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Presentation of the setting

I The Riemann zeta function is the analytic continuation of the function
defined by

ζ(s) = ∑
n≥1

n−s

for ℜ(s)> 1.
I It is meromorphic in the whole complex plane, with a simple pole at

s = 1, and infinitely many zeros.
I The zeros are the even negative integers (called trivial zeros), and

infinitely many zeros whose real part is in (0,1) (called non-trivial zeros).
I The non-trivial zeros are symmetrically distributed with respect to the

axis ℜ(s) = 1/2. The Riemann hypothesis states that they are all on
the critical line.
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I The behavior of ζ on the critical line ℜ(s) = 1/2 has been intensively
studied, and in particular the order of magnitude of its growth when
t → ∞ . The Riemann hypothesis implies the so-called Lindelöf
hypothesis, stating that for any ε > 0, |ζ(1/2+ it)|= O((1+ |t|)ε).

I The Lindelöf hypothesis is still open today, the best result in this
direction is due to Bourgain, who has shown that the bound is true for all
ε > 13/84.

I Under the Riemann hypothesis, it is known (in particular from results by
Montgomery, Ramachandra, Soundararajan, Titshmarch) that for t ≥ 10,

|ζ(1/2+ it)|= O
(

elog t/ log log t
)
, |ζ(1/2+ it)| 6= O

(
e
√

log t/ log log t
)
.
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I A central limit theorem, due to Selberg, is known for the values of log |ζ|
on random points of the critical line.

I The average spacing of the zeros whose imaginary part is arount t has
order of magnitude 2π/ log t .

I By using Selberg’s central limit theorem, and reasoning as if the values
of ζ at points distant from 2π/ log t behave independently, one gets a
heuristic

max
t∈[0,T ]

log |ζ(1/2+ it)| ∼
√

c logT log logT ,

where c = 1.
I By doing a more careful analysis, to take into account the dependence

between different values of ζ, Farmer, Gonek and Hughes have
conjectured that we have the same asymptotics with c = 1/2.
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I Fyodorov, Hiary and Keating have made a very precise conjecture about
the order of magnitude of the maximum of log |ζ| on random intervals of
the critical line with fixed size.

I Their conjecture is related to the fact that log |ζ| has correlations which
depend on the logarithm of the distance between the points, as proven
by Bourgade.

I The conjecture can be stated as follows: for h > 0 fixed, T > 0, U
uniformly distributed on [0,1],

max
t∈[UT−h,UT+h]

log |ζ(1/2+ it)|− (log logT − 3
4

log log logT ) −→
T→∞

K ,

when K is a random variable.
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I A similar conjecture have been stated for the maximum of the
characteristic polynomial of the Circular Unitary Ensemble. They are still
open, but successive improvements have been successively obtained by
Arguin, Belius and Bourgade, Paquette and Zeitouni, Chhaibi, Madaule
and N.

I In November 2016, in the setting of the Riemann function, we have
proven the following: for all ε > 0, unconditionally,

max
t∈[UT−h,UT+h]

ℜ logζ(1/2+ it)≤ (1+ ε) log logT ,

and under the Riemann hypothesis,

max
t∈[UT−h,UT+h]

ℜ logζ(1/2+ it)≥ (1− ε) log logT .
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I We have proven, under the Riemann hypothesis, the same upper bound
and the same lower bound for the imaginary part of logζ. This gives
information on the fluctuations of the distribution of the zeros of ζ on
random intervals of the critical line.

I In December 2016, Arguin, Belius, Bourgade, Raziwill, Soundararajan,
managed to get rid of the Riemann hypothesis for the lower bound on
ℜ logζ.

I However, it is not known for the moment if the results on ℑ logζ occur
unconditionally.

I In the sequel of the talk, we sketch our proof of the lower bound of the
imaginary part (which is more difficult than the upper bound).
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Averaging of log |ζ| on the critical line

I For ℜ(s)> 1, we have

logζ(s) = ∑
n≥1

`(n)n−s

where `(n) = 1/k if n is the k -th power of a prime and `(n) = 0
otherwise.

I If ϕ is a nonnegative function with integral 1, and if H > 1, we get∫
∞

−∞

ϕ(t) logζ(s+ itH−1)dt = ∑
n≥1

`(n)n−s
ϕ̂(H−1 logn).

I If we take ϕ̂ compactly supported, the last sum is supported in
n ≤ eO(H). By analytic continuation arguments, one shows that under
the Riemann hypothesis, for H sufficiently small with respect to the
argument of s, the equality remains true up to a bounded error term,
when ℜ(s) ∈ [1/2,1).
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I With high probability, it is possible to take, for some fixed δ ∈ (0,1/2),
H = b(logT )1−δc, if s = 1/2+ it , t ∈ [UT −h,UT +h].

I Averaging log |ζ| tends to smooth its behavior, and then to decrease its
maximum.

I It is possible to show that one can replace the smooth cutoff of the sum
with ϕ̂ by a sharp cutoff, and remove the powers of primes with
exponents at least 2, by doing an error o(log logT ) on the maximum
with high probability.
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I Replacing a maximum on [UT −h,UT +h] by a maximum on a finite
subset decreases it.

I Because of these considerations, it is enough to prove the following
result, in order to get the lower bound in our main theorem: with high
probability, the supremum of

ℑ ∑
p∈P ,p≤eH

p−1/2−i(UT−h+2hk/H),

on k ∈ {0,1, . . . ,H−1} is larger than (1− ε) log logT , if δ is taken
sufficiently small depending on ε.
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Comparison with Gaussian variables

I We cut the previous sum into K parts with approximately equal variance,
for K depending on δ and ε, but not on T :

S(k ,m) = ℑ ∑
p∈P ,eem logH/K

<p≤ee(m+1) logH/K

p−1/2−i(UT−h+2hk/H)

I For techincal reasons, we also consider a truncation S0(k ,m) at level
(logT )δ/3.

I It is natural to compare the phases p−iUT with i.i.d. variables Xp on the
unit circle.
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I We then consider

V (k ,m) = ℑ ∑
p∈P ,eem logH/K

<p≤ee(m+1) logH/K

Xpp−1/2−i(−h+2hk/H)

I By bounding the differences of moments in a suitable way, it is possible
to show that the joint Fourier transform of (S0(k ,m),S0(`,m))1≤m≤K−1

is close to the corresponding Fourier transform with V instead of S0, for
all k , ` and at frequencies which are not too large.

I In the moment computations, it is crucial that all products of primes
which are involved are much smaller than T , which is guaranteed by the
choice of H.
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I Using the independence of the Xp ’s, we then compare the Fourier
transform of the variable V to the Fourier transform of Gaussian
variables G with the same covariance structure.

I This covariance structure satisfies the following:

E[G(k ,m)2] =
logH
2K

, E[G(k ,m)G(`,m)] = O

(
H1−(m/K )

|k− `|

)
,

the variables with different indices m being independent.
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Sketch of proof of the lower bound

I We choose a suitable level x > 0 and a nonnegative smooth function ϕ,
with compact support included in R+.

I We then consider the following variable:

J =
H−1

∑
k=0

K−1

∏
m=1

ϕ(S0(k ,m)− x)

I If J > 0, then there exists k such that S0(k ,m)≥ x , and then
S(k ,m)≥ x for all m between 1 and K −1. Hence, the sum
S(k ,1)+ · · ·+S(k ,K −1) is at least x(K −1). Choosing x
appropriately, and using a quite rough bound for S(k ,0) deduced from
an estimate on its moments, we can deduce a suitable lower bound for
the sum we have to deal with.
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I Paley-Zygmund’s inequality (which is a direct consequence of
Cauchy-Schwarz in this setting) implies that

P(J > 0)≥ (E[J])2

E[J2]
.

I Hence it is enough to show:

E[J2]≤ (E[J])2 (1+o(1)),

and then to have a suitable lower bound of E[J] and a suitable upper
bound of E[J2].
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I Such bound is obtained by comparison of

E

[
K−1

∏
m=1

ϕ(S0(k ,m)− x)ϕ(S0(`,m)− x)

]

and

E

[
K−1

∏
m=1

ϕ(S0(k ,m)− x)

]
E

[
K−1

∏
m=1

ϕ(S0(`,m)− x)

]
.

I By inverting the Fourier transform of the variables and using the fact that
they are close to each other (in a sense which is made precise), we are
able to prove that the quantities just above can be replaced by the
similar quantities with S0 replaced by G, with an acceptable error term.

I The, we use classical Gaussian computations to get estimates on the
quantities involving G.
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Some improvement of our result?

I Removing the Riemann hypothesis? For the real part, it has been done,
but the authors use ζ instead of logζ at some steps of their reasoning,
which cannot be directly transposed to the imaginary part.

I Improving the precision of the result?
I We need to take into account the squares of primes in the

corresponding sum, and to keep the smooth cutoff.
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Some improvement of our result?

I We need to cut the sum into a number of pieces which tends to infinity
with T .

I We need to take H closer to T (with H = b(logT )1−δc, we already lose
a constant times log logT in the lower bound we can obtain).

I We can estimate smaller moments of the sums which are involved. In
the approximation of p−iUT by independent phases, we encounter big
difficulties when some products of primes involved in the moments
become larger than T .

I Our guess: it may be possible to reach the precision
log logT −O(log log logT ), but getting
log logT − (3/4+o(1)) log log logT seems out of reach with our
method.
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Thank you for your attention!
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