=−l

almYlm(x) =
∑
l≥0

Tl(x) (43)

holds true in L2(dP ⊗ dμ), where

alm =

∫
S21

T (x)Y ∗
lm(x)μ(x), l ≥ 0, |m| ≤ l (44)

and μ is the Lebesgue measure, μ(S21) = 4π.
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We have that
E[T (x)] = 0

E[T (x)]2 =
∑
l≥0

2l + 1

4π
Cl < ∞ ⇒ Cl ≈ l−γ, γ > 2

E[Tl(x)Tl(y)] =
2l + 1

4π
Pl(〈x, y〉)Cl

and
E|alm|2 = Cl, l ≥ 0

is the angular power spectrum.

→If T is isotropic, then the harmonic coefficients alm are zero-mean and
uncorrelated over l and m.

→If T is Gaussian, then alm are Gaussian and independent random coefficients
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High-frequency / High-resolution analysis

Since
L2(S21) =

⊕
l≥0

Hl (45)

the random field Tl(x) in

T (x) =
∑
l≥0

∑
|m|≤l

almYlm(x) =
∑
l≥0

Tl(x) (46)

represents the projection of T on the eigenspace Hl. As l increases we get more
and more information about T (about observation in real data). In particular, we
are interested on the high-frequency behavior of the angular power spectrum

Cl, l > L, L large (47)
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Long range dependence

Let T (x) be the random field previously introduced and Xt a process on S
2
1.

We define a coordinates changed time dependent random field as follows

Tt(x) = T (x+Xt), x ∈ S
2
1, t > 0. (48)

We say that the zero-mean process Tt(x) exhibits long range dependence if

∞∑
τ=1

E[Tt+τ(x)Tt(x)] = ∞. (49)

Otherwise, we have short range dependence.
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non-Markovian coordinates change

Let Et = Eβ
t be an inverse to a stable subordinator of order β and B a BM on

S
2
1. For

Tβ
t (x) = T (Bx

Et
) = T (x+B

xN
Et

), x ∈ S
2
1, t > 0, β ∈ (0, 1) (50)

(xN is the North Pole) we get that, for l > L, L large

∞∑
τ=1

E[Tβ
t+τ,l(x)T

β
t,l(x)] = ∞ (51)

and

Cβ
l ≈ l−γEβ(−l2) ≈ l−γ−2

Γ(1− β)
− l−γ−4

Γ(1− 2β)
+ . . . , γ > 2 (52)
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Markovian coordinates change

Let Dt be a subordinator with symbol ψ and B a BM on S
2
1. For

Tψ
t (x) = T (Bx

Dt
) = T (x+B

xN
Dt

), x ∈ S
2
1, t > 0 (53)

(xN is the North Pole) we get that, for l > L, L large

∞∑
τ=1

E[Tψ
t+τ,l(x)T

ψ
t,l(x)] =

2l + 1

4π

Cl

eψ(λl) − 1
≈ 2l + 1

4π
l−γe−ψ(l2) < ∞ (54)

and
Cψ

l ≈ l−γe−ψ(l2), γ > 2 (55)
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Let us consider the sum of an α-stable subordinator, say Xt and, a geometric
β-stable subordinator, say Yt. We assume that Xt and Yt are independent. For
c, d ≥ 0, the subordinator Xct + Ydt, t > 0 has the symbol

ψ(ξ) = c ξα + d ln(1 + ξβ), α, β ∈ (0, 1).

The corresponding covariance function of Tψ
t (x) leads to

∞∑
τ=1

E[Tψ
t+τ,l(x)T

ψ
t,l(x)] =

2l + 1

4π
Cl

∞∑
τ=1

(
e−cλα

l

(1 + λβ
l )

d

)τ

=
2l + 1

4π
Cl

1

ecλ
α
l + λdβ

l ecλ
α
l − 1

≈2l + 1

4π
l−γ−2dβe−cl2α, l large

→ ”there exist infinite Bernstein functions” ←
33



The CMB radiation can be associated with the so-called age of recombination, that is an early

stage in the development of the universe. CMB radiation confirms the theory explained by the Big

Bang model. Due to Einstein cosmological principle (universe looks identical everywhere in space

and appears the same in every direction), the CMB radiation can be also considered as an isotopic
image of the early universe and therefore, from a mathematical point of view, CMB radiation can

be viewed as a realization of an isotropic random field on the sphere, say T (x), x ∈ S
2
1, for which

the variance is finite and the mean equals zero. Furthermore, we require Gaussianity. Indeed, from

the prevailing models for early Big Bang dynamics, the so-called inflationary scenario, the random

fluctuations have to be Gaussian.

The angular power spectrum of the random fields considered in this work exhibits polynomial

and/or exponential behavior in the high-frequency (or resolution) analysis and therefore, we introduce

a large class of models in which many aspects can be captured, such as Sachs-Wolfe effect (the

predominant source of fluctuations, pol decay) or Silk damping effect (also called collisionless

damping: anisotropies reduced, universe and CMB radiation more uniform, exp decay). We provide

a probabilistic interpretation of the anisotropies of the CMB radiation and we characterize the class

D introduced in Marinucci-Peccati 2010 by means of the coordinates change of random fields
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Thank You!

Erkan Nane Auburn University

Time fractional Cauchy Problems


	AMS-talk-UM-first-page-october-20-21-2018-page1
	AMS-talk-UM-first-page-october-20-21-2018-page2-new
	AMS-talk-UM-first-page-october-20-21-2018-page3
	4-35-new-yeni-yeni
	AMS-talk-UM-october-20-21-2018-last-page



