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Existing results for random locations of some processes

Definition
A mapping L: H × I → R ∪ {∞} is called an intrinsic location
functional, if it satisfies:

The mapping L(·, I) : H → R ∪ {∞} is measurable.

L(g, I) ∈ I ∪ {∞}.
(Shift compatibility) For every g ∈ H, I ∈ I and c ∈ R,

L(g, I) = L(θcg, I − c) + c,

where I − c is the interval I shifted by −c, and by convention,
∞+ c =∞.

(Stability under restrictions) For every g ∈ H and I1, I2 ∈ I,
I2 ⊆ I1, if L(g, I1) ∈ I2, then L(g, I2) = L(g, I1).

(Consistency of existence) For every g ∈ H and I1, I2 ∈ I,
I2 ⊆ I1, if L(g, I2) 6=∞, then L(g, I1) 6=∞.
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Results of

Random locations for stationary processes; (Samorodnitsky and
Shen, 2013)

Random locations for processes with stationary increments;
(Shen, 2016)

Processes combining both a scaling symmetry and a stationarity
of the increments.(Shen, 2018).

Above processes: exhibiting certain probabilistic symmetries.
Question: unified framework of random locations with probabilistic
symmetries.
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Definition

A stochastic process {L(I)}I∈I indexed by compact intervals and
taking values in R̄ is called an intrinsic random location, if it satisfies
the following conditions:

For every I ∈ I, L(I) ∈ I ∪ {∞}.
(Stability under restriction) For every I1, I2 ∈ I, I2 ⊆ I1, if
L(I1) ∈ I2, then L(I1) = L(I2).

(Consistency of existence) For every I1, I2 ∈ I, I2 ⊆ I1, if
L(I2) 6=∞, then L(I1) 6=∞.
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ϕ = {ϕt}t∈R: a flow satisfies
1. ϕ0 = Id;
2. ϕs ◦ ϕt = ϕs+t;
3. ϕ(x, t) = ϕt(x) ∈ C1,1(R× R);
4. The fixed points Φ0 := {x : ϕt(x) ≡ x} are isolated.

ϕ-stationary: ϕt(L([a, b]))
d
= L([ϕt(a), ϕt(b)]).

Define a transform τ : (α, β)→ R by ϕτ(x)(x0) = x, and
L′(I) = τ(L(τ−1(I))) for I ∈ I.

L′ is a stationary intrinsic random location.

Compare intrinsic location functionals and intrinsic random
locations.
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Partial order given by L:
S := {x ∈ R : x = L(I) for some I ∈ I}, and binary relation “�”
on S, x � y if there exists I ∈ I, such that x, y ∈ I,L(I) = y.

Point process related to L
1. lx := sup{y ∈ S : y < x, x � y}, rx := inf{y ∈ S : y > x, x � y}.
2. E : collections of (lx, x, rx) ∈ R3

3. Point process: ξ :=
∑
εx∈E δεx

4. Control measure of ξ: η(A) := E(ξ(A)) for A.

For stationary intrinsic random location L on an interval (a, b),

P(L([a, b]) ∈ [u, v]) = η((−∞, a)× (u, v)× (b,∞)).
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Theorem
Let L be a ϕ-stationary intrinsic random location. Then for any
I = [a, b], the distribution of L(I) has a càdlàg density function,
denoted by f , which satisfies

ϕ̇0(x2)f (x2)− ϕ̇0(x1)f (x1) = ν(a,b)ϕ ((x1, x2])− µ(a,b)ϕ ((x1, x2])

where ϕ̇0(x) is the partial derivative of ϕ with respect to t at time 0,
µ
(a,b)
ϕ and ν(a,b)ϕ are the pull-backs of µ(a,b) and ν(a,b) under τ .

µ(a,b)([w, y)) = η((z1, z2, z3) :

z1 ∈ [a, a+1), z2 ∈ [z1+w−a, z1+y−a), z3 ∈ (z1+b−a,∞))

ν(a,b)([w, y)) = η((z1, z2, z3) :

z1 ∈ (−∞, z3+a−b), z2 ∈ [z3+w−b, z3+y−b), z3 ∈ (b, b+1])
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Conservation law

Noether theorem:
differential symmetry⇒ conservation law.

Translation in space⇒ the conservation of momentum;

Translation in time⇒ the conservation of energy;

Rotation in space⇒ the conservation of angular momentum.

Corollary

Denote by ft(x) the density of L([ϕt(a0), ϕt(b0)]) at point x,
K(y) = ν

(a0,b0)
ϕ ((x0, y])− µ(a0,b0)

ϕ ((x0, y]) for y ∈ (a0, b0).

ϕ̇0(x)ft(x)− K((ϕt)−1(x))

is a constant for t satisfying x ∈ (ϕt(a0), ϕt(b0)).
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Boundary and near boundary behavior

X = {X(t)}t≥0 be a continuous semimartingale with stationary
increments;

τX,I := inf{t ∈ I : X(t) = sups∈I X(s)} is the location of the
path supremum.

τX,I is almost surely unique;

Local martingale part of X almost surely does not have any flat
part;

P(τX,I = a) = P(τX,I = b) = 0, and the density of τ exploded
near a or near b.
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