・ロト ・四ト ・ヨト ・ヨト

1/20

Compatibility of change of measures

Jie Shen

(Joint work with Yi Shen, Bin Wang and Ruodu Wang)

Department of Statistics and Actuarial Science University of Waterloo

> April 2, 2017 Indiana University

<ロト</th>
(日)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

- 2 Necessary condition
- 3 Sufficient condition
- 4 Stochastic processes

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで 3/20

4/20

- Change of measure: distribution \Rightarrow another one
- *How much* would the distribution change?

tro		

- Change of measure: distribution \Rightarrow another one
- *How much* would the distribution change?
- Given several probability measures Q₁,..., Q_n and distribution measures F₁,..., F_n, does there exist a random variable X : Ω → ℝ such that X has distribution F_i under Q_i for i = 1,...,n?

- (Ω, \mathcal{A}) : measurable space
- \mathcal{F} : the set of distributions on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,
- \mathcal{P} : the set of probability measures on (Ω, \mathcal{A})
- $D_{\mathrm{KL}}(\cdot || \cdot)$: Kullback-Leibler divergence between probability measures

- (Ω, \mathcal{A}) : measurable space
- \mathcal{F} : the set of distributions on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,
- \mathcal{P} : the set of probability measures on (Ω, \mathcal{A})
- $D_{\text{KL}}(\cdot || \cdot)$: Kullback-Leibler divergence between probability measures

Definition (Compatibility)

 $(F_1, \ldots, F_n) \in \mathcal{F}^n$ and $(Q_1, \ldots, Q_n) \in \mathcal{P}^n$ are *compatible* if there exists a random variable X in (Ω, \mathcal{A}) such that for each $i = 1, \ldots, n$, the distribution of X under Q_i is F_i .

- (Ω, \mathcal{A}) : measurable space
- \mathcal{F} : the set of distributions on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,
- \mathcal{P} : the set of probability measures on (Ω, \mathcal{A})
- $D_{\mathrm{KL}}(\cdot || \cdot)$: Kullback-Leibler divergence between probability measures

Definition (Compatibility)

 $(F_1, \ldots, F_n) \in \mathcal{F}^n$ and $(Q_1, \ldots, Q_n) \in \mathcal{P}^n$ are *compatible* if there exists a random variable X in (Ω, \mathcal{A}) such that for each $i = 1, \ldots, n$, the distribution of X under Q_i is F_i .

Definition (Almost compatibility)

 $(F_1, \ldots, F_n) \in \mathcal{F}^n$ and $(Q_1, \ldots, Q_n) \in \mathcal{P}^n$ are *almost compatible*, if for any $\epsilon > 0$, there exists a random variable X_{ϵ} in (Ω, \mathcal{A}) such that for each $i = 1, \ldots, n$, the distribution of X_{ϵ} under Q_i , denoted by $F_{i,\epsilon}$, is absolutely continuous with respect to F_i , and satisfies $D_{\mathrm{KL}}(F_{i,\epsilon}||F_i) < \epsilon$.

ヘロン 人間 とくほどう ほう

6/20

Definition (Convex order)

Let $(\Omega_1, \mathcal{A}_1, P_1)$ and $(\Omega_2, \mathcal{A}_2, P_2)$ be two probability spaces. For $\mathbf{X} \in L_1^n(\Omega_1, \mathcal{A}_1, P_1)$ and $\mathbf{Y} \in L_1^n(\Omega_2, \mathcal{A}_2, P_2)$, we write $\mathbf{X}|_{P_1} \prec_{\mathrm{cx}} \mathbf{Y}|_{P_2}$, if $\mathbb{E}^{P_1}[f(\mathbf{X})] \leq \mathbb{E}^{P_2}[f(\mathbf{Y})]$ for all convex functions $f : \mathbb{R}^n \to \mathbb{R}$, provided that both expectations exist.

Definition (Convex order)

Let $(\Omega_1, \mathcal{A}_1, P_1)$ and $(\Omega_2, \mathcal{A}_2, P_2)$ be two probability spaces. For $\mathbf{X} \in L_1^n(\Omega_1, \mathcal{A}_1, P_1)$ and $\mathbf{Y} \in L_1^n(\Omega_2, \mathcal{A}_2, P_2)$, we write $\mathbf{X}|_{P_1} \prec_{cx} \mathbf{Y}|_{P_2}$, if $\mathbb{E}^{P_1}[f(\mathbf{X})] \leq \mathbb{E}^{P_2}[f(\mathbf{Y})]$ for all convex functions $f : \mathbb{R}^n \to \mathbb{R}$, provided that both expectations exist.

Lemma ()

For $\mathbf{X} \in L_1^n(\Omega_1, \mathcal{A}_1, P_1)$ and $\mathbf{Y} \in L_1^n(\Omega_2, \mathcal{A}_2, P_2)$, $\mathbf{X}|_{P_1} \prec_{cx} \mathbf{Y}|_{P_2}$ if and only if there exist a probability space $(\Omega_3, \mathcal{A}_3, P_3)$ and $\mathbf{X}', \mathbf{Y}' \in L_1^n(\Omega_3, \mathcal{A}_3, P_3)$ such that $\mathbf{X}'|_{P_3} \stackrel{d}{=} \mathbf{X}|_{P_1}, \mathbf{Y}'|_{P_3} \stackrel{d}{=} \mathbf{Y}|_{P_2}$, and $\mathbb{E}^{P_3}[\mathbf{Y}'|\mathbf{X}'] = \mathbf{X}'$.

> ◆□ ト ◆ □ ト ◆ 臣 ト ◆ 臣 ト ● 臣 • つ Q () 6/20

• Q_1, \ldots, Q_n identical $\Rightarrow F_1, \ldots, F_n$ identical

		on

・ロト・日本・モート・モート・ロークへの

7/20

- Q_1, \ldots, Q_n identical $\Rightarrow F_1, \ldots, F_n$ identical
- Q_1, \ldots, Q_n mutually singular $\Rightarrow F_1, \ldots, F_n$ arbitrary.

Introduction	Necessary condition	Sufficient condition	Stochastic processes	

- Q_1, \ldots, Q_n identical $\Rightarrow F_1, \ldots, F_n$ identical
- Q_1, \ldots, Q_n mutually singular $\Rightarrow F_1, \ldots, F_n$ arbitrary.
- F_1, \ldots, F_n mutually singular $\Rightarrow Q_1, \ldots, Q_n$ mutually singular

Introduction	Necessary condition	Sufficient condition	Stochastic processes	

- Q_1, \ldots, Q_n identical $\Rightarrow F_1, \ldots, F_n$ identical
- Q_1, \ldots, Q_n mutually singular $\Rightarrow F_1, \ldots, F_n$ arbitrary.
- F_1, \ldots, F_n mutually singular $\Rightarrow Q_1, \ldots, Q_n$ mutually singular

Conclution: Q_1, \ldots, Q_n are more *variabile* than F_1, \ldots, F_n

3 Sufficient condition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Necessary condition for compatibility

Lemma

Let
$$(F_1, ..., F_n) \in \mathcal{F}^n$$
 and $(Q_1, ..., Q_n) \in \mathcal{P}^n$. If $(F_1, ..., F_n)$ and $(Q_1, ..., Q_n)$ are compatible, then
(i) For any $F \in \mathcal{F}$, $F_i \ll F$ for $i = 1, ..., n$, there exists $Q \in \mathcal{P}$, $Q_i \ll Q$ for $i = 1, ..., n$, such that

$$\left. \left(\frac{\mathrm{d}F_1}{\mathrm{d}F}, \dots, \frac{\mathrm{d}F_n}{\mathrm{d}F} \right) \right|_F \prec_{\mathrm{cx}} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q}, \dots, \frac{\mathrm{d}Q_n}{\mathrm{d}Q} \right) \right|_Q.$$
(1)

(ii) For any $Q \in \mathcal{P}$, $Q_i \ll Q$ for i = 1, ..., n, there exists $F \in \mathcal{F}$, $F_i \ll F$ for i = 1, ..., n, such that (1) holds.

・ロト ・四ト ・ヨト ・ヨト ・ヨー

10/20

- $(\Omega, \mathcal{A}) = ([0, 1], \mathcal{B}([0, 1]))$
- *Q*₁: probability point mass at 0
- *Q*₂: probability point mass at 1
- F_1 and F_2 : uniform distribution on [0, 1]

There exists $Q = \frac{1}{2}(Q_1 + Q_2)$ and $F = F_1$ such that

$$\left(\frac{\mathrm{d}F_1}{\mathrm{d}F},\frac{\mathrm{d}F_2}{\mathrm{d}F}\right)\Big|_F \prec_{\mathrm{cx}} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q},\frac{\mathrm{d}Q_2}{\mathrm{d}Q}\right)\Big|_Q,$$

but (Q_1, Q_2) and (F_1, F_2) are not compatible.

Theorem

Suppose that $(Q_1, \ldots, Q_n) \in \mathcal{P}^n$, $(F_1, \ldots, F_n) \in \mathcal{F}^n$ and $(\Omega, \mathcal{A}, Q_i)$ is atomless for each $i = 1, \ldots, n$. (Q_1, \ldots, Q_n) and (F_1, \ldots, F_n) are almost compatible if and only if there exist $F \in \mathcal{F}$ and $Q \in \mathcal{P}$, such that $F_i \ll F$, $Q_i \ll Q$ for i = 1, ..., n, and

$$\left(\frac{\mathrm{d}F_1}{\mathrm{d}F},\ldots,\frac{\mathrm{d}F_n}{\mathrm{d}F}\right)\Big|_F \prec_{\mathrm{cx}} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q},\ldots,\frac{\mathrm{d}Q_n}{\mathrm{d}Q}\right)\Big|_Q.$$
 (2)

・< 部・< 書> < 書> < 量> < 量
 ・< 11/20

Introduction

 $(\mathbf{0}$

 $(1), ([0, 1], \mathcal{D}(\mathbb{T}))$

•
$$(\Omega, \mathcal{A})$$
: $([0, 1], \mathcal{B}(\mathbb{R}))$
• $Q_2 = \lambda, \frac{dQ_1}{dQ_2}(t) = 2t, t \in [0, 1]$
• $F_2 = \lambda$ on $[0, 1], \frac{dF_1}{dF_2}(x) = |4x - 2|, x \in [0, 1]$
 \Rightarrow
• $\frac{dQ_1}{dQ_2}$ uniform on $[0, 2]$ under Q_2
• $\frac{dF_1}{dF_2}$ uniform on $[0, 2]$ under F_2
Taking $Q = Q_2$ and $F = F_2$,

$$\left(\frac{\mathrm{d}F_1}{\mathrm{d}F},\frac{\mathrm{d}F_2}{\mathrm{d}F}\right)\Big|_F \stackrel{\mathrm{d}}{=} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q},\frac{\mathrm{d}Q_2}{\mathrm{d}Q}\right)\Big|_Q.$$

However, (Q_1, Q_2) and (F_1, F_2) are not compatible.

Introduction	Necessary condition	Sufficient condition	Stochastic processes
20 13 05 05 00 025	8.40 0.75 1.00		variable r1 r2

14/20

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Theorem

Let $(F_1, \ldots, F_n) \in \mathcal{F}^n$ and $(Q_1, \ldots, Q_n) \in \mathcal{P}^n$. If (F_1, \ldots, F_n) and (Q_1, \ldots, Q_n) are compatible, then there exist $F \in \mathcal{F}$ and $Q \in \mathcal{P}$ such that $F_i \ll F$, $Q_i \ll Q$ for i = 1, ..., n, and

$$\left(\frac{\mathrm{d}F_1}{\mathrm{d}F},\ldots,\frac{\mathrm{d}F_n}{\mathrm{d}F}\right)\Big|_F \prec_{\mathrm{cx}} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q},\ldots,\frac{\mathrm{d}Q_n}{\mathrm{d}Q}\right)\Big|_Q.$$
 (3)

Conversely, assume there exist $F \in \mathcal{F}$ and $Q \in \mathcal{P}$ such that $F_i \ll F$, $Q_i \ll Q$ for i = 1, ..., n, and (3) holds. If in addition, there exists a continuous random variable defined on (Ω, \mathcal{A}, Q) , independent of $\left(\frac{dQ_1}{dQ}, \ldots, \frac{dQ_n}{dQ}\right)$, then (F_1, \ldots, F_n) and (Q_1, \ldots, Q_n) are compatible.

- 2 Necessary condition
- 3 Sufficient condition

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- *I*: a closed interval
- C(I): the space of all continuous functions defined on I
- C_I : the cylindrical σ -field
- G_I : the set of probability measures on $(C(I), C_I)$

- *I*: a closed interval
- C(I): the space of all continuous functions defined on I
- C_I : the cylindrical σ -field
- G_I : the set of probability measures on $(C(I), C_I)$

Definition

For a closed interval $I \subset \mathbb{R}$, $(G_1, \ldots, G_n) \in \mathcal{G}_I^n$ and $(Q_1, \ldots, Q_n) \in \mathcal{P}^n$ are *compatible* if there exists a continuous stochastic process $X = \{X(t)\}_{t \in I}$ defined on (Ω, \mathcal{A}) such that for each $i = 1, \ldots, n$, the distribution of X under Q_i is G_i .

<ロ> <四> <四> <四> <三</td>

18/20

Theorem

Assume there exist $G \in \mathcal{G}_I$ and $Q \in \mathcal{P}$ such that $G_i \ll G$, $Q_i \ll Q$ for i = 1, ..., n, and

$$\left(\frac{\mathrm{d}G_1}{\mathrm{d}G},\ldots,\frac{\mathrm{d}G_n}{\mathrm{d}G}\right)\Big|_F\prec_{\mathrm{cx}} \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q},\ldots,\frac{\mathrm{d}Q_n}{\mathrm{d}Q}\right)\Big|_Q$$

holds. If in addition, there exists a continuous random variable defined on (Ω, \mathcal{A}, Q) independent of $\left(\frac{dQ_1}{dQ}, \ldots, \frac{dQ_n}{dQ}\right)$, then (G_1, \ldots, G_n) and (Q_1, \ldots, Q_n) are compatible.

< □ > < □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

19/20

Q : How much can the drift of a Brownian motion change by a change of measure in the classic Girsanov Theorem.

- Q : How much can the drift of a Brownian motion change by a change of measure in the classic Girsanov Theorem.
- *P*: a probability measure
- $B = \{B_t\}_{t \in [0,T]}$: *P*-standard Brownian motion

The Girsanov Theorem says that, by defining Q_{θ} via

$$\frac{\mathrm{d}Q_{\theta}}{\mathrm{d}P} = e^{\theta B_T - \frac{\theta^2}{2}T},\tag{4}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 -

 $\tilde{B}(t) = B(t) - \theta t$ is a Brownian motion under Q_{θ} .

Q1 : Does there exist a *P*-standard Brownian motion which has a fixed drift term $\mu \in \mathbb{R}$ under Q_{θ} ?

In	÷	~	A			~	-
ш	u	U	u	u	c	U	11

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

20/20

- Q1 : Does there exist a *P*-standard Brownian motion which has a fixed drift term $\mu \in \mathbb{R}$ under Q_{θ} ?
 - G_μ ∈ G_[0,T]: distribution measure of a BM on [0, T] with a constant drift term μ ∈ ℝ and volatility 1
 - (G_0, G_μ) and (P, Q_θ) are compatible ?

ntroduction	Necessary condition	Sufficient condition	Stochastic processes

- Q1 : Does there exist a *P*-standard Brownian motion which has a fixed drift term $\mu \in \mathbb{R}$ under Q_{θ} ?
 - $G_{\mu} \in \mathcal{G}_{[0,T]}$: distribution measure of a BM on [0,T] with a constant drift term $\mu \in \mathbb{R}$ and volatility 1
 - (G_0, G_μ) and (P, Q_θ) are compatible ?

Proposition

Let $P \in \mathcal{P}$ and $B = \{B_t\}_{t \in [0,T]}$ be a P-standard Brownian motion. Using the above notation, for $\mu, \theta \in \mathbb{R}$, (P, Q_{θ}) and (G_0, G_{μ}) are compatible if and only if $|\mu| \leq |\theta|$.