Convergence to equilibrium for rough differential equations

Samy Tindel

Purdue University

AMS sectional meeting - Bloomington 2017

Joint work with Aurélien Deya (Nancy) and Fabien Panloup (Angers)

Samy T. (Purdue)

(4) (3) (4) (4) (4)

Setting and main result

2 Convergence to equilibrium for diffusion processes

- Poincaré inequality
- Coupling method

3 Elements of proof

★ ∃ ►

Setting and main result

Convergence to equilibrium for diffusion processes
 Poincaré inequality

Coupling method

3 Elements of proof

(4) (5) (4) (5)

Definition of fBm

Definition 1.

A 1-d fBm is a continuous process $X = \{X_t; t \in \mathbb{R}\}$ such that $B_0 = 0$ and for $H \in (0, 1)$:

• X is a centered Gaussian process

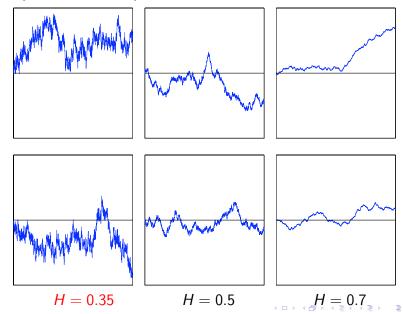
•
$$\mathbf{E}[X_t X_s] = \frac{1}{2}(|s|^{2H} + |t|^{2H} - |t - s|^{2H})$$

d-dimensional fBm: $X = (X^1, \ldots, X^d)$, with X^i independent 1-d fBm

Variance of increments:

$$\mathbf{E}[|\delta X_{st}^j|^2] \equiv \mathbf{E}[|X_t^j - X_s^j|^2] = |t - s|^{2H}$$

Examples of fBm paths



Samy T. (Purdue)

Convergence to equilibrium

AMS 2017 5 / 23

System under consideration

Equation:

$$dY_t = b(Y_t)dt + \sigma(Y_t) dX_t, \qquad t \ge 0$$
(1)

Coefficients:

•
$$x \in \mathbb{R}^d \mapsto \sigma(x) \in \mathbb{R}^{d imes d}$$
 smooth enough

•
$$\sigma = (\sigma_1, \dots, \sigma_d) \in \mathbb{R}^{d \times d}$$
 invertible

•
$$\sigma^{-1}(x)$$
 bounded uniformly in x

•
$$X = (X^1, \dots, X^d)$$
 is a *d*-dimensional fBm, with $H > \frac{1}{3}$

Resolution of the equation:

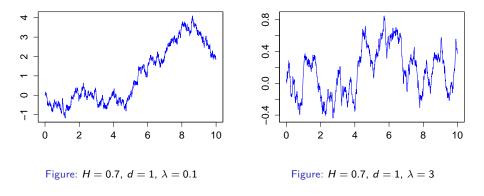
- Thanks to rough paths methods
 - \hookrightarrow Limit of Wong-Zakai approximations

< ∃ > <

Illustration of ergodic behavior

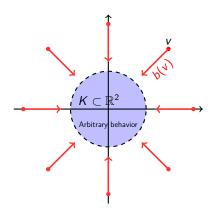
Equation with damping: $dY_t = -\lambda Y_t dt + dX_t$

Simulation: For 2 values of the parameter λ



Coercivity assumption for bHypothesis: for every $v \in \mathbb{R}^d$, one has

 $\langle \mathbf{v}, \mathbf{b}(\mathbf{v}) \rangle \leq C_1 - C_2 \|\mathbf{v}\|^2$



Interpretation of the hypothesis: Outside of a compact $K \subset \mathbb{R}^d$, $b(v) \simeq -\lambda v$ with $\lambda > 0$

Ergodic results for equation (1)

Brownian case: If X is a Brownian motion and b coercive

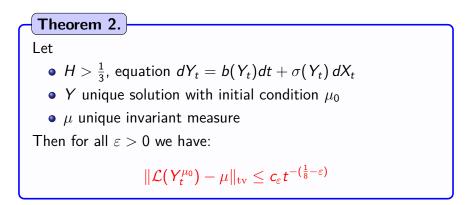
- Exponential convergence of $\mathcal{L}(X_t)$ to invariant measure μ
- Markov methods are crucial
- See e.g Khashminskii, Bakry-Gentil-Ledoux

Fractional Brownian case: If X is a fBm and b coercive

- Markov methods not available
- Existence and uniqueness of invariant measure μ , when $H > \frac{1}{3}$ \hookrightarrow Series of papers by Hairer et al.
- Rate of convergence to μ :
 - When $\sigma \equiv \text{Id}$: Hairer
 - When $H > \frac{1}{2}$ and further restrictions on σ : Fontbona–Panloup

A B A A B A

Main result (loose formulation)



Remark:

- Subexponential (non optimal) rate of convergence
- This might be due to the correlation of increments for X

Setting and main result

2 Convergence to equilibrium for diffusion processes

- Poincaré inequality
- Coupling method

3 Elements of proof

• = • •

Setting and main result

Convergence to equilibrium for diffusion processes Poincaré inequality

Coupling method

3 Elements of proof

Poincaré and convergence to equilibrium

Theorem 3.

Let X be a diffusion process. We assume:

- μ is a symmetrizing measure, with Dirichlet form ${\mathcal E}$
- Poincaré inequality: $\operatorname{Var}_{\mu}(f) \leq \alpha \, \mathcal{E}(f)$

Then the following inequality is satisfied:

$$\operatorname{Var}_{\mu}(P_t f) \leq \exp\left(-rac{2t}{lpha}
ight) \operatorname{Var}_{\mu}(f)$$

Comments on the Poincaré approach

Remarks:

Theorem 3 asserts that

 $X_t \xrightarrow{(d)} \mu$, exponentially fast

- The proof relies on identity ∂_tP_t = LP_t
 → Hard to generalize to a non Markovian context
- One proves Poincaré with Lyapunov type techniques
 → Coercivity enters into the picture

A E • A E •

Setting and main result

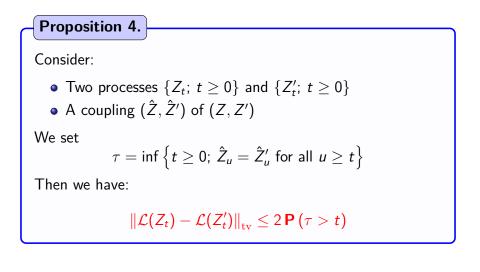
Convergence to equilibrium for diffusion processes
 Poincaré inequality

Coupling method

3 Elements of proof

(3)

A general coupling result



.

Comment on the coupling method

- Proposition 4 is general, does not assume a Markov setting → can be generalized (unlike Poincaré)
- In a Markovian setting
 → Merging of paths a soon as they touch

In our case

 \hookrightarrow We have to merge both Y, Y' and the noise

Setting and main result

Convergence to equilibrium for diffusion processes Poincaré inequality

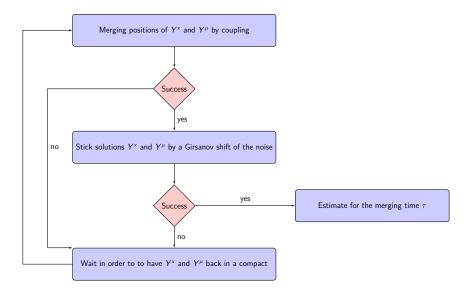
Coupling method

3 Elements of proof

A B A A B A

- (日)

Algorithmic view of the coupling



AMS 2017 19 / 23

A D N A B N A B N A B N

Merging positions (1)

Simplified setting:

We start at t = 0, and consider d = 1

Effective coupling: We wish to consider y^0, y^1 and h such that

We have

$$\left\{ egin{aligned} dy^0_t &= b(y^0_t) \, dt + \sigma(y^0_t) \, dX_t \ dy^1_t &= b(y^1_t) \, dt + \sigma(y^1_t) \, dX_t + h_t \, dt \end{aligned}
ight.$$

• Merging condition: $y_0^0 = a_0$, $y_0^1 = a_1$ and $y_1^0 = y_1^1$

Computation of the merging probability: Through Girsanov's transform involving the shift h

イロト 不得 トイヨト イヨト 二日

Merging positions (2)

Generalization of the problem:

We wish to consider a family $\{y^{\xi}, h^{\xi}; \xi \in [0, 1]\}$ such that

We have

$$dy_t^{\xi} = b(y_t^{\xi}) dt + \sigma(y_t^{\xi}) dX_t + h_t^{\xi} dt$$

• Merging condition:

$$y_0^{\xi} = a_0 + \xi(a_1 - a_0), \qquad y_1^0 = y_1^1, \qquad h^0 \equiv 0$$

Remark:

Here y has to be considered as a function of 2 variables t and ξ

A B A A B A

Merging positions (3)

Solution of the problem: Consider a system with tangent process

$$\begin{cases} dy_t^{\xi} = \left[b(y_t^{\xi}) - \int_0^{\xi} d\eta \, j_t^{\eta}
ight] dt + \sigma(y_t^{\xi}) \, dX_t \ dj_t^{\xi} = b'(y_t^{\xi}) j_t^{\xi} \, dt + \sigma'(y_t^{\xi}) j_t^{\xi} \, dX_t \end{cases}$$

and initial condition $y_0^\xi = a_0 + \xi(a_1 - a_0)$, $j_0^\xi = a_1 - a_0$

Heuristics: A simple integrating factor argument shows that

$$\partial_{\xi} y_t^{\xi} = j_t^{\xi} (1-t), \quad ext{and thus} \quad \partial_{\xi} y_1^{\xi} = 0$$

Hence y^{ξ} solves the merging problem

イロト 不得 トイヨト イヨト 二日

Merging positions (4)

Rough system under consideration: for $t, \xi \in [0, 1]$

$$\begin{cases} dy_t^{\xi} = \left[b(y_t^{\xi}) - \int_0^{\xi} d\eta \, j_t^{\eta} \right] dt + \sigma(y_t^{\xi}) \, dX_t \\ dj_t^{\xi} = b'(y_t^{\xi}) j_t^{\xi} \, dt + \sigma'(y_t^{\xi}) j_t^{\xi} \, dX_t \end{cases}$$

Then y_1^{ξ} does not depend on ξ !

Difficulties related to the system:

- $t \mapsto y_t$ is function-valued
- Onbounded coefficients, thus local solution only
- ${f 0}$ Conditioning \Longrightarrow additional drift term with singularities
- Evaluation of probability related to Girsanov's transform