Excursion landscape

Ju-Yi Yen

University of Cincinnati
AMS Sectional Meeting at Indiana University, Bloomington ongoing work with J. Najnudel \& J. Pitman

April 2, 2017

Notations

- $B=\left(B_{t}, t \geq 0\right)$ is a one-dimensional standard Brownian motion
- $B^{b r}=\left(B_{t}^{b r}, 0 \leq t \leq 1\right)$ is a Brownian bridge
- $B^{\text {ex }}=\left(B_{t}^{e x}, 0 \leq t \leq 1\right)$ is a Brownian excursion
- $B^{m e}=\left(B_{t}^{m e}, 0 \leq t \leq 1\right)$ is a Brownian meander

That is

$$
\begin{aligned}
B^{b r} & \stackrel{(d)}{=} \\
B^{e x} & \stackrel{(d)}{=}\left(B_{t}, 0 \leq t \leq 1 \mid B_{1}=0\right) \\
B^{m e} & \stackrel{(d)}{=}\left(B_{t}, 0 \leq t \leq 1 \mid B_{t}>0 \text { for } 0<t<1 \mid B_{t}>0 \text { for } 0<t \leq 1\right)
\end{aligned}
$$

Bessel Processes and the χ_{k}^{2}-distribution

- Let $\left(R_{t}^{(k)}, t \geq 0\right)$ denote a $\operatorname{BES}(k)$ process $(k \geq 0)$ whose square is the sum of squares of k independent copies of $\left(B_{t}, t \geq 0\right)$ with the usual additive structure for all real $k \geq 0$
- So the one-dimensional distributions of $R^{(k)}$ are determined for all k :

$$
R_{t}^{(k)} \stackrel{(d)}{=} t^{1 / 2} \chi_{k}
$$

where $\chi_{0}=0$ and χ_{k}^{2} has gamma $(k / 2,1 / 2)$ distribution, for $k>0$:

$$
\frac{\mathbb{P}\left(\chi_{k} \in d x\right)}{d x}=\frac{x^{k-1} e^{-\frac{1}{2} x^{2}} \mathbb{1}(x>0)}{2^{\frac{k}{2}-1} \Gamma\left(\frac{k}{2}\right)}
$$

Depth process

Regard $X[S, T]:=\left(X_{t}, S \leq t \leq T\right)$ as a random landscape The depth process of X on $[S, T]$ is

$$
\begin{aligned}
D[S, T] & :=\left(D_{t}, S \leq t \leq T\right) \text { with } \\
D_{t} & :=W_{t}-X_{t} \geq 0 \text { where } \\
W_{t} & :=\left(\max _{S \leq s \leq t} X_{s}\right) \wedge\left(\max _{t \leq s \leq T} X_{s}\right) \text { for } S \leq t \leq T
\end{aligned}
$$

is the water level process with drains at S and T.

- Let $\mu:=\arg \max X[S, T]$ (the watershed). Note: $D_{S}=D_{\mu}=D_{T}$.
- $W[S, \mu] \uparrow$ as the past max of $X[S, T]$ on $[S, \mu]$.
- $W[\mu, T] \downarrow$ as the future \max of $X[S, T]$ on $[\mu, T]$.

The point $\left(t, X_{t}\right)$ in the original landscape is then submerged at depth D_{t} below the water level $W_{t}=X_{t}+D_{t}$.

Brownian scaling

For S and T with $\mathbb{P}(S<T)=1$, map $B_{t}, S \leq t \leq T$ to

$$
B_{*}[S, T]:=\left(B_{*}[S, T]_{u}, 0 \leq u \leq 1\right):=\left(\frac{B_{S+u(T-S)}}{\sqrt{T-S}}, 0 \leq u \leq 1\right)
$$

For $T>0$ a fixed time (or a random time independent of B), let $\left(g_{T}, d_{T}\right)$ be the excursion interval of B away from 0 which straddles T.

Examples for basic Brownian landscapes X over $[0,1]$:
(1) $B_{*}\left[0, g_{T}\right] \stackrel{(d)}{=} B^{b r}$
(2) $\left|B_{*}\left[g_{T}, d_{T}\right]\right| \stackrel{(d)}{=} B^{e x} \stackrel{(d)}{=} \operatorname{BES}(3)$ bridge of length 1 from 0 to 0
(3) $\left|B_{*}\left[g_{T}, T\right]\right| \stackrel{(d)}{=} B^{m e}$

Bertoin-Pitman (1994) surveys path transformations.

Depth process with drains (Definition)

Given a collection of n distinct drain points U_{1}, \ldots, U_{n} with $0<U_{i}<1$, let

$$
0=U_{n, 0}<U_{n, 1}<\cdots<U_{n, n}<U_{n, n+1}=1
$$

be $\left\{0, U_{1}, \ldots, U_{n}, 1\right\}$ in increasing order.
The depth process of X on $[0,1]$ with drains at U_{1}, \ldots, U_{n} is the process D_{n} on $[0,1]$ which on each interval $\left[U_{n, i}, U_{n, i+1}\right]$ equals the depth process of X on $\left[U_{n, i}, U_{n, i+1}\right]$. In particular, we let
$D_{0}(X)$ be the depth process of $X:=X[0,1]$ with drains at 0 and 1. $D_{n}(X)$ be the depth process with additional n drains at $U_{i}, 1 \leq i \leq n$ (in addition to drains at 0 and 1).

$B^{b r} \leftrightarrow B^{e x}$ (Vervaat)

- According to Vervaat's transformation, a cyclic shift of increments of $B^{e x}$ to start them at time U_{1} gives a copy of $B^{b r}$ whose minimum value is $-B^{e x}\left(U_{1}\right)$. So $B^{e x}\left(U_{1}\right) \stackrel{(d)}{=}-\min _{0 \leq t \leq 1} B^{b r} \stackrel{(d)}{=} \max _{0 \leq t \leq 1} B^{b r}$
- The Vervaat shift involves a repetitive landscape defined by periodic extension of $-B^{e x}$ to the reals.
- If this repetitive landscape is viewed from the point $\left(U,-B^{e x}(U)\right)$ and independent of $B^{e x}$, this landscape becomes a periodic extension of a copy of $B^{b r}$ from which $1-U$ may be recovered as arg max $B^{b r}$.
- Recall $B^{e x} \stackrel{(d)}{=} R_{3}^{b r}$, where $R_{3}^{b r}$ denotes the law of the $\operatorname{BES}(3)$ bridge.

Corollary

$$
\left(\arg \max B^{b r}, \max B^{b r}\right) \stackrel{(d)}{=}\left(U, B^{e x}(U)\right) \stackrel{(d)}{=}\left(U, R_{3}^{b r}(U)\right) \stackrel{(d)}{=}\left(U, \frac{1}{2} \chi_{2}\right)
$$

Conditioning on $\arg \max B^{b r}=t$,

$$
\max B^{b r} \stackrel{(d)}{=} R_{3}^{b r}(t) \stackrel{(d)}{=} B_{3}^{b r}(t) \stackrel{(d)}{=} \sqrt{t(1-t)} \chi(3)
$$

where $B_{3}^{b r}$ is a 3-dimensional Brownian bridge. Therefore,

$$
\left(\arg \max B^{b r}, \max B^{b r}\right) \stackrel{(d)}{=}(U, \sqrt{U(1-U)} \chi(3))
$$

where U and $\chi(3)$ are independent.

A path transformation

Theorem (Pitman-Yor, 2003)

For a standard Brownian motion B, let $\bar{B}_{t}: \max _{0 \leq u \leq t} B_{u}$, and let $R_{t}:=\bar{B}_{t}-B_{t}$. Let $\left(g_{s}, d_{s}\right)$ be the excursion interval of R away from 0 that straddles time s. Let $M_{s}:=\max _{g_{s} \leq u \leq d_{s}} R_{u}$ be the maximum of R over this excursion interval, and

$$
V_{t}:=\int_{0}^{t} \mathbb{1}\left(M_{s} \leq \bar{B}_{s}\right) d s \text { and } \alpha_{u}:=\inf \left\{t: V_{t}>u\right\} .
$$

Then the process $\left(B_{\alpha_{u}}, u \geq 0\right)$ is a $B E S(3)$.

Informal proof

- BES(3) process can be reconstructed from its excursions below its running maximum
- BES(3) can be viewed as Brownian motion conditioned to stay positive
- The excision operation just converts the PPP of Brownian excursions into the "right" PPP for BES(3) excursions.
- The point process of excursions of $\operatorname{BES}(3)$ below its past maximum process is identical in law to the point process obtained from the excursions of B below its past maximum process by deletion of every excursion whose depth exceeds its starting level, meaning that the path of B hits zero during that excursion interval.

Excision of excursions

- Now, we excise all excursions below the waterline which reaches 0 . We consider a Brownian motion stopped at T_{x}, conditioned by $T_{x}=t$, where T_{x} is the first hitting time of x.
- The excursion is kept if and only if the depth is $<y$, the excursion is excised if and only if its depth is $\geq y$.
$\mathbb{P}[$ excised excursion $\mid y, \zeta]$
$=\mathbb{P}\left[\max _{[0, \zeta]}\{\operatorname{BES}(3)\right.$ bridge with lifetime $\left.\zeta\} \geq y\right]$
$=\mathbb{P}\left[\max _{[0,1]}\{\operatorname{BES}(3)\right.$ bridge with lifetime 1$\left.\} \geq \frac{y}{\sqrt{\zeta}}\right]=: F(y / \sqrt{\zeta})$
- Taking level y and lifetime ζ, we get two independent PPP with respective intensities $\frac{d y d \zeta}{\sqrt{2 \pi \zeta^{3 / 2}}}(F(y / \sqrt{\zeta}))$ for excised excursion, and $\frac{d y d \zeta}{\sqrt{2 \pi} \zeta^{3 / 2}}(1-F(y / \sqrt{\zeta}))$ for non-excised excursion.

The total lifetime Z_{x} of the excised excursions

The law of the excised Brownian bridge stopped at T_{x}, conditioning on $\arg \max B^{b r}=t$ and $\max B^{b r}=x$ can be computed as follows:

$$
\begin{aligned}
& \mathbb{E}\left[G\left(\left(B_{s}\right)_{s \leq T_{x}} \text { excised }\right) \mid T_{x}=t\right] \\
= & \mathbb{E}\left[G\left(\left(R_{s}^{(3)}\right)_{s \leq T_{x}}\right) \mid T_{x}+Z_{x}=t\right] \\
= & \frac{\mathbb{E}\left[G\left(\left(R_{s}^{(3)}\right)_{s \leq T_{x}}\right), Z_{x}=t-T_{x}\right]}{\mathbb{P}\left[Z_{x}+T_{x}=t\right]} \\
= & \frac{\mathbb{E}\left[G\left(\left(R_{s}^{(3)}\right)_{s \leq T_{x}}\right) D_{Z_{x}}\left(t-T_{x}\right)\right]}{\mathbb{E}\left[D_{Z_{x}}\left(t-T_{x}\right)\right]},
\end{aligned}
$$

where $D_{Z_{x}}$ is the density of the law of the total lifetime Z_{x} of excised excursions.
This conditional law has density proportional to $D_{Z_{x}}\left(t-T_{x}\right)$ with respect to the law of a $\operatorname{BES}(3)$ process up to T_{x}.
The law of Z_{x} is the sum of ζ for a PPP with intensity $\frac{d y d \zeta}{\sqrt{2 \pi} \zeta^{3 / 2}}(F(y / \sqrt{\zeta}))$.

