Noether theorem for random locations

Jie Shen
(Joint work with Shunlong Luo, Yi Shen)
Department of Statistics and Actuarial Science
University of Waterloo

Oct 21, 2018
Ann Arbor, Michigan
(1) Previous results
(2) Basic Setting
(3) Main results

(1) Previous results

(2) Basic Setting

(3) Main results

Existing results for random locations of some processes

Definition

A mapping L : $H \times \mathcal{I} \rightarrow \mathbb{R} \cup\{\infty\}$ is called an intrinsic location functional, if it satisfies:

- The mapping $L(\cdot, I): H \rightarrow \mathbb{R} \cup\{\infty\}$ is measurable.
- $L(g, I) \in I \cup\{\infty\}$.
- (Shift compatibility) For every $g \in H, I \in \mathcal{I}$ and $c \in \mathbb{R}$,

$$
L(g, I)=L\left(\theta_{c} g, I-c\right)+c,
$$

where $I-c$ is the interval I shifted by $-c$, and by convention, $\infty+c=\infty$.

- (Stability under restrictions) For every $g \in H$ and $I_{1}, I_{2} \in \mathcal{I}$, $I_{2} \subseteq I_{1}$, if $L\left(g, I_{1}\right) \in I_{2}$, then $L\left(g, I_{2}\right)=L\left(g, I_{1}\right)$.
- (Consistency of existence) For every $g \in H$ and $I_{1}, I_{2} \in \mathcal{I}$, $I_{2} \subseteq I_{1}$, if $L\left(g, I_{2}\right) \neq \infty$, then $L\left(g, I_{1}\right) \neq \infty$.

Results of

- Random locations for stationary processes; (Samorodnitsky and Shen, 2013)
- Random locations for processes with stationary increments; (Shen, 2016)
- Processes combining both a scaling symmetry and a stationarity of the increments.(Shen, 2018).
Above processes: exhibiting certain probabilistic symmetries.
Question: unified framework of random locations with probabilistic symmetries.

(1) Previous results

(2) Basic Setting

(3) Main results

Definition

A stochastic process $\{L(I)\}_{I \in \mathcal{I}}$ indexed by compact intervals and taking values in \bar{R} is called an intrinsic random location, if it satisfies the following conditions:

- For every $I \in \mathcal{I}, L(I) \in I \cup\{\infty\}$.
- (Stability under restriction) For every $I_{1}, I_{2} \in \mathcal{I}, I_{2} \subseteq I_{1}$, if $L\left(I_{1}\right) \in I_{2}$, then $L\left(I_{1}\right)=L\left(I_{2}\right)$.
- (Consistency of existence) For every $I_{1}, I_{2} \in \mathcal{I}, I_{2} \subseteq I_{1}$, if $L\left(I_{2}\right) \neq \infty$, then $L\left(I_{1}\right) \neq \infty$.
- $\varphi=\left\{\varphi^{t}\right\}_{t \in \mathbb{R}}$: a flow satisfies

1. $\varphi^{0}=I d$;
2. $\varphi^{s} \circ \varphi^{t}=\varphi^{s+t}$;
3. $\varphi(x, t)=\varphi^{t}(x) \in C^{1,1}(\mathbb{R} \times \mathbb{R})$;
4. The fixed points $\Phi_{0}:=\left\{x: \varphi^{t}(x) \equiv x\right\}$ are isolated.

- $\varphi=\left\{\varphi^{t}\right\}_{t \in \mathbb{R}}$: a flow satisfies

1. $\varphi^{0}=I d$;
2. $\varphi^{s} \circ \varphi^{t}=\varphi^{s+t}$;
3. $\varphi(x, t)=\varphi^{t}(x) \in C^{1,1}(\mathbb{R} \times \mathbb{R})$;
4. The fixed points $\Phi_{0}:=\left\{x: \varphi^{t}(x) \equiv x\right\}$ are isolated.

- φ-stationary: $\varphi^{t}(L([a, b])) \stackrel{d}{=} L\left(\left[\varphi^{t}(a), \varphi^{t}(b)\right]\right)$.
- $\varphi=\left\{\varphi^{t}\right\}_{t \in \mathbb{R}}$: a flow satisfies

1. $\varphi^{0}=I d$;
2. $\varphi^{s} \circ \varphi^{t}=\varphi^{s+t}$;
3. $\varphi(x, t)=\varphi^{t}(x) \in C^{1,1}(\mathbb{R} \times \mathbb{R})$;
4. The fixed points $\Phi_{0}:=\left\{x: \varphi^{t}(x) \equiv x\right\}$ are isolated.

- φ-stationary: $\varphi^{t}(L([a, b])) \stackrel{d}{=} L\left(\left[\varphi^{t}(a), \varphi^{t}(b)\right]\right)$.
- Define a transform $\tau:(\alpha, \beta) \rightarrow \mathbb{R}$ by $\varphi^{\tau(x)}\left(x_{0}\right)=x$, and $L^{\prime}(I)=\tau\left(L\left(\tau^{-1}(I)\right)\right)$ for $I \in \mathcal{I}$.
- L^{\prime} is a stationary intrinsic random location.
- Compare intrinsic location functionals and intrinsic random locations.
- Partial order given by L :
$S:=\{x \in \mathbb{R}: x=L(I)$ for some $I \in \mathcal{I}\}$, and binary relation " \preceq " on $S, x \preceq y$ if there exists $I \in \mathcal{I}$, such that $x, y \in I, L(I)=y$.
- Partial order given by L :
$S:=\{x \in \mathbb{R}: x=L(I)$ for some $I \in \mathcal{I}\}$, and binary relation " \preceq " on $S, x \preceq y$ if there exists $I \in \mathcal{I}$, such that $x, y \in I, L(I)=y$.
- Point process related to L

1. $l_{x}:=\sup \{y \in S: y<x, x \preceq y\}, r_{x}:=\inf \{y \in S: y>x, x \preceq y\}$.
2. \mathcal{E} : collections of $\left(l_{x}, x, r_{x}\right) \in \mathbb{R}^{3}$
3. Point process: $\xi:=\sum_{\epsilon_{x} \in \mathcal{E}} \delta_{\epsilon_{x}}$
4. Control measure of $\xi: \eta(A):=\mathbb{E}(\xi(A))$ for A.

- Partial order given by L :
$S:=\{x \in \mathbb{R}: x=L(I)$ for some $I \in \mathcal{I}\}$, and binary relation " \preceq " on $S, x \preceq y$ if there exists $I \in \mathcal{I}$, such that $x, y \in I, L(I)=y$.
- Point process related to L

1. $l_{x}:=\sup \{y \in S: y<x, x \preceq y\}, r_{x}:=\inf \{y \in S: y>x, x \preceq y\}$.
2. \mathcal{E} : collections of $\left(l_{x}, x, r_{x}\right) \in \mathbb{R}^{3}$
3. Point process: $\xi:=\sum_{\epsilon_{x} \in \mathcal{E}} \delta_{\epsilon_{x}}$
4. Control measure of $\xi: \eta(A):=\mathbb{E}(\xi(A))$ for A.

- For stationary intrinsic random location L on an interval (a, b),

$$
P(L([a, b]) \in[u, v])=\eta((-\infty, a) \times(u, v) \times(b, \infty)) .
$$

(1) Previous results

(2) Basic Setting
(3) Main results

Theorem

Let L be a φ-stationary intrinsic random location. Then for any $I=[a, b]$, the distribution of $L(I)$ has a càdlàg density function, denoted by f, which satisfies

$$
\dot{\varphi}^{0}\left(x_{2}\right) f\left(x_{2}\right)-\dot{\varphi}^{0}\left(x_{1}\right) f\left(x_{1}\right)=\nu_{\varphi}^{(a, b)}\left(\left(x_{1}, x_{2}\right]\right)-\mu_{\varphi}^{(a, b)}\left(\left(x_{1}, x_{2}\right]\right)
$$

where $\dot{\varphi}^{0}(x)$ is the partial derivative of φ with respect to t at time 0 , $\mu_{\varphi}^{(a, b)}$ and $\nu_{\varphi}^{(a, b)}$ are the pull-backs of $\mu^{(a, b)}$ and $\nu^{(a, b)}$ under τ.

Theorem

Let L be a φ-stationary intrinsic random location. Then for any $I=[a, b]$, the distribution of $L(I)$ has a càdlàg density function, denoted by f, which satisfies

$$
\dot{\varphi}^{0}\left(x_{2}\right) f\left(x_{2}\right)-\dot{\varphi}^{0}\left(x_{1}\right) f\left(x_{1}\right)=\nu_{\varphi}^{(a, b)}\left(\left(x_{1}, x_{2}\right]\right)-\mu_{\varphi}^{(a, b)}\left(\left(x_{1}, x_{2}\right]\right)
$$

where $\dot{\varphi}^{0}(x)$ is the partial derivative of φ with respect to t at time 0 , $\mu_{\varphi}^{(a, b)}$ and $\nu_{\varphi}^{(a, b)}$ are the pull-backs of $\mu^{(a, b)}$ and $\nu^{(a, b)}$ under τ.
-

$$
\begin{aligned}
& \quad \mu^{(a, b)}([w, y))=\eta\left(\left(z_{1}, z_{2}, z_{3}\right):\right. \\
& \left.z_{1} \in[a, a+1), z_{2} \in\left[z_{1}+w-a, z_{1}+y-a\right), z_{3} \in\left(z_{1}+b-a, \infty\right)\right)
\end{aligned}
$$

-

$$
\begin{aligned}
& \nu^{(a, b)}([w, y))=\eta\left(\left(z_{1}, z_{2}, z_{3}\right):\right. \\
& \left.z_{1} \in\left(-\infty, z_{3}+a-b\right), z_{2} \in\left[z_{3}+w-b, z_{3}+y-b\right), z_{3} \in(b, b+1]\right)
\end{aligned}
$$

Conservation law

- Noether theorem: differential symmetry \Rightarrow conservation law.

Conservation law

- Noether theorem: differential symmetry \Rightarrow conservation law.
- Translation in space \Rightarrow the conservation of momentum;
- Translation in time \Rightarrow the conservation of energy;
- Rotation in space \Rightarrow the conservation of angular momentum.

Conservation law

- Noether theorem: differential symmetry \Rightarrow conservation law.
- Translation in space \Rightarrow the conservation of momentum;
- Translation in time \Rightarrow the conservation of energy;
- Rotation in space \Rightarrow the conservation of angular momentum.

Conservation law

- Noether theorem: differential symmetry \Rightarrow conservation law.
- Translation in space \Rightarrow the conservation of momentum;
- Translation in time \Rightarrow the conservation of energy;
- Rotation in space \Rightarrow the conservation of angular momentum.

Corollary

Denote by $f_{t}(x)$ the density of $L\left(\left[\varphi^{t}\left(a_{0}\right), \varphi^{t}\left(b_{0}\right)\right]\right)$ at point x, $K(y)=\nu_{\varphi}^{\left(a_{0}, b_{0}\right)}\left(\left(x_{0}, y\right]\right)-\mu_{\varphi}^{\left(a_{0}, b_{0}\right)}\left(\left(x_{0}, y\right]\right)$ for $y \in\left(a_{0}, b_{0}\right)$.

$$
\dot{\varphi}^{0}(x) f_{t}(x)-K\left(\left(\varphi^{t}\right)^{-1}(x)\right)
$$

is a constant for t satisfying $x \in\left(\varphi^{t}\left(a_{0}\right), \varphi^{t}\left(b_{0}\right)\right)$.

Boundary and near boundary behavior

- $\mathbf{X}=\{X(t)\}_{t \geq 0}$ be a continuous semimartingale with stationary increments;
- $\tau_{\mathbf{X}, I}:=\inf \left\{t \in I: X(t)=\sup _{s \in I} X(s)\right\}$ is the location of the path supremum.
- $\tau_{\mathbf{X}, I}$ is almost surely unique;
- Local martingale part of \mathbf{X} almost surely does not have any flat part;

Boundary and near boundary behavior

- $\mathbf{X}=\{X(t)\}_{t \geq 0}$ be a continuous semimartingale with stationary increments;
- $\tau_{\mathbf{X}, I}:=\inf \left\{t \in I: X(t)=\sup _{s \in I} X(s)\right\}$ is the location of the path supremum.
- $\tau_{\mathbf{X}, I}$ is almost surely unique;
- Local martingale part of \mathbf{X} almost surely does not have any flat part;
- $P\left(\tau_{\mathbf{X}, I}=a\right)=P\left(\tau_{\mathbf{X}, I}=b\right)=0$, and the density of τ exploded near a or near b.

Reference

Samorodnitsky, G. and Shen, Y. (2013). Intrinsic location functionals of stationary processes. Stochastic Processes and their Applications, 123(11):4040-4064.

Shen, Y. (2016). Random locations, ordered random sets and stationarity. Stochastic Processes and their Applications, 126(3):906-929.

Shen, Y. (2018). Location of the path supremum for self-similar processes with stationary increments. Annales de l'Institut Henri Poincaré (B). (to appear).

