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Homozygosity Definition

Definition

Let γ(t) denote the gamma subordinator with Lévy measure

Λ(d x) = x−1e−xd x , x > 0.

For any θ > 0, let J1(θ) ≥ J2(θ) ≥ · · · denote the jump sizes of γ(t) over
the interval [0, θ] in descending order. If we set Pi (θ) = Ji (θ)/γ(θ), i ≥ 1,
then the law of

P(θ) = (P1(θ),P2(θ), . . .)

is Kingman’s Poisson-Dirichlet distribution PD(θ). It is a probability on
the infinite-dimensional simplex

∇∞ = {p = (p1,p2, . . .) : p1 ≥ p2 ≥ · · · ≥ 0,
∞∑

i=1

pi ≤ 1}.
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Homozygosity Definition

Definition

For any integer m ≥ 2, the function

H(p; m) =
∞∑

i=1

pm
i , p ∈ ∇∞

is loosely called the homozygosity of order m. The name is taken from
population genetics where the homozygosity corresponds to m = 2. It
represents the probability that all samples are of the same type when a
random sample of size m is selected from the population.
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Homozygosity Definition

Definition

The function is closely associated with the Shannon entropy in
communication, the Herfindahl-Hirschmam index in economics, and the
Gini-Simpson index in ecology. It provides a measure of concentration of
the population in terms of individual types with large values corresponding
to higher concentration.
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Homozygosity Definition

Definition

If the proportions are random, then homozygosity becomes a random
variable.

Assume that the proportions of individual types follow distribution PD(θ).
The focus of this talk will be the random homozygosity

H(P(θ); m).
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Homozygosity LLN and Gaussian Limit

LLN

Question: What is the asymptotic behaviour of H(P(θ); m) when θ tends
to infinity?

LLN:
H(P(θ); m)→ 0 in probability, θ →∞.

θm−1

Γ(m) H(P(θ); m)→ 1 in probability, θ →∞.
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Homozygosity LLN and Gaussian Limit

Gaussian Limit

Theorem (Joyce, Krone and Kurtz (02))

√
θ[
θm−1

Γ(m)
H(P(θ); m)− 1]⇒ Zm

where Zm is a normal random variable with mean zero and variance

Γ(2m)

Γ2(m)
−m2.
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Homozygosity LLN and Gaussian Limit

Gaussian Limit

H(P(θ); m) ≈ Γ(m)

θm−1
+

Γ(m)

θm−1/2
Zm

and

θm−1

Γ(m)
H(P(θ); m) ≈ 1 + θ−1/2Zm

It is natural to investigate more refined structures associated with the
limits

H(P(θ); m)→ 0, θ →∞

and
θm−1

Γ(m)
H(P(θ); m)→ 1, θ →∞.
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Large Deviations Deviation From Zero

Large Deviations From Zero

Theorem (Dawson and F (06))

The family {H(P(θ); m) : θ > 0} satisfies a LDP with speed θ and rate
function

I(y) =

{
log 1

1−y1/m , y ∈ [0, 1]

∞, else.

10 / 23



Large Deviations Deviation From Zero

Moderate Deviations

Let a(θ) satisfy

lim
θ→∞

a(θ) =∞, lim
θ→∞

a(θ)√
θ

= 0,

and

lim inf
θ→∞

a1−ε(θ)

θ(m−1)/(2m−1)
> 0

for some ε in (0, 1
2m−1 ).
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Large Deviations Deviation From Zero

Moderate Deviations

Theorem (Gao and F (08))

The family a(θ)
(
θm−1

Γ(m) H(P(θ),m)− 1
)

satisfies a LDP with speed a2(θ)
θ

and rate function x2

2(Γ(2m)/Γ(m)2−m2)
, x ∈ R.
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Large Deviations Deviation From Zero

Remark

Let a(θ) = θδ. Then moderate deviation holds for

θδ
(
θm−1

Γ(m)
H(P(θ),m)− 1

)
if and only if δ ∈ ( m−1

2m−1 ,
1
2 ).

This indicates a significant departure from the Gaussian regime when δ is
between 0 and m−1

2m−1 .
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Large Deviations Deviation From One

Large Deviations From One

The case δ = 0 corresponds to the large deviations of

θm−1

Γ(m)
H(P(θ),m)

from one.

Fundamental Differences From LDP for H(P(θ),m)

The state space is no longer compact

Exponential tightness is not free

Do not have exponential moment in the neighbourhood of zero
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Large Deviations Deviation From One

Large Deviations From One

Theorem (Dawson and F(16))

A large deviation principle holds for θm−1

Γ(m) H(P(θ); m) as θ converges to

infinity on space R with speed θ1/m and good rate function

S(x) =

{
[Γ(m)(x− 1)]1/m, x ≥ 1,
+∞, otherwise.

Note: The scale of deviations for x < 1 is different from that of x > 1.
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Large Deviations Link Between the Two Rate Functions

Link Between the Two Rate Functions

Question: Can one derive the LDP for θm−1

Γ(m) H(P(θ); m) from the LDP for

H(P(θ); m) or vice versa?

Answer: ??
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Large Deviations Link Between the Two Rate Functions

Link Between the Two Rate Functions

Recall that the LDP for H(P(θ); m) has speed θ and rate function

I(y) =

{
− log(1− y1/m), y ∈ [0, 1]
∞, otherwise

Since H(P(θ); m) and H(P(θ); m)− Γ(m)
θm−1 are exponentially equivalent, the

same LDP holds for H(P(θ); m)− Γ(m)
θm−1 .
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Large Deviations Link Between the Two Rate Functions

Link Between the Two Rate Functions

Write θm−1

Γ(m) H(P(θ); m) as

θm−1

Γ(m)
[H(P(θ); m)− Γ(m)

θm−1
] + 1.

For x ∈ [1,∞) and θm−1

Γ(m) H(P(θ); m) = x, let y = Γ(m)
θm−1 (x− 1). Then

exp{−θI(y)} = exp{−θ1/m+m/(m−1) log
1

1− ( Γ(m)
θm−1 (x− 1))1/m

}

≈ exp{−θ1/mS(x)}.
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Main Steps of Proof

Main Steps of Proof

Step 1

Showing that LDP for general θ is equivalent to θ being integers.

Step 2

For integer θ, find a new representation of θm−1

Γ(m) H(P(θ); m) as

θm−1

Γ(m)
H(P(θ); m) =

θm−1

Γ(m)
[

1

γm(θ)

θ∑
k=1

Wm
k Hk]

where W1, . . . ,Wθ are independent copies of γ(1), and independently,
H1, . . . ,Hθ are independent copies of H(P(1); m).
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Main Steps of Proof

Main Steps of Proof

Step 3

Exploring the independence and the LDP for gamma distribution to verify
that the LDP for θm−1

Γ(m) H(P(θ); m) is equivalent to the LDP for

1

Γ(m)θ

θ∑
k=1

Wm
k Hk

Step 4

Applying Cramér’s theorem for x < 1.

Step 5

Applying Nagaev’s result for x > 1.
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Main Steps of Proof

Generalizations

What about other random distributions?
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Main Steps of Proof
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Main Steps of Proof

Thanks!
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