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Introduction Long Memory Stochastic Volatility (LMSV)

Long Memory Stochastic Volatility

Let {ηj , j ∈ Z} be a sequence of i.i.d. standard normal random variables.
Define

Yj =
∞∑
k=1

akηj−k . (1)

The coefficients ak are such that

var

 n∑
j=1

Yj

 ∼ n2−D`2(n) , D ∈ (0, 1) .

Note: most of the limit theorems in case of long memory are for f (Yj),
where Yj is as in (1) (with possibly arbitrary marginal distribution).
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Introduction Long Memory Stochastic Volatility (LMSV)

Long Memory Stochastic Volatility

Let {εj , j ≥ 0} be a sequence of i.i.d. random variables. For φ ≥ 0 define

Xj = φ(Yj)εj , j ≥ 0 , Fj = σ({ηi , εi}, i ≤ j) . (2)

Properties:

LMSV model: where {ηj} and {εj} are independent.

Model with leverage: where {(ηj , εj)} is a sequence of i.i.d. random
vectors. For fixed j , εj and Yj are independent, but Yj may not be
independent of the past {εi , i < j}.

Also, in case of no-leverage:

cov(X0,Xk) = (E[ε0])2cov(φ(Y0), φ(Yk)) , k ≥ 1 .

In this talk LMSV means a model with leverage.
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Introduction Tools for long memory

Some tools for long memory

For a stationary, long range dependent Gaussian process {Yj , j ≥ 1} and a
measurable function g such that E

[
g2(Y1)

]
<∞ the corresponding

Hermite expansion is defined by

g(Y1)− E [g(Y1)] =
∞∑

q=m

Jq(g)

q!
Hq(Y1) ,

where Hq is the q-th Hermite polynomial,

Jq(g) = E [g(Y1)Hq(Y1)]

and

m = inf {q ≥ 1 | Jq(g) 6= 0} . (3)

The integer m is called the Hermite rank of g and we refer to Jq(g) as the
q-th Hermite coefficient of g .
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Introduction Tools for long memory

Some tools for long memory

The asymptotic behavior of partial sums of subordinated Gaussian
sequences is characterized in Taqqu (1979). Due to the functional
non-central limit theorem in that paper, if mD < 1, then

1

dn,m

bntc∑
j=1

g(Yj)⇒
Jm(g)

r !
Zm,H(t), 0 ≤ t ≤ 1, (4)

where Zm,H(t), 0 ≤ t ≤ 1, is an m-th order Hermite process,

d2
n,m = var

 n∑
j=1

Hm(Yj)

 ∼ cmn
2−mDLm(n), cm =

2m!

(1− Dm)(2− Dm)
,

and the convergence holds in D([0, 1]), See Dehling and Taqqu (1981).
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Change point problem Hypothesis testing

Hypothesis testing

Given the observations X1, . . . ,Xn and a function ψ, we define ξj = ψ(Xj),
j = 1, . . . , n, and we consider the testing problem:

H0 :E[ξ1] = · · · = E[ξn] ,

H1 :∃ k ∈ {1, . . . , n − 1} such that

E[ξk ] = · · · = E[ξk ] 6= E[ξk+1] = · · · = E[ξn] .

We choose ψ according to the specific change-point problem considered.
Possible choices include:

ψ(x) = x in order to detect changes in the mean of the observations
X1, . . . ,Xn (change in location);

ψ(x) = x2 in order to detect changes in the variance of the
observations X1, . . . ,Xn (change in volatility).
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Change point problem Hypothesis testing

Test statistics

The CUSUM test rejects the hypothesis for large values of the test
statistic Cn = sup

0≤λ≤1
Cn(λ), where

Cn(λ) =

∣∣∣∣∣∣
bnλc∑
j=1

ψ(Xj)−
bnλc
n

n∑
j=1

ψ(Xj)

∣∣∣∣∣∣ . (5)

The Wilcoxon test rejects the hypothesis for large values of the test
statistic Wn = sup

0≤λ≤1
Wn(λ), where

Wn(λ) =

∣∣∣∣∣∣
bnλc∑
i=1

n∑
j=bnλc+1

(
1{ψ(Xi )≤ψ(Xj )} −

1

2

)∣∣∣∣∣∣ . (6)
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Change point problem Relevant literature

Relevant literature

iid case: Csörgö and Horvath (1997);

long memory (subordinated Gaussian or linear processes): Giraitis et
al. (1996) - Kolmogorov-Smirnov change point in marginal
distribution; Horvath and Kokoszka (1997) - CUSUM test for mean;
Dehling et al. (2013) - CUSUM and Wilcoxon test; Betken (2016) -
CUSUM and Wilcoxon tests; Tewes (2017) - Kolmogorov-Smirnov
and Cramer - von Mises change point tests. CUSUM and Wilcoxon
tests are affected by long memory; relative efficiency is 1;

Nothing available in LMSV case!;

self-normalization in change point testing for short and long memory
linear processes: Shao and Zhang (2010); Shao (2011); Dehling et al.
(2013); Betken (2016);

spurious long memory: Berkes at el. (2006); Section 7.9.1 in Beran et
al. (2013).
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Change point problem CUSUM test for LMSV

Partial sums behaviour

In order to determine the asymptotic behavior of the CUSUM test statistic
we have to consider the partial sum process

bntc∑
j=1

(ψ(Xj)− E [ψ(Xj)]) , t ∈ [0, 1] .

Let

Fj = σ (εj , εj−1, . . . , ηj , ηj−1, . . .) , Ψ(y) = E [ψ(φ(y)ε1)] .

Denote by m the Hermite rank of Ψ and by Jm(Ψ) the corresponding
Hermite coefficient.
Let Zm,H(t) be the Hermite-Rosenblatt process with the Hurst index H.
Let B(t) be a standard Brownian motion.
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Change point problem CUSUM test for LMSV

Partial sums behaviour

Theorem 1 (Theorem 4.10 in Beran et al. (2013))

Assume that {Xj , j ≥ 1} follows the LMSV model. Furthermore, assume
that σ2 = E[ψ2(X1)] <∞.

1 If E[ψ(X1) | F0] 6= 0 and mD < 1, then

1

dn,m

bntc∑
j=1

(ψ(Xj)− E[ψ(Xj)])⇒ Jm(Ψ)

m!
Zm,H(t) , t ∈ [0, 1] ,

in D([0, 1]).

2 If E[ψ(X1) | F0] = 0, then

1√
n

bntc∑
j=1

ψ(Xj)⇒ σB(t) , t ∈ [0, 1] .

in D([0, 1]), where B denotes a Brownian motion process and
σ2 = E(ψ2(X1)).

Rafa l Kulik Change Point and Long Memory Ann Arbor, 20/10/2018 12 / 23



Change point problem CUSUM test for LMSV

Asymptotics for CUSUM test

As an immediate consequence of Theorem 1, we obtain the asymptotic
distribution of the CUSUM statistic.

Corollary 2 (Betken and Kulik (2018))

Assume that the conditions of Theorem 1 hold.

1 If E[ψ(X1) | F0] 6= 0 and mD < 1, then

1

dn,m
sup

0≤λ≤1
Cn(λ)⇒ |Jm(Ψ)|

m!
sup

0≤t≤1
|Zm,H(t)− tZm,H(1)| . (7)

2 If E[ψ(X1) | F0] = 0, then

1√
n

sup
0≤λ≤1

Cn(λ)⇒ σ sup
0≤t≤1

|B(t)− tB(1)| .
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Change point problem CUSUM test for LMSV

CUSUM test - comments

It is important to note that the Hermite rank of Ψ does not
necessarily correspond to the Hermite rank of the function φ(·) that
appears in the definition of the LMSV model.

If ψ(x) = x (change in the mean) and E[ε0] = 0, then long memory
in LMSV does not affect the CUSUM test.

If ψ(x) = x2 (change in the variance), then long memory in LMSV
affects the CUSUM test.

For long memory linear processes, long memory always affects
CUSUM test (see Horvath and Kokoszka (1997), Betken (2016)).
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Change point problem Wilcoxon test for LMSV

Sequential empirical process

In order to determine the asymptotic distribution of the Wilcoxon test
statistic for the LMSV model, we need to establish an analogous result for
the stochastic volatility process {Xj , j ≥ 1}, i.e. our preliminary goal is to
prove a limit theorem for the two-parameter empirical process

Gn(x , t) =

bntc∑
j=1

(
1{ψ(Xj )≤x} − Fψ(X1)(x)

)
,

where now Fψ(X1) denotes the distribution function of ψ(X1) with
X1 = φ(Y1)ε1. To state the weak convergence, we introduce the following
notation:

Ψx(y) = P (ψ(yε1) ≤ x) .
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Change point problem Wilcoxon test for LMSV

Asymptotics for sequential empirical process

Theorem 3 (Betken and Kulik (2018))

Assume that {Xj , j ≥ 1} follows the LMSV model. Moreover, assume that
Ψx(y) is differentiable and that∫

d

dy
Ψx(y)dy <∞ . (8)

Let m denote the Hermite rank of the class{
1{φ(Y1)≤x} − Fφ(Y1)(x), x ∈ R

}
.

If mD < 1, then in D ([−∞,∞]× [0, 1]):

1

dn,m
Gn(x , t)⇒ Jm(Ψx ◦ σ)

m!
Zm,H(t) , x ∈ [−∞,∞] , t ∈ [0, 1] . (9)
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Change point problem Wilcoxon test for LMSV

Asymptotic for Wilcoxon test

Corollary 4

Under the conditions of Theorem 3

1

ndn,m
sup
λ∈[0,1]

Wn(λ)

⇒
∣∣∣∣∫ Jm(Ψx ◦ φ)dFψ(X1)(x)

∣∣∣∣ 1

m!
sup
λ∈[0,1]

|Zm,H(λ)− λZm,H(1)| .
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Change point problem Wilcoxon test for LMSV

Wilcoxon test - comments

Wilcoxon tests for a change in the mean or change in the variance of
LMSV models are typically affected by long memory. This is in line
with the findings for subordinated Gaussian processes; cf. Dehling et
al. (2013).

For LMSV, CUSUM test for change in the mean is much more
efficient than the Wilcoxon test.
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Change point problem Self-normalization

Self-normalization

In order to avoid estimation of the normalization and the unknown
coefficients in the limit, we consider the self-normalized CUSUM test
statistic. For 0 < τ1 < τ2 < 1 it is defined by

Tn(τ1, τ2) = sup
k∈{bnτ1c,...,bnτ2c}

|Gn(k)| ,

where

Gn(k) =

∑k
j=1 ξj −

k
n

∑n
j=1 ξj{

1
n

∑k
t=1 S

2
t (1, k) + 1

n

∑n
t=k+1 S

2
t (k + 1, n)

} 1
2

with St(j , k) =
∑t

h=j

(
ξh − ξ̄j ,k

)
, ξ̄j ,k = 1

k−j+1

∑k
t=j ξt . The

self-normalized CUSUM test rejects the hypothesis for large values of the
test statistic Tn(τ1, τ2).
Similar ideas for Wilcoxon test.
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Change point problem Numerical results

self-norm. CUSUM self-norm. Wilcoxon

α = 2.5 α = 4 α = 2.5 α = 4
H n h = 0 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0 h = 0.5 h = 1

τ
=

0.
25

0.6 500 0.046 0.181 0.539 0.042 0.688 0.958 0.032 0.879 0.991 0.030 0.995 1.000
1000 0.049 0.290 0.722 0.044 0.862 0.990 0.032 0.973 1.000 0.030 1.000 1.000
2000 0.053 0.458 0.875 0.026 0.967 0.999 0.034 0.999 1.000 0.028 1.000 1.000

0.7 500 0.051 0.204 0.552 0.042 0.697 0.954 0.029 0.680 0.938 0.021 0.960 0.997
1000 0.050 0.295 0.727 0.046 0.866 0.990 0.032 0.856 0.988 0.027 0.993 1.000
2000 0.049 0.455 0.868 0.042 0.966 0.998 0.037 0.948 0.999 0.030 0.999 1.000

0.8 500 0.045 0.226 0.580 0.044 0.720 0.951 0.031 0.424 0.772 0.021 0.815 0.964
1000 0.042 0.338 0.736 0.040 0.870 0.989 0.033 0.559 0.862 0.024 0.915 0.984
2000 0.050 0.498 0.881 0.052 0.960 0.998 0.034 0.673 0.938 0.023 0.958 0.998

0.9 500 0.044 0.329 0.645 0.041 0.760 0.947 0.031 0.309 0.582 0.020 0.640 0.861
1000 0.051 0.446 0.761 0.042 0.871 0.980 0.039 0.369 0.650 0.034 0.734 0.912
2000 0.041 0.585 0.869 0.048 0.949 0.996 0.049 0.422 0.719 0.039 0.791 0.947

τ
=

0.
5

0.6 500 0.384 0.801 0.904 0.990 0.994 1.000 1.000 1.000
1000 0.564 0.909 0.973 0.998 1.000 1.000 1.000 1.000
2000 0.744 0.962 0.993 1.000 1.000 1.000 1.000 1.000

0.7 500 0.401 0.801 0.902 0.989 0.950 1.000 1.000 1.000
1000 0.565 0.904 0.972 0.998 0.993 1.000 1.000 1.000
2000 0.744 0.966 0.994 0.999 1.000 1.000 1.000 1.000

0.8 500 0.424 0.804 0.899 0.990 0.776 0.977 0.987 0.999
1000 0.589 0.905 0.966 0.997 0.896 0.995 0.998 1.000
2000 0.761 0.959 0.994 0.999 0.963 0.999 1.000 1.000

0.9 500 0.527 0.815 0.893 0.982 0.622 0.890 0.912 0.990
1000 0.650 0.898 0.959 0.997 0.708 0.936 0.956 0.996
2000 0.781 0.954 0.989 0.999 0.779 0.960 0.976 0.998

Table 1: Rejection rates of the self-normalized CUSUM and the self-normalized Wilcoxon test (with τ1 = 1 − τ2 = 0.15) for LMSV time series (Pareto
distributed εj , j ≥ 1) of length n with Hurst parameter H, tail index α and a shift in the mean of height h after a proportion τ . The calculations
are based on 5,000 simulation runs.
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Change point problem Summary for LMSV

Summary

In general, an application of Wilcoxon-type tests reduces the influence of
heavy tails in data generating processes on test decisions. As a result,
Wilcoxon-based testing procedures yield better results when testing for
changes in LMSV time series. In fact, this is reflected by the simulation
results for both of the considered situations, i.e. when testing for changes
in the mean and when testing for changes in the variance. In both cases,
CUSUM-based change-point tests are outperformed by Wilcoxon-based
testing procedures. In particular, the simulation results show that
CUSUM-based tests are highly unreliable when testing for a change in the
variance.

For light tailed change point in the mean, use CUSUM test;

In general, use Wilcoxon test!
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Change point problem Some open questions

Questions

Regularly α-varying noise ε (α ∈ (0, 1)) and E[φα+δ(Y1)] <∞ -
CUSUM test interplay between long memory and tails? No effect of
heavy tails on Wilcoxon test?

φ(Y1) regularly varying (α ∈ (0, 1)) and lighter noise. Dichotomy in
CUSUM test? No idea about Wilcoxon.
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Thank you!!!
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