Excursion landscape

Ju-Yi Yen

University of Cincinnati

AMS Sectional Meeting at Indiana University, Bloomington

ongoing work with J. Najnudel & J. Pitman

April 2, 2017

J.-Y. Yen (Cincinnati)

Notations

• $B = (B_t, t \ge 0)$ is a one-dimensional standard Brownian motion

- $B^{br} = (B_t^{br}, 0 \le t \le 1)$ is a Brownian bridge
- $B^{ex} = (B^{ex}_t, 0 \le t \le 1)$ is a Brownian excursion
- $B^{me} = (B^{me}_t, 0 \le t \le 1)$ is a Brownian meander

That is

$$\begin{array}{ll} B^{br} & \stackrel{(d)}{=} & (B_t, 0 \le t \le 1 | B_1 = 0) \\ B^{ex} & \stackrel{(d)}{=} & (B_t, 0 \le t \le 1 | B_t > 0 \text{ for } 0 < t < 1 \text{ and } B_1 = 0) \\ B^{me} & \stackrel{(d)}{=} & (B_t, 0 \le t \le 1 | B_t > 0 \text{ for } 0 < t \le 1) \end{array}$$

Bessel Processes and the χ^2_k -distribution

- Let (R_t^(k), t ≥ 0) denote a BES(k) process (k ≥ 0) whose square is the sum of squares of k independent copies of (B_t, t ≥ 0) with the usual additive structure for all real k ≥ 0
- So the one-dimensional distributions of $R^{(k)}$ are determined for all k:

$$R_t^{(k)} \stackrel{(d)}{=} t^{1/2} \chi_k$$

where $\chi_0 = 0$ and χ_k^2 has gamma (k/2, 1/2) distribution, for k > 0:

$$\frac{\mathbb{P}(\chi_k \in dx)}{dx} = \frac{x^{k-1}e^{-\frac{1}{2}x^2}\mathbb{1}(x>0)}{2^{\frac{k}{2}-1}\Gamma(\frac{k}{2})}$$

J.-Y. Yen (Cincinnati)

Regard $X[S, T] := (X_t, S \le t \le T)$ as a random landscape The depth process of X on [S, T] is

$$\begin{array}{lll} D[S,T] &:= & (D_t,S \leq t \leq T) \text{ with} \\ D_t &:= & W_t - X_t \geq 0 & \text{where} \\ W_t &:= & (\max_{S \leq s \leq t} X_s) \wedge (\max_{t \leq s \leq T} X_s) & \text{for } S \leq t \leq T \end{array}$$

is the water level process with drains at S and T.

- Let $\mu := \arg \max X[S, T]$ (the watershed). Note: $D_S = D_{\mu} = D_T$.
- $W[S,\mu]$ \uparrow as the past max of X[S,T] on $[S,\mu]$.
- $W[\mu, T] \downarrow$ as the future max of X[S, T] on $[\mu, T]$.

The point (t, X_t) in the original landscape is then submerged at depth D_t below the water level $W_t = X_t + D_t$.

Brownian scaling

For S and T with $\mathbb{P}(S < T) = 1$, map $B_t, S \leq t \leq T$ to

$$B_*[S,T] := (B_*[S,T]_u, 0 \le u \le 1) := \left(\frac{B_{S+u(T-S)}}{\sqrt{T-S}}, 0 \le u \le 1\right)$$

For T > 0 a fixed time (or a random time independent of B), let (g_T, d_T) be the excursion interval of B away from 0 which straddles T.

Examples for basic Brownian landscapes X over [0, 1]:

Bertoin-Pitman (1994) surveys path transformations.

Given a collection of *n* distinct drain points U_1, \ldots, U_n with $0 < U_i < 1$, let

$$0 = U_{n,0} < U_{n,1} < \cdots < U_{n,n} < U_{n,n+1} = 1$$

be $\{0, U_1, ..., U_n, 1\}$ in increasing order.

The depth process of X on [0, 1] with drains at $U_1, ..., U_n$ is the process D_n on [0, 1] which on each interval $[U_{n,i}, U_{n,i+1}]$ equals the depth process of X on $[U_{n,i}, U_{n,i+1}]$. In particular, we let

 $D_0(X)$ be the depth process of X := X[0, 1] with drains at 0 and 1. $D_n(X)$ be the depth process with additional *n* drains at $U_i, 1 \le i \le n$ (in addition to drains at 0 and 1).

- According to Vervaat's transformation, a cyclic shift of increments of B^{ex} to start them at time U_1 gives a copy of B^{br} whose minimum value is $-B^{ex}(U_1)$. So $B^{ex}(U_1) \stackrel{(d)}{=} -\min_{0 \le t \le 1} B^{br} \stackrel{(d)}{=} \max_{0 \le t \le 1} B^{br}$
- The Vervaat shift involves a repetitive landscape defined by periodic extension of $-B^{ex}$ to the reals.
- If this repetitive landscape is viewed from the point (U, -B^{ex}(U)) and independent of B^{ex}, this landscape becomes a periodic extension of a copy of B^{br} from which 1 U may be recovered as arg max B^{br}.
 Recall B^{ex} ^(d)/₌ R^{br}₃, where R^{br}₃ denotes the law of the BES(3) bridge.

Corollary

$$(\arg \max B^{br}, \max B^{br}) \stackrel{(d)}{=} (U, B^{ex}(U)) \stackrel{(d)}{=} (U, R_3^{br}(U)) \stackrel{(d)}{=} (U, \frac{1}{2}\chi_2)$$

Conditioning on $\arg \max B^{br} = t$,

$$\max B^{br} \stackrel{(d)}{=} R_3^{br}(t) \stackrel{(d)}{=} B_3^{br}(t) \stackrel{(d)}{=} \sqrt{t(1-t)}\chi(3),$$

where B_3^{br} is a 3-dimensional Brownian bridge. Therefore,

$$(\arg \max B^{br}, \max B^{br}) \stackrel{(d)}{=} (U, \sqrt{U(1-U)}\chi(3))$$

where U and $\chi(3)$ are independent.

< ロ > < 同 > < 三 > < 三

E 990

Theorem (Pitman-Yor, 2003)

For a standard Brownian motion B, let $\overline{B}_t : \max_{0 \le u \le t} B_u$, and let $R_t := \overline{B}_t - B_t$. Let (g_s, d_s) be the excursion interval of R away from 0 that straddles time s. Let $M_s := \max_{g_s \le u \le d_s} R_u$ be the maximum of R over this excursion interval, and

$$V_t := \int_0^t \mathbb{1}(M_s \leq \overline{B}_s) ds$$
 and $\alpha_u := \inf\{t : V_t > u\}.$

Then the process $(B_{\alpha_u}, u \ge 0)$ is a BES(3).

Informal proof

- BES(3) process can be reconstructed from its excursions below its running maximum
- BES(3) can be viewed as Brownian motion conditioned to stay positive
- The excision operation just converts the PPP of Brownian excursions into the "right" PPP for BES(3) excursions.
- The point process of excursions of BES(3) below its past maximum process is identical in law to the point process obtained from the excursions of *B* below its past maximum process by deletion of every excursion whose depth exceeds its starting level, meaning that the path of *B* hits zero during that excursion interval.

Excision of excursions

- Now, we excise all excursions below the waterline which reaches 0.
 We consider a Brownian motion stopped at T_x, conditioned by T_x = t, where T_x is the first hitting time of x.
- The excursion is kept if and only if the depth is < y, the excursion is excised if and only if its depth is ≥ y.

 $\mathbb{P}[\text{excised excursion}|y, \zeta]$

- $= \mathbb{P}[\max_{[0,\zeta]} \{\mathsf{BES}(3) \text{ bridge with lifetime } \zeta\} \geq y]$
- $= \mathbb{P}[\max_{[0,1]} \{ \mathsf{BES}(3) \text{ bridge with lifetime } 1 \} \geq \frac{y}{\sqrt{\zeta}}] =: F(y/\sqrt{\zeta})$
- Taking level y and lifetime ζ , we get two independent PPP with respective intensities $\frac{dyd\zeta}{\sqrt{2\pi\zeta^{3/2}}}(F(y/\sqrt{\zeta}))$ for excised excursion, and $\frac{dyd\zeta}{\sqrt{2\pi\zeta^{3/2}}}(1 F(y/\sqrt{\zeta}))$ for non-excised excursion.

The total lifetime Z_x of the excised excursions

The law of the excised Brownian bridge stopped at T_x , conditioning on arg max $B^{br} = t$ and max $B^{br} = x$ can be computed as follows:

$$\mathbb{E}[G((B_{s})_{s \leq T_{x}} \text{ excised})|T_{x} = t]$$

$$= \mathbb{E}[G((R_{s}^{(3)})_{s \leq T_{x}})|T_{x} + Z_{x} = t]$$

$$= \frac{\mathbb{E}[G((R_{s}^{(3)})_{s \leq T_{x}}), Z_{x} = t - T_{x}]}{\mathbb{P}[Z_{x} + T_{x} = t]}$$

$$= \frac{\mathbb{E}[G((R_{s}^{(3)})_{s \leq T_{x}})D_{Z_{x}}(t - T_{x})]}{\mathbb{E}[D_{Z_{x}}(t - T_{x})]},$$

where D_{Z_x} is the density of the law of the total lifetime Z_x of excised excursions.

This conditional law has density proportional to $D_{Z_x}(t - T_x)$ with respect to the law of a BES(3) process up to T_x . The law of Z_x is the sum of ζ for a PPP with intensity $\frac{dyd\zeta}{\sqrt{2\pi}\zeta^{3/2}}(F(y/\sqrt{\zeta}))$.