Compatibility of change of measures

Jie Shen

(Joint work with Yi Shen, Bin Wang and Ruodu Wang)

Department of Statistics and Actuarial Science University of Waterloo

April 2, 2017
Indiana University

(2) Necessary condition
(3) Sufficient condition

4 Stochastic processes
(2) Necessary condition

3 Sufficient condition
4. Stochastic processes

- Change of measure: distribution \Rightarrow another one
- How much would the distribution change?
- Change of measure: distribution \Rightarrow another one
- How much would the distribution change?
- Given several probability measures Q_{1}, \ldots, Q_{n} and distribution measures F_{1}, \ldots, F_{n}, does there exist a random variable $X: \Omega \rightarrow \mathbb{R}$ such that X has distribution F_{i} under Q_{i} for $i=1, \ldots, n$?
- (Ω, \mathcal{A}) : measurable space
- \mathcal{F} : the set of distributions on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,
- \mathcal{P} : the set of probability measures on (Ω, \mathcal{A})
- $D_{\mathrm{KL}}(\cdot \| \cdot)$: Kullback-Leibler divergence between probability measures
- (Ω, \mathcal{A}) : measurable space
- \mathcal{F} : the set of distributions on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,
- \mathcal{P} : the set of probability measures on (Ω, \mathcal{A})
- $D_{\mathrm{KL}}(\cdot \| \cdot)$: Kullback-Leibler divergence between probability measures

Definition (Compatibility)

$\left(F_{1}, \ldots, F_{n}\right) \in \mathcal{F}^{n}$ and $\left(Q_{1}, \ldots, Q_{n}\right) \in \mathcal{P}^{n}$ are compatible if there exists a random variable X in (Ω, \mathcal{A}) such that for each $i=1, \ldots, n$, the distribution of X under Q_{i} is F_{i}.

- (Ω, \mathcal{A}) : measurable space
- \mathcal{F} : the set of distributions on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$,
- \mathcal{P} : the set of probability measures on (Ω, \mathcal{A})
- $D_{\mathrm{KL}}(\cdot \| \cdot)$: Kullback-Leibler divergence between probability measures

Definition (Compatibility)

$\left(F_{1}, \ldots, F_{n}\right) \in \mathcal{F}^{n}$ and $\left(Q_{1}, \ldots, Q_{n}\right) \in \mathcal{P}^{n}$ are compatible if there exists a random variable X in (Ω, \mathcal{A}) such that for each $i=1, \ldots, n$, the distribution of X under Q_{i} is F_{i}.

Definition (Almost compatibility)

$\left(F_{1}, \ldots, F_{n}\right) \in \mathcal{F}^{n}$ and $\left(Q_{1}, \ldots, Q_{n}\right) \in \mathcal{P}^{n}$ are almost compatible, if for any $\epsilon>0$, there exists a random variable X_{ϵ} in (Ω, \mathcal{A}) such that for each $i=1, \ldots, n$, the distribution of X_{ϵ} under Q_{i}, denoted by $F_{i, \epsilon}$, is absolutely continuous with respect to F_{i}, and satisfies
$D_{\mathrm{KL}}\left(F_{i, \epsilon} \| F_{i}\right)<\epsilon$.

Definition (Convex order)

Let $\left(\Omega_{1}, \mathcal{A}_{1}, P_{1}\right)$ and $\left(\Omega_{2}, \mathcal{A}_{2}, P_{2}\right)$ be two probability spaces. For $\mathbf{X} \in L_{1}^{n}\left(\Omega_{1}, \mathcal{A}_{1}, P_{1}\right)$ and $\mathbf{Y} \in L_{1}^{n}\left(\Omega_{2}, \mathcal{A}_{2}, P_{2}\right)$, we write $\left.\left.\mathbf{X}\right|_{P_{1}} \prec_{\mathrm{cx}} \mathbf{Y}\right|_{P_{2}}$, if $\mathbb{E}^{P_{1}}[f(\mathbf{X})] \leq \mathbb{E}^{P_{2}}[f(\mathbf{Y})]$ for all convex functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, provided that both expectations exist.

Definition (Convex order)

Let $\left(\Omega_{1}, \mathcal{A}_{1}, P_{1}\right)$ and $\left(\Omega_{2}, \mathcal{A}_{2}, P_{2}\right)$ be two probability spaces. For $\mathbf{X} \in L_{1}^{n}\left(\Omega_{1}, \mathcal{A}_{1}, P_{1}\right)$ and $\mathbf{Y} \in L_{1}^{n}\left(\Omega_{2}, \mathcal{A}_{2}, P_{2}\right)$, we write $\left.\left.\mathbf{X}\right|_{P_{1}} \prec_{\mathrm{cx}} \mathbf{Y}\right|_{P_{2}}$, if $\mathbb{E}^{P_{1}}[f(\mathbf{X})] \leq \mathbb{E}^{P_{2}}[f(\mathbf{Y})]$ for all convex functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, provided that both expectations exist.

Lemma ()

For $\mathbf{X} \in L_{1}^{n}\left(\Omega_{1}, \mathcal{A}_{1}, P_{1}\right)$ and $\mathbf{Y} \in L_{1}^{n}\left(\Omega_{2}, \mathcal{A}_{2}, P_{2}\right),\left.\left.\mathbf{X}\right|_{P_{1}} \prec_{\mathrm{cx}} \mathbf{Y}\right|_{P_{2}}$ if and only if there exist a probability space $\left(\Omega_{3}, \mathcal{A}_{3}, P_{3}\right)$ and
$\mathbf{X}^{\prime}, \mathbf{Y}^{\prime} \in L_{1}^{n}\left(\Omega_{3}, \mathcal{A}_{3}, P_{3}\right)$ such that $\left.\left.\mathbf{X}^{\prime}\right|_{P_{3}} \stackrel{\mathrm{~d}}{=} \mathbf{X}\right|_{P_{1}},\left.\left.\mathbf{Y}^{\prime}\right|_{P_{3}} \stackrel{\mathrm{~d}}{=} \mathbf{Y}\right|_{P_{2}}$, and $\mathbb{E}^{P_{3}}\left[\mathbf{Y}^{\prime} \mid \mathbf{X}^{\prime}\right]=\mathbf{X}^{\prime}$.

- Q_{1}, \ldots, Q_{n} identical $\Rightarrow F_{1}, \ldots, F_{n}$ identical
- Q_{1}, \ldots, Q_{n} identical $\Rightarrow F_{1}, \ldots, F_{n}$ identical
- Q_{1}, \ldots, Q_{n} mutually singular $\Rightarrow F_{1}, \ldots, F_{n}$ arbitrary.
- Q_{1}, \ldots, Q_{n} identical $\Rightarrow F_{1}, \ldots, F_{n}$ identical
- Q_{1}, \ldots, Q_{n} mutually singular $\Rightarrow F_{1}, \ldots, F_{n}$ arbitrary.
- F_{1}, \ldots, F_{n} mutually singular $\Rightarrow Q_{1}, \ldots, Q_{n}$ mutually singular
- Q_{1}, \ldots, Q_{n} identical $\Rightarrow F_{1}, \ldots, F_{n}$ identical
- Q_{1}, \ldots, Q_{n} mutually singular $\Rightarrow F_{1}, \ldots, F_{n}$ arbitrary.
- F_{1}, \ldots, F_{n} mutually singular $\Rightarrow Q_{1}, \ldots, Q_{n}$ mutually singular

Conclution: Q_{1}, \ldots, Q_{n} are more variabile than F_{1}, \ldots, F_{n}

(2) Necessary condition

3 Sufficient condition

4. Stochastic processes

Necessary condition for compatibility

Lemma

Let $\left(F_{1}, \ldots, F_{n}\right) \in \mathcal{F}^{n}$ and $\left(Q_{1}, \ldots, Q_{n}\right) \in \mathcal{P}^{n}$. If $\left(F_{1}, \ldots, F_{n}\right)$ and
$\left(Q_{1}, \ldots, Q_{n}\right)$ are compatible, then
(i) For any $F \in \mathcal{F}, F_{i} \ll F$ for $i=1, \ldots, n$, there exists $Q \in \mathcal{P}$, $Q_{i} \ll Q$ for $i=1, \ldots, n$, such that

$$
\begin{equation*}
\left.\left.\left(\frac{\mathrm{d} F_{1}}{\mathrm{~d} F}, \ldots, \frac{\mathrm{~d} F_{n}}{\mathrm{~d} F}\right)\right|_{F} \prec_{\mathrm{cx}}\left(\frac{\mathrm{~d} Q_{1}}{\mathrm{~d} Q}, \ldots, \frac{\mathrm{~d} Q_{n}}{\mathrm{~d} Q}\right)\right|_{Q} \tag{1}
\end{equation*}
$$

(ii) For any $Q \in \mathcal{P}, Q_{i} \ll Q$ for $i=1, \ldots, n$, there exists $F \in \mathcal{F}$, $F_{i} \ll F$ for $i=1, \ldots, n$, such that (1) holds.

- $(\Omega, \mathcal{A})=([0,1], \mathcal{B}([0,1]))$
- Q_{1} : probability point mass at 0
- Q_{2} : probability point mass at 1
- F_{1} and F_{2} : uniform distribution on $[0,1]$

There exists $Q=\frac{1}{2}\left(Q_{1}+Q_{2}\right)$ and $F=F_{1}$ such that

$$
\left.\left.\left(\frac{\mathrm{d} F_{1}}{\mathrm{~d} F}, \frac{\mathrm{~d} F_{2}}{\mathrm{~d} F}\right)\right|_{F} \prec_{\mathrm{cx}}\left(\frac{\mathrm{~d} Q_{1}}{\mathrm{~d} Q}, \frac{\mathrm{~d} Q_{2}}{\mathrm{~d} Q}\right)\right|_{Q}
$$

but $\left(Q_{1}, Q_{2}\right)$ and $\left(F_{1}, F_{2}\right)$ are not compatible.

Theorem

Suppose that $\left(Q_{1}, \ldots, Q_{n}\right) \in \mathcal{P}^{n},\left(F_{1}, \ldots, F_{n}\right) \in \mathcal{F}^{n}$ and $\left(\Omega, \mathcal{A}, Q_{i}\right)$ is atomless for each $i=1, \ldots, n .\left(Q_{1}, \ldots, Q_{n}\right)$ and $\left(F_{1}, \ldots, F_{n}\right)$ are almost compatible if and only if there exist $F \in \mathcal{F}$ and $Q \in \mathcal{P}$, such that $F_{i} \ll F, Q_{i} \ll Q$ for $i=1, \ldots, n$, and

$$
\begin{equation*}
\left.\left.\left(\frac{\mathrm{d} F_{1}}{\mathrm{~d} F}, \ldots, \frac{\mathrm{~d} F_{n}}{\mathrm{~d} F}\right)\right|_{F} \prec_{\mathrm{cx}}\left(\frac{\mathrm{~d} Q_{1}}{\mathrm{~d} Q}, \ldots, \frac{\mathrm{~d} Q_{n}}{\mathrm{~d} Q}\right)\right|_{Q} \tag{2}
\end{equation*}
$$

(1) Introduction

(2) Necessary condition

(3) Sufficient condition

4. Stochastic processes

- $(\Omega, \mathcal{A}):([0,1], \mathcal{B}(\mathbb{R}))$
- $Q_{2}=\lambda, \frac{\mathrm{d} Q_{1}}{\mathrm{~d} Q_{2}}(t)=2 t, t \in[0,1]$
- $F_{2}=\lambda$ on $[0,1], \frac{\mathrm{d} F_{1}}{\mathrm{~d} F_{2}}(x)=|4 x-2|, x \in[0,1]$
\Rightarrow
- $\frac{\mathrm{d} Q_{1}}{\mathrm{~d} Q_{2}}$ uniform on $[0,2]$ under Q_{2}
- $\frac{\mathrm{d} F_{1}}{\mathrm{~d} F_{2}}$ uniform on $[0,2]$ under F_{2}

Taking $Q=Q_{2}$ and $F=F_{2}$,

$$
\left.\left.\left(\frac{\mathrm{d} F_{1}}{\mathrm{~d} F}, \frac{\mathrm{~d} F_{2}}{\mathrm{~d} F}\right)\right|_{F} \stackrel{\mathrm{~d}}{=}\left(\frac{\mathrm{d} Q_{1}}{\mathrm{~d} Q}, \frac{\mathrm{~d} Q_{2}}{\mathrm{~d} Q}\right)\right|_{Q}
$$

However, $\left(Q_{1}, Q_{2}\right)$ and $\left(F_{1}, F_{2}\right)$ are not compatible.

Theorem

Let $\left(F_{1}, \ldots, F_{n}\right) \in \mathcal{F}^{n}$ and $\left(Q_{1}, \ldots, Q_{n}\right) \in \mathcal{P}^{n}$. If $\left(F_{1}, \ldots, F_{n}\right)$ and $\left(Q_{1}, \ldots, Q_{n}\right)$ are compatible, then there exist $F \in \mathcal{F}$ and $Q \in \mathcal{P}$ such that $F_{i} \ll F, Q_{i} \ll Q$ for $i=1, \ldots, n$, and

$$
\begin{equation*}
\left.\left.\left(\frac{\mathrm{d} F_{1}}{\mathrm{~d} F}, \ldots, \frac{\mathrm{~d} F_{n}}{\mathrm{~d} F}\right)\right|_{F} \prec_{\mathrm{cx}}\left(\frac{\mathrm{~d} Q_{1}}{\mathrm{~d} Q}, \ldots, \frac{\mathrm{~d} Q_{n}}{\mathrm{~d} Q}\right)\right|_{Q} \tag{3}
\end{equation*}
$$

Conversely, assume there exist $F \in \mathcal{F}$ and $Q \in \mathcal{P}$ such that $F_{i} \ll F$, $Q_{i} \ll Q$ for $i=1, \ldots, n$, and (3) holds. If in addition, there exists a continuous random variable defined on (Ω, \mathcal{A}, Q), independent of $\left(\frac{\mathrm{d} Q_{1}}{\mathrm{~d} Q}, \ldots, \frac{\mathrm{~d} Q_{n}}{\mathrm{~d} Q}\right)$, then $\left(F_{1}, \ldots, F_{n}\right)$ and $\left(Q_{1}, \ldots, Q_{n}\right)$ are compatible.

(2) Necessary condition

3 Sufficient condition

(4) Stochastic processes

- I: a closed interval
- $C(I)$: the space of all continuous functions defined on I
- \mathcal{C}_{I} : the cylindrical σ-field
- \mathcal{G}_{I} : the set of probability measures on $\left(C(I), \mathcal{C}_{I}\right)$
- I: a closed interval
- $C(I)$: the space of all continuous functions defined on I
- \mathcal{C}_{I} : the cylindrical σ-field
- \mathcal{G}_{I} : the set of probability measures on $\left(C(I), \mathcal{C}_{I}\right)$

Definition

For a closed interval $I \subset \mathbb{R},\left(G_{1}, \ldots, G_{n}\right) \in \mathcal{G}_{I}^{n}$ and $\left(Q_{1}, \ldots, Q_{n}\right) \in \mathcal{P}^{n}$ are compatible if there exists a continuous stochastic process $X=\{X(t)\}_{t \in I}$ defined on (Ω, \mathcal{A}) such that for each $i=1, \ldots, n$, the distribution of X under Q_{i} is G_{i}.

Theorem

Assume there exist $G \in \mathcal{G}_{I}$ and $Q \in \mathcal{P}$ such that $G_{i} \ll G, Q_{i} \ll Q$ for $i=1, \ldots, n$, and

$$
\left.\left.\left(\frac{\mathrm{d} G_{1}}{\mathrm{~d} G}, \ldots, \frac{\mathrm{~d} G_{n}}{\mathrm{~d} G}\right)\right|_{F} \prec_{\mathrm{cx}}\left(\frac{\mathrm{~d} Q_{1}}{\mathrm{~d} Q}, \ldots, \frac{\mathrm{~d} Q_{n}}{\mathrm{~d} Q}\right)\right|_{Q}
$$

holds. If in addition, there exists a continuous random variable defined on (Ω, \mathcal{A}, Q) independent of $\left(\frac{\mathrm{d} Q_{1}}{\mathrm{~d} Q}, \ldots, \frac{\mathrm{~d} Q_{n}}{\mathrm{~d} Q}\right)$, then $\left(G_{1}, \ldots, G_{n}\right)$ and $\left(Q_{1}, \ldots, Q_{n}\right)$ are compatible.

Q : How much can the drift of a Brownian motion change by a change of measure in the classic Girsanov Theorem.

Q : How much can the drift of a Brownian motion change by a change of measure in the classic Girsanov Theorem.

- P : a probability measure
- $B=\left\{B_{t}\right\}_{t \in[0, T]}: P$-standard Brownian motion

The Girsanov Theorem says that, by defining Q_{θ} via

$$
\begin{equation*}
\frac{\mathrm{d} Q_{\theta}}{\mathrm{d} P}=e^{\theta B_{T}-\frac{\theta^{2}}{2} T} \tag{4}
\end{equation*}
$$

$\tilde{B}(t)=B(t)-\theta t$ is a Brownian motion under Q_{θ}.

Q1 : Does there exist a P-standard Brownian motion which has a fixed drift term $\mu \in \mathbb{R}$ under Q_{θ} ?

Q1 : Does there exist a P-standard Brownian motion which has a fixed drift term $\mu \in \mathbb{R}$ under Q_{θ} ?

- $G_{\mu} \in \mathcal{G}_{[0, T]}$: distribution measure of a BM on $[0, T]$ with a constant drift term $\mu \in \mathbb{R}$ and volatility 1
- $\left(G_{0}, G_{\mu}\right)$ and $\left(P, Q_{\theta}\right)$ are compatible ?

Q1 : Does there exist a P-standard Brownian motion which has a fixed drift term $\mu \in \mathbb{R}$ under Q_{θ} ?

- $G_{\mu} \in \mathcal{G}_{[0, T]}$: distribution measure of a BM on $[0, T]$ with a constant drift term $\mu \in \mathbb{R}$ and volatility 1
- $\left(G_{0}, G_{\mu}\right)$ and $\left(P, Q_{\theta}\right)$ are compatible ?

Proposition

Let $P \in \mathcal{P}$ and $B=\left\{B_{t}\right\}_{t \in[0, T]}$ be a P-standard Brownian motion. Using the above notation, for $\mu, \theta \in \mathbb{R},\left(P, Q_{\theta}\right)$ and $\left(G_{0}, G_{\mu}\right)$ are compatible if and only if $|\mu| \leq|\theta|$.

