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Introduction Main Results Ingredients of Proofs

Let W = (Wt ,Px ) be a Brownian motion in R
d , d ≥ 1, and let

S = (St )t≥0 be an independent subordinator with Laplace exponent

φ. The process X = (Xt ,Px) defined by Xt = WSt
, t ≥ 0, is called a

subordinate Brownian motion. It is an isotropic Lévy process with

characteristic exponent Ψ(ξ) = φ(|ξ|2) and generator −φ(−∆).

In recent years, isotropic, and more generally, symmetric, Lévy

processes have been intensively studied and many important results

have been obtained. In particular, under certain weak scaling
conditions on the characteristic exponent Ψ (or the Laplace exponent

φ), it was shown that non-negative harmonic functions with respect to
these Lévy processes satisfy the scale invariant Harnack inequality

(HI) and the scale invariant boundary Harnack principle (BHP).
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characteristic exponent Ψ(ξ) = φ(|ξ|2) and generator −φ(−∆).

In recent years, isotropic, and more generally, symmetric, Lévy
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If D is an open subset of Rd , we can kill the process X upon exiting D

and obtain a process XD known as a killed subordinate Brownian
motion. Functions that are harmonic in an open subset of D with

respect to XD are defined only on D, but by extending them to be

identically zero on R
d \ D, the HI and BHP follow directly from those

for X . In particular, the BHP for XD is in fact a special case of the

BHP for X in D.

By reversing the order of subordination and killing, one obtains a

process different from XD . Assume from now on that D is a domain
(i.e., connected open set) in R

d , and let W D = (W D
t ,Px) be the

Brownian motion W killed upon exiting D. The process Y D = (Y D
t ,Px)

defined by Y D
t = W D

St
, t ≥ 0, is called a subordinate killed Brownian

motion. It is a symmetric Hunt process with infinitesimal generator

−φ(−∆|D), where ∆|D is the Dirichlet Laplacian.
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This process is very natural and useful. For example, it was used in
[Chen-Song, JFA 2005] as a tool to obtain two-sided estimates of the

eigenvalues of the generator of XD .

Despite its usefulness, the potential theory of subordinate killed

Brownian motions has been studied only sporadically, see
[Glover-Rao-Sikic-Song, 94], [Song-Vondracek, PTRF 03],

[Glover-PopStojanovic-Rao-Sikic-Song-Vondracek, JFA 04] for stable
subordinators, and [Song-Vondracek, JTP 06], and [Song-Vondracek,

LNM 09] for more general subordinators.
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In particular, [Song-Vondracek, LNM 09] contains versions of HI and

BHP (with respect to the subordinate killed Brownian motion in a
bounded Lipschitz domain D) which are very weak in the sense that

the results are proved only for non-negative functions which are
harmonic in all of D. Those results are easy consequences of the fact

that there is a one-to-one correspondence between non-negative

harmonic functions (in all of D) with respect to W D and those with
respect to Y D.

Additionally, some aspects of potential theory of subordinate killed

Brownian motions in unbounded domains were recently studied in
[Kim-Song-Vondracek, SPA 16].
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In the PDE literature, the operator −(−∆|D)
α/2, α ∈ (0, 2), which is

the generator of the subordinate killed Brownian motion via an

α/2-stable subordinator, also goes under the name of spectral

fractional Laplacian. This operator has been of interest to quite a few
people in the PDE circle.

For instance, a version of HI was also shown in [Stinga-Zhang, DCDS
13].

The results in our recent paper are proved for general subordinator
satisfying certain condition. For simplicity, in this talk I will only

present the results for stable subordinators, that is, for the case

φ(λ) = λα/2, α ∈ (0, 2]. Even in this case, our results are new.
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For the Harnack inequality, we need some assumptions on the

domain D. We will say that a decreasing function f : (0,∞) → (0,∞)
satisfies the doubling property if, for every T > 0, there exists a

constant c > 0 such that f (t) ≤ cf (2t) for all t ∈ (0,T ].

(B1) The function t 7→ Px(t < τW
D ) satisfies the doubling property (with

a doubling constant independent of x ∈ D).

(B2) There exist constants c ≥ 1 and M ≥ 1 such that for all t ≤ 1

and x , y ∈ D,

c−1
Px(t < τW

D )Py (t < τW
D ) t−d/2e−M|x−y|2

t

≤ pD(t , x , y) ≤ c Px (t < τW
D )Py (t < τW

D ) t−d/2e− |x−y|2

Mt .
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If D is either a bounded Lipschitz domain or an unbounded domain

consisting of all the points above the graph of a globally Lipschitz
function, then (B1) and (B2) are satisfied, cf. (0.36) and (0.25) of

[Varopoulos, CJM, 2003].

It is also easy to show that a C1,1 domain with compact complement

also satisfies (B1) and (B2).
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For any Borel set U ⊂ D, let τU = τY D

U = inf{t > 0 : Y D
t /∈ U} be the

exit time of Y D from U.

A non-negative function f defined on D is said to be harmonic in an
open set V ⊂ D with respect to Y D if for every open set U ⊂ U ⊂ V ,

f (x) = Ex

[
f (Y D

τU
)
]

for all x ∈ U.

A non-negative function f defined on D is said to be regular harmonic
in an open set V ⊂ D if

f (x) = Ex

[
f (Y D

τV
)
]

for all x ∈ V .
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Here is our first main result.

Harnack inequality

Suppose that D ⊂ R
d is a domain satisfying (B1)–(B2). There exists

a constant C > 0 such that for any r ∈ (0, 1] and B(x0, r) ⊂ D and any

function f which is non-negative in D and harmonic in B(x0, r) with

respect to Y D, we have

f (x) ≤ Cf (y), for all x , y ∈ B(x0, r/2).
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Let D ⊂ R
d be an open set and let Q ∈ ∂D. We say that D is C1,1

near Q if there exist a localization radius R > 0, a C1,1-function
ϕ = ϕQ : Rd−1 → R satisfying ϕ(0) = 0, ∇ϕ(0) = (0, . . . , 0),
‖∇ϕ‖∞ ≤ Λ, |∇ϕ(z)−∇ϕ(w)| ≤ Λ|z − w |, and an orthonormal
coordinate system CSQ with its origin at Q such that

B(Q,R) ∩ D = {y = (ỹ , yd ) ∈ B(0,R) in CSQ : yd > ϕ(ỹ)} ,

where ỹ := (y1, . . . , yd−1). The pair (R,Λ) will be called the C1,1

characteristics of D at Q.

An open set D ⊂ R
d is said to be a (uniform) C1,1 open set with

characteristics (R,Λ) if it is C1,1 with characteristics (R,Λ) near every
boundary point Q ∈ ∂D.
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Here is our second main result

Boundary Harnack Principle

Suppose that D is a bounded C1,1 domain, or a C1,1 domain with

compact complement or a domain consisting of all the points above
the graph of a bounded globally C1,1 function. Let (R,Λ) be the C1,1

characteristics of D. There exists a constant C = C(d ,Λ,R, α) > 0
such that for any r ∈ (0,R], Q ∈ ∂D, and any non-negative function f

in D which is harmonic in D ∩ B(Q, r) with respect to Y D and

vanishes continuously on ∂D ∩ B(Q, r), we have

f (x)

δD(x)
≤ C

f (y)

δD(y)
for all x , y ∈ D ∩ B(Q, r/2).
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Our third main result is as follows

Boundary Harnack Principle

There exists a constant b = b(α, d) > 2 such that, for every open set

E ⊂ D and every Q ∈ ∂E ∩ D such that E is C1,1 near Q with

characteristics (δD(Q) ∧ 1,Λ), the following holds: There exists a
constant C = C(δD(Q) ∧ 1,Λ, α, d) > 0 such that for every

r ≤ (δD(Q)∧ 1)/(b + 2) and every non-negative function f on D which

is regular harmonic in E ∩B(Q, r) with respect to Y D and vanishes on
Ec ∩ B(Q, r), we have

f (x)

δE(x)α/2
≤ C

f (y)

δE(y)α/2
, x , y ∈ E ∩ B(Q, 2−6κ4r) ,

where κ := (1 + (1 + Λ)2)−1/2.
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We will use GY D

to denote the Green function of Y D:

GY D

(x , y) = c(α)

∫ ∞

0

pD(t , x , y)tα/2−1 dt ,

where pD(t , x , y) is the transition density of the killed Brownian
motion in D.

We will use JY D

to denote the jumping intensity of Y D :

JY D

(x , y) = c(α)

∫ ∞

0

pD(t , x , y)t−α/2−1 dt .
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We will use GX D

to denote the Green function of XD . Sharp two-sided

estimates on GD were first obtained by Chen-Song and Kulczycki in
the late 1990’s. For example when D is a bounded C1,1 open set, it

holds that

C−1

(
δ
α/2

D (x)

|x − y |
∧ 1

)(
δ
α/2

D (y)

|x − y |
∧ 1

)
1

|x − y |d−α

≤ GX D

(x , y) ≤ C

(
δ
α/2

D (x)

|x − y |
∧ 1

)(
δ
α/2

D (y)

|x − y |
∧ 1

)
1

|x − y |d−α
,

for some C > 1.

We will use JX (x , y) = jX (|x − y |) to denote the Lévy density of X .
Recall that

j(r) =
c

rd+α
, r > 0.
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D ⊂ R
d is either a bounded C1,1 domain, or a C1,1 domain with

compact complement or a domain consisting of all the points above

the graph of a bounded globally C1,1 function. We will use (R,Λ) to

denote the C1,1 characteristics of D in all three cases.

Proposition 1

For every M > 0, there exists a constant C = C(M) ≥ 1 such that for
all x , y ∈ D with |x − y | ≤ M,
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(
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Proposition 2

For every M > 0, there exists a constant C = C(M,R,Λ) ≥ 1 such

that such that for all x , y ∈ D with |x − y | ≤ M,

C−1

(
δD(x)

|x − y |
∧ 1

)(
δD(y)

|x − y |
∧ 1

)
1

|x − y |d+α

≤ JY D

(x , y) ≤ C

(
δD(x)

|x − y |
∧ 1

)(
δD(y)

|x − y |
∧ 1

)
1

|x − y |d+α
.

Propositions 1 and 2 above imply global two-sided estimates on GY D

and JY D

for bounded D, but only give “local” two-sided estimates for

unbounded D. The following two results give sharp two-sided

estimates for GY D

and JY D

when D is an unbounded C1,1 domain of

the two types above.
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Theorem 3

(1) Let D ⊂ R
d be a domain consisting of all the points above the

graph of a bounded globally C1,1 function. There exists a constant

C1 = C1(R,Λ) ≥ 1 such that for all x , y ∈ D,

C−1
1

(
δD(x)

|x − y |
∧ 1

)(
δD(y)

|x − y |
∧ 1

)
1

|x − y |d−α
≤ GY D

(x , y)

≤ C1

(
δD(x)

|x − y |
∧ 1

)(
δD(y)

|x − y |
∧ 1

)
1

|x − y |d−α
.
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.
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Choose a C1,1-function ϕ : Rd−1 → R satisfying ϕ(0̃) = 0,

∇ϕ(0̃) = (0, . . . , 0), ‖∇ϕ‖∞ ≤ Λ, |∇ϕ(ỹ)−∇ϕ(w̃)| ≤ Λ|ỹ − w̃ |, and
an orthonormal coordinate system CSQ with its origin at Q ∈ ∂D such

that

B(z,R) ∩ D = {y = (ỹ , yd ) ∈ B(0,R) in CSQ : yd > ϕ(ỹ)}.

Define ρQ(x) := xd − ϕ(x̃), where (x̃ , xd ) are the coordinates of x in

CSQ . We define for r1, r2 > 0,

DQ(r1, r2) :=
{

y ∈ D : r1 > ρQ(y) > 0, |ỹ | < r2

}
.
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Theorem 5(Carleson Estimate)

There exists a constant C = C(R,Λ) > 0 such that for every Q ∈ ∂D,
0 < r < R/2, and every non-negative function f in D that is harmonic

in D ∩ B(Q, r) with respect to Y D and vanishes continuously on
∂D ∩ B(Q, r), we have

f (x) ≤ Cf (x0) for x ∈ D ∩ B(Q, r/2),

where x0 ∈ D ∩ B(Q, r) with ρQ(x0) = r/2.
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It is not difficult to see that that there exists L = L(R,Λ, d) > 0 such

that for every Q ∈ ∂D and r ≤ κR, one can find a C1,1 domain VQ(r)
with characteristics (rR/L,ΛL/r) such that
DQ(r/2, r/2) ⊂ VQ(r) ⊂ DQ(r , r).

Lemma 6

There exists C = C(R,Λ) > 0 such that for every r ≤ κ−1R/2,

Q ∈ ∂D and x ∈ DQ(r/4, r/4),

Px

(
Y D(τVQ(r)) ∈ DQ(2r , 2r)

)
≤ C

δD(x)

r
.
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To prove the second boundary Harnac principle, we will show that

when U is relatively compact subset of D, the process Y D,U can be

thought of as a non-local Feynman-Kac transform of XU . Moreover, if
U is a certain C1,1 domain, the conditional gauge function related to

this transform is bounded between two positive constants which will
imply that the Green functions of XU and Y D,U are comparable. We

will prove a uniform version of this result in the sense that the

comparability constants are independent of the set U as long as its
diameter is small and not larger than a multiple of its distance to the

boundary.
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Let (EX U

,D(EX U

)) be the Dirichlet form of XU . Then,

EX U

(f , f ) = c

∫ ∞

0

∫

U

f (x)(f (x)− Ps f (x))dx s−α/2−1ds ,

D(EX U

) = {f ∈ L2(U, dx) : EX U

(f , f ) < ∞} ,

where (Ps) is the Brownian semigroup.

Furthermore, for f ∈ D(EX U

),

EX U

(f , f ) =
1

2

∫

U

∫

U

(f (x) − f (y))2JX (x , y)dydx +

∫

U

f (x)2κX
U(x)dx ,

where

κX
U(x) =

∫

Rd\U

JX (x , y)dy .
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The Dirichlet form (EY D

,D(EY D

)) of Y D is given by

EY D

(f , f ) = c

∫ ∞

0

∫

D

f (x)(f (x) − PD
s f (x))dx s−α/2−1ds

and D(EY D

) = {f ∈ L2(D, dx) : EY D

(f , f ) < ∞}, where (PD
t ) is the

semigroup of the killed Brownian motion W D .

Moreover, for f ∈ D(EY D

),

EY D

(f , f ) =
1

2

∫

D

∫

D

(f (x)− f (y))2JY D

(x , y)dydx +

∫

D

f (x)2κY D

(x)dx ,

where

κY D

(x) = c

∫ ∞

0

(1 − PD
t 1(x)) t−α/2−1 dt .
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Hence, the Dirichlet form (EY D,U

,D(EY D,U

)) of Y D,U is equal to

EY D,U

(f , f ) = s

∫ ∞

0

∫

U

f (x)(f (x)− PD
s f (x))dx s−α/2−1ds ,

D(EY D,U

) = {f ∈ L2(U, dx) : EY D,U
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(x , y)dydx +
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D

f (x)2κY D

U (x)dx ,

where

κY D

U (x) = κY D
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∫

D\U

JY D

(x , y)dy .
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Lemma 7

For x , y ∈ D,

JX (x , y)− JY D

(x , y) ≤ jX (δD(y)) .

Lemma 8

Let U be a relatively compact open subset of D. Then

D(EX U

) = D(EY D,U

).

For x , y ∈ D, x 6= y , let

F (x , y) :=
JY D

(x , y)

JX (x , y)
− 1 =

JY D

(x , y)− JX (x , y)

JX (x , y)
,

and F (x , x) = 0. Then −1 < F (x , y) ≤ 0.
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Lemma 9

There exists b = b(φ, d) > 2 such that for all x0 ∈ D and all
r ∈ (0, 1/b) satisfying B(x0, (b + 1)r) ⊂ D, we have that

sup
x,y∈B(x0,r)

|F (x , y)| ≤
1

2
.

Let b > 2 be the constant from Lemma 9. For r < 1/b, let U ⊂ D be

such that diam(U) ≤ r and dist(U, ∂D) ≥ (b + 2)r . Then there exists a
ball B(x0, r) such that U ⊂ B(x0, r) and B(x0, (b + 1)r) ⊂ D. By

Lemma 9 we see that

|F (x , y)| ≤ 1/2 for all x , y ∈ U.
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Hence we can define the non-local multiplicative functional

K U
t = exp



∑

0<s≤t

log(1 + F (XU
s−,X

U
s ))


 .

Let

T U
t f (x) := Ex [K

U
t f (XU

t )] .

Then (T U
t )t≥0 is a strongly continuous semigroup on L2(U, dx) with

the associated quadratic form (Q,D(EX U

)) where

Q(f , f ) = EX U

(f , f ) −

∫

U

∫

U

f (x)f (y)F (x , y)JX (x , y)dy dx .
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Lemma 10

For r < 1/b, let U ⊂ D be such that diam(U) ≤ r and

dist(U, ∂D) ≥ (b + 2)r . Then

(Q,D(EX U

)) = (EY D,U

,D(EY D,U

)) .

For x , y ∈ U, x 6= y , let

uU(x , y) := E
y
x [K

U
τX

U

]

be the conditional gauge function for K U
t . Since F ≤ 0, we have

log(1 + F ) ≤ 0, hence K U
τX

U

≤ 1. Therefore, uU(x , y) ≤ 1. Define

V U(x , y) = uU(x , y)GX
U(x , y), x , y ∈ U.
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It follows from the theory of conditional gauges that V U(x , y) is the

Green function for the semigroup (T U
t )t≥0. Combining this with

Lemma 10 we can conclude that V U is equal to the Green function

GY D

U of Y D,U . Therefore,

GY D

U (x , y) = uU(x , y)GX
U(x , y), x , y ∈ U.

We could also show that for C1,1 open sets U, the conditional gauge
function uU is bounded below by a strictly positive constant uniform in

the diameter of U. Together with the above equality this proves that
the Green function of Y D,U is comparable to that of XU .
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Thank you!
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