| Previous result | ts |
|-----------------|----|
|-----------------|----|

Basic Setting

Main results

<ロ> (四) (四) (三) (三) (三) (三)

References

1/14

# Noether theorem for random locations

### Jie Shen

(Joint work with Shunlong Luo, Yi Shen)

Department of Statistics and Actuarial Science University of Waterloo

> Oct 21, 2018 Ann Arbor, Michigan

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
|                  |               |              |            |
|                  |               |              |            |

2 Basic Setting



| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
|                  |               |              |            |

2 Basic Setting





# Existing results for random locations of some processes

#### Definition

A mapping  $L: H \times \mathcal{I} \to \mathbb{R} \cup \{\infty\}$  is called an intrinsic location functional, if it satisfies:

- The mapping  $L(\cdot, I) : H \to \mathbb{R} \cup \{\infty\}$  is measurable.
- $L(g,I) \in I \cup \{\infty\}.$
- (Shift compatibility) For every  $g \in H, I \in \mathcal{I}$  and  $c \in \mathbb{R}$ ,

$$L(g,I) = L(\theta_c g, I - c) + c,$$

where I - c is the interval *I* shifted by -c, and by convention,  $\infty + c = \infty$ .

- (Stability under restrictions) For every  $g \in H$  and  $I_1, I_2 \in \mathcal{I}$ ,  $I_2 \subseteq I_1$ , if  $L(g, I_1) \in I_2$ , then  $L(g, I_2) = L(g, I_1)$ .
- (Consistency of existence) For every  $g \in H$  and  $I_1, I_2 \in \mathcal{I}$ ,  $I_2 \subseteq I_1$ , if  $L(g, I_2) \neq \infty$ , then  $L(g, I_1) \neq \infty$ .

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
|                  |               |              |            |
|                  |               |              |            |
|                  |               |              |            |

### Results of

- Random locations for stationary processes; (Samorodnitsky and Shen, 2013)
- Random locations for processes with stationary increments; (Shen, 2016)
- Processes combining both a scaling symmetry and a stationarity of the increments.(Shen, 2018).

Above processes: exhibiting certain probabilistic symmetries. Question: unified framework of random locations with probabilistic symmetries.

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
|                  |               |              |            |
|                  |               |              |            |







| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
|                  |               |              |            |
|                  |               |              |            |

#### Definition

A stochastic process  $\{L(I)\}_{I \in \mathcal{I}}$  indexed by compact intervals and taking values in  $\overline{R}$  is called an intrinsic random location, if it satisfies the following conditions:

- For every  $I \in \mathcal{I}$ ,  $L(I) \in I \cup \{\infty\}$ .
- (Stability under restriction) For every  $I_1, I_2 \in \mathcal{I}, I_2 \subseteq I_1$ , if  $L(I_1) \in I_2$ , then  $L(I_1) = L(I_2)$ .
- (Consistency of existence) For every  $I_1, I_2 \in \mathcal{I}, I_2 \subseteq I_1$ , if  $L(I_2) \neq \infty$ , then  $L(I_1) \neq \infty$ .

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
|                  |               |              |            |
|                  |               |              |            |

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

8/14

φ = {φ<sup>t</sup>}<sub>t∈ℝ</sub>: a flow satisfies
1. φ<sup>0</sup> = Id;
2. φ<sup>s</sup> ∘ φ<sup>t</sup> = φ<sup>s+t</sup>;
3. φ(x,t) = φ<sup>t</sup>(x) ∈ C<sup>1,1</sup>(ℝ × ℝ);
4. The fixed points Φ<sub>0</sub> := {x : φ<sup>t</sup>(x) ≡ x} are isolated.

• 
$$\varphi$$
-stationary:  $\varphi^t(L([a,b])) \stackrel{a}{=} L([\varphi^t(a),\varphi^t(b)])$ .

|  | esul |  |
|--|------|--|
|  |      |  |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 → 今

8/14

- φ = {φ<sup>t</sup>}<sub>t∈ℝ</sub>: a flow satisfies
  1. φ<sup>0</sup> = Id;
  2. φ<sup>s</sup> ∘ φ<sup>t</sup> = φ<sup>s+t</sup>;
  3. φ(x,t) = φ<sup>t</sup>(x) ∈ C<sup>1,1</sup>(ℝ × ℝ);
  4. The fixed points Φ<sub>0</sub> := {x : φ<sup>t</sup>(x) ≡ x} are isolated.
- $\varphi$ -stationary:  $\varphi^t(L([a,b])) \stackrel{d}{=} L([\varphi^t(a),\varphi^t(b)]).$
- Define a transform  $\tau : (\alpha, \beta) \to \mathbb{R}$  by  $\varphi^{\tau(x)}(x_0) = x$ , and  $L'(I) = \tau(L(\tau^{-1}(I)))$  for  $I \in \mathcal{I}$ .
- *L'* is a stationary intrinsic random location.
- Compare intrinsic location functionals and intrinsic random locations.

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
|                  |               |              |            |
|                  |               |              |            |

Partial order given by *L*:
S := {x ∈ ℝ : x = L(I) for some I ∈ I}, and binary relation "≤" on S, x ≤ y if there exists I ∈ I, such that x, y ∈ I, L(I) = y.

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
|                  |               |              |            |
|                  |               |              |            |

- Partial order given by *L*:
  S := {x ∈ ℝ : x = L(I) for some I ∈ I}, and binary relation "≤" on S, x ≤ y if there exists I ∈ I, such that x, y ∈ I, L(I) = y.
- Point process related to L
  - 1.  $l_x := \sup\{y \in S : y < x, x \leq y\}, r_x := \inf\{y \in S : y > x, x \leq y\}.$
  - 2.  $\mathcal{E}$ : collections of  $(l_x, x, r_x) \in \mathbb{R}^3$
  - 3. Point process:  $\xi := \sum_{\epsilon_x \in \mathcal{E}} \delta_{\epsilon_x}$
  - 4. Control measure of  $\xi$ :  $\eta(A) := \mathbb{E}(\xi(A))$  for A.

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
|                  |               |              |            |
|                  |               |              |            |

- Partial order given by *L*:
  S := {x ∈ ℝ : x = L(I) for some I ∈ I}, and binary relation "≤" on S, x ≤ y if there exists I ∈ I, such that x, y ∈ I, L(I) = y.
- Point process related to L
  - 1.  $l_x := \sup\{y \in S : y < x, x \leq y\}, r_x := \inf\{y \in S : y > x, x \leq y\}.$
  - 2.  $\mathcal{E}$ : collections of  $(l_x, x, r_x) \in \mathbb{R}^3$
  - 3. Point process:  $\xi := \sum_{\epsilon_x \in \mathcal{E}} \delta_{\epsilon_x}$
  - 4. Control measure of  $\xi$ :  $\eta(A) := \mathbb{E}(\xi(A))$  for A.
- For stationary intrinsic random location L on an interval (a, b),

$$P(L([a,b]) \in [u,v]) = \eta((-\infty,a) \times (u,v) \times (b,\infty)).$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
|                  |               |              |            |
|                  |               |              |            |

2 Basic Setting





|   | Theorem                                                                  |
|---|--------------------------------------------------------------------------|
| j | Let L be a $\varphi$ -stationary intrinsic random location. Then for any |

Main results

I = [a, b], the distribution of L(I) has a càdlàg density function, denoted by f, which satisfies

Basic Setting

$$\dot{\varphi}^{0}(x_{2})f(x_{2}) - \dot{\varphi}^{0}(x_{1})f(x_{1}) = \nu_{\varphi}^{(a,b)}((x_{1},x_{2}]) - \mu_{\varphi}^{(a,b)}((x_{1},x_{2}])$$

where  $\dot{\varphi}^0(x)$  is the partial derivative of  $\varphi$  with respect to t at time 0,  $\mu_{\varphi}^{(a,b)}$  and  $\nu_{\varphi}^{(a,b)}$  are the pull-backs of  $\mu^{(a,b)}$  and  $\nu^{(a,b)}$  under  $\tau$ .

References

| Theorem          |                                   |                 |
|------------------|-----------------------------------|-----------------|
| Let L be a co-st | ationary intrinsic random locatio | on Then for any |

Main results

References

Let L be a  $\varphi$ -stationary intrinsic random tocation. Then for any I = [a, b], the distribution of L(I) has a càdlàg density function, denoted by f, which satisfies

Basic Setting

$$\dot{\varphi}^{0}(x_{2})f(x_{2}) - \dot{\varphi}^{0}(x_{1})f(x_{1}) = \nu_{\varphi}^{(a,b)}((x_{1},x_{2}]) - \mu_{\varphi}^{(a,b)}((x_{1},x_{2}])$$

where  $\dot{\varphi}^0(x)$  is the partial derivative of  $\varphi$  with respect to t at time 0,  $\mu_{\varphi}^{(a,b)}$  and  $\nu_{\varphi}^{(a,b)}$  are the pull-backs of  $\mu^{(a,b)}$  and  $\nu^{(a,b)}$  under  $\tau$ .

۲

$$\mu^{(a,b)}([w,y)) = \eta((z_1, z_2, z_3):$$
  
$$z_1 \in [a, a+1), z_2 \in [z_1 + w - a, z_1 + y - a), z_3 \in (z_1 + b - a, \infty))$$

$$\nu^{(a,b)}([w,y)) = \eta((z_1, z_2, z_3) :$$
  
$$z_1 \in (-\infty, z_3 + a - b), z_2 \in [z_3 + w - b, z_3 + y - b), z_3 \in (b, b + 1]) = 0$$

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
| Conservation law |               |              |            |

 Noether theorem: differential symmetry ⇒ conservation law.

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
| Conservation law |               |              |            |

- Noether theorem: differential symmetry ⇒ conservation law.
- Translation in space  $\Rightarrow$  the conservation of momentum;
- Translation in time  $\Rightarrow$  the conservation of energy;
- Rotation in space  $\Rightarrow$  the conservation of angular momentum.

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
| Conservation law |               |              |            |

- Noether theorem: differential symmetry ⇒ conservation law.
- Translation in space  $\Rightarrow$  the conservation of momentum;
- Translation in time  $\Rightarrow$  the conservation of energy;
- Rotation in space  $\Rightarrow$  the conservation of angular momentum.

| Previous results | Basic Setting | Main results | References |
|------------------|---------------|--------------|------------|
| Conservation law |               |              |            |

- Noether theorem: differential symmetry ⇒ conservation law.
- Translation in space  $\Rightarrow$  the conservation of momentum;
- Translation in time  $\Rightarrow$  the conservation of energy;
- Rotation in space  $\Rightarrow$  the conservation of angular momentum.

#### Corollary

Denote by  $f_t(x)$  the density of  $L([\varphi^t(a_0), \varphi^t(b_0)])$  at point x,  $K(y) = \nu_{\varphi}^{(a_0, b_0)}((x_0, y]) - \mu_{\varphi}^{(a_0, b_0)}((x_0, y])$  for  $y \in (a_0, b_0)$ .  $\dot{\varphi}^0(x) f_t(x) - K((\varphi^t)^{-1}(x))$ 

is a constant for t satisfying  $x \in (\varphi^t(a_0), \varphi^t(b_0))$ .

(ロ) (回) (E) (E) (E) (O)

13/14

## Boundary and near boundary behavior

- X = {X(t)}<sub>t≥0</sub> be a continuous semimartingale with stationary increments;
- $\tau_{\mathbf{X},I} := \inf\{t \in I : X(t) = \sup_{s \in I} X(s)\}$  is the location of the path supremum.
- $\tau_{\mathbf{X},I}$  is almost surely unique;
- Local martingale part of **X** almost surely does not have any flat part;

(ロ) (部) (注) (注) (注) ()

13/14

## Boundary and near boundary behavior

- X = {X(t)}<sub>t≥0</sub> be a continuous semimartingale with stationary increments;
- $\tau_{\mathbf{X},I} := \inf\{t \in I : X(t) = \sup_{s \in I} X(s)\}$  is the location of the path supremum.
- $\tau_{\mathbf{X},I}$  is almost surely unique;
- Local martingale part of **X** almost surely does not have any flat part;
- P(τ<sub>X,I</sub> = a) = P(τ<sub>X,I</sub> = b) = 0, and the density of τ exploded near a or near b.

| Pre | vio | us | res | ults |  |
|-----|-----|----|-----|------|--|
|     |     |    |     |      |  |

### Reference

- Samorodnitsky, G. and Shen, Y. (2013). Intrinsic location functionals of stationary processes. *Stochastic Processes and their Applications*, 123(11):4040–4064.
- Shen, Y. (2016). Random locations, ordered random sets and stationarity. *Stochastic Processes and their Applications*, 126(3):906–929.
- Shen, Y. (2018). Location of the path supremum for self-similar processes with stationary increments. *Annales de l'Institut Henri Poincaré (B)*. (to appear).