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Change of measure: distribution⇒ another one

How much would the distribution change?

Given several probability measures Q1, . . . ,Qn and distribution
measures F1, . . . ,Fn, does there exist a random variable
X : Ω→ R such that X has distribution Fi under Qi for
i = 1, . . . , n?
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(Ω,A): measurable space
F : the set of distributions on (R,B(R)),
P: the set of probability measures on (Ω,A)

DKL(·||·): Kullback-Leibler divergence between probability
measures

Definition (Compatibility)

(F1, . . . ,Fn) ∈ Fn and (Q1, . . . ,Qn) ∈ Pn are compatible if there
exists a random variable X in (Ω,A) such that for each i = 1, . . . , n,
the distribution of X under Qi is Fi.

Definition (Almost compatibility)

(F1, . . . ,Fn) ∈ Fn and (Q1, . . . ,Qn) ∈ Pn are almost compatible, if
for any ε > 0, there exists a random variable Xε in (Ω,A) such that
for each i = 1, . . . , n, the distribution of Xε under Qi, denoted by Fi,ε,
is absolutely continuous with respect to Fi, and satisfies
DKL(Fi,ε||Fi) < ε.
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Definition (Convex order)

Let (Ω1,A1,P1) and (Ω2,A2,P2) be two probability spaces. For
X ∈ Ln

1(Ω1,A1,P1) and Y ∈ Ln
1(Ω2,A2,P2), we write X|P1 ≺cx Y|P2 ,

if EP1 [f (X)] ≤ EP2 [f (Y)] for all convex functions f : Rn → R,
provided that both expectations exist.

Lemma ()

For X ∈ Ln
1(Ω1,A1,P1) and Y ∈ Ln

1(Ω2,A2,P2), X|P1 ≺cx Y|P2 if
and only if there exist a probability space (Ω3,A3,P3) and

X′,Y′ ∈ Ln
1(Ω3,A3,P3) such that X′|P3

d
= X|P1 , Y′|P3

d
= Y|P2 , and

EP3 [Y′|X′] = X′.
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Q1, . . . ,Qn identical⇒ F1, . . . ,Fn identical

Q1, . . . ,Qn mutually singular⇒ F1, . . . ,Fn arbitrary.

F1, . . . ,Fn mutually singular⇒ Q1, . . . ,Qn mutually singular

Conclution: Q1, . . . ,Qn are more variabile than F1, . . . ,Fn
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Necessary condition for compatibility

Lemma
Let (F1, . . . ,Fn) ∈ Fn and (Q1, . . . ,Qn) ∈ Pn. If (F1, . . . ,Fn) and
(Q1, . . . ,Qn) are compatible, then

(i) For any F ∈ F , Fi � F for i = 1, ..., n, there exists Q ∈ P ,
Qi � Q for i = 1, ..., n, such that(

dF1

dF
, . . . ,

dFn

dF

)∣∣∣∣
F
≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q
. (1)

(ii) For any Q ∈ P , Qi � Q for i = 1, ..., n, there exists F ∈ F ,
Fi � F for i = 1, ..., n, such that (1) holds.
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(Ω,A) = ([0, 1],B([0, 1]))

Q1: probability point mass at 0

Q2: probability point mass at 1

F1 and F2: uniform distribution on [0, 1]

There exists Q = 1
2(Q1 + Q2) and F = F1 such that(
dF1

dF
,

dF2

dF

)∣∣∣∣
F
≺cx

(
dQ1

dQ
,

dQ2

dQ

)∣∣∣∣
Q
,

but (Q1,Q2) and (F1,F2) are not compatible.
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Theorem

Suppose that (Q1, . . . ,Qn) ∈ Pn, (F1, . . . ,Fn) ∈ Fn and (Ω,A,Qi)
is atomless for each i = 1, . . . , n. (Q1, . . . ,Qn) and (F1, . . . ,Fn) are
almost compatible if and only if there exist F ∈ F and Q ∈ P , such
that Fi � F, Qi � Q for i = 1, ..., n, and(

dF1

dF
, . . . ,

dFn

dF

)∣∣∣∣
F
≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q
. (2)
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(Ω,A): ([0, 1],B(R))

Q2 = λ, dQ1
dQ2

(t) = 2t, t ∈ [0, 1]

F2 = λ on [0, 1], dF1
dF2

(x) = |4x− 2|, x ∈ [0, 1]

⇒
dQ1
dQ2

uniform on [0, 2] under Q2

dF1
dF2

uniform on [0, 2] under F2

Taking Q = Q2 and F = F2,(
dF1

dF
,

dF2

dF

)∣∣∣∣
F

d
=

(
dQ1

dQ
,

dQ2

dQ

)∣∣∣∣
Q
.

However, (Q1,Q2) and (F1,F2) are not compatible.
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Theorem

Let (F1, . . . ,Fn) ∈ Fn and (Q1, . . . ,Qn) ∈ Pn. If (F1, . . . ,Fn) and
(Q1, . . . ,Qn) are compatible, then there exist F ∈ F and Q ∈ P such
that Fi � F, Qi � Q for i = 1, ..., n, and(

dF1

dF
, . . . ,

dFn

dF

)∣∣∣∣
F
≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q
. (3)

Conversely, assume there exist F ∈ F and Q ∈ P such that Fi � F,
Qi � Q for i = 1, ..., n, and (3) holds. If in addition, there exists a
continuous random variable defined on (Ω,A,Q), independent of(

dQ1
dQ , . . . ,

dQn
dQ

)
, then (F1, . . . ,Fn) and (Q1, . . . ,Qn) are compatible.
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I: a closed interval

C(I): the space of all continuous functions defined on I

CI: the cylindrical σ-field

GI: the set of probability measures on (C(I), CI)

Definition
For a closed interval I ⊂ R, (G1, . . . ,Gn) ∈ Gn

I and
(Q1, . . . ,Qn) ∈ Pn are compatible if there exists a continuous
stochastic process X = {X(t)}t∈I defined on (Ω,A) such that for each
i = 1, . . . , n, the distribution of X under Qi is Gi.
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Theorem
Assume there exist G ∈ GI and Q ∈ P such that Gi � G, Qi � Q for
i = 1, . . . , n, and(

dG1

dG
, . . . ,

dGn

dG

)∣∣∣∣
F
≺cx

(
dQ1

dQ
, . . . ,

dQn

dQ

)∣∣∣∣
Q

holds. If in addition, there exists a continuous random variable
defined on (Ω,A,Q) independent of

(
dQ1
dQ , . . . ,

dQn
dQ

)
, then

(G1, . . . ,Gn) and (Q1, . . . ,Qn) are compatible.
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Q : How much can the drift of a Brownian motion change by a
change of measure in the classic Girsanov Theorem.

P: a probability measure

B = {Bt}t∈[0,T]: P-standard Brownian motion

The Girsanov Theorem says that, by defining Qθ via

dQθ

dP
= eθBT− θ2

2 T , (4)

B̃(t) = B(t)− θt is a Brownian motion under Qθ.

19 / 20



Introduction Necessary condition Sufficient condition Stochastic processes

Q : How much can the drift of a Brownian motion change by a
change of measure in the classic Girsanov Theorem.

P: a probability measure

B = {Bt}t∈[0,T]: P-standard Brownian motion

The Girsanov Theorem says that, by defining Qθ via

dQθ

dP
= eθBT− θ2

2 T , (4)

B̃(t) = B(t)− θt is a Brownian motion under Qθ.

19 / 20



Introduction Necessary condition Sufficient condition Stochastic processes

Q1 : Does there exist a P-standard Brownian motion which has a
fixed drift term µ ∈ R under Qθ ?

Gµ ∈ G[0,T]: distribution measure of a BM on [0,T] with a
constant drift term µ ∈ R and volatility 1

(G0,Gµ) and (P,Qθ) are compatible ?

Proposition

Let P ∈ P and B = {Bt}t∈[0,T] be a P-standard Brownian motion.
Using the above notation, for µ, θ ∈ R, (P,Qθ) and (G0,Gµ) are
compatible if and only if |µ| ≤ |θ|.
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