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Introduction Tail empirical process and its limit

Regular variation

Problem: Assume that {Xj , j ≥ 0} is a stationary sequence with a marginal
df FX such that

P(|X0| > x) = F̄X (x) = x−α`(x) , x > 0 , (1)

where α > 0 is called the tail index and ` is a function that is slowly
varying at infinity.1 Let un →∞ be such that nF̄X (un)→∞. Define

T̃n(s) =
1

nF̄X (un)

n∑
j=1

1{Xj>uns} , Tn(s) = E[T̃n(s)] .

Under the regular variation assumption (1) we have

lim
n→∞

Tn(s) = lim
n→∞

F̄X (uns)

F̄X (un)
= s−α =: T (s) .

1In what follows, ` will be a slowly varying, different at each its occurrence
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Introduction Tail empirical process and its limit

Central Limit Theorem

Result 1

Assume that {Xj , j ≥ 0} is a stationary sequence such that (1) holds.
Under the appropriate weak dependence conditions and Lindeberg-type
assumptions we have√

nF̄X (un)
{
T̃n(s)− Tn(s)

}
⇒ G (s) (2)

in D(0,∞), where G (·) is a Gaussian process. In particular, if Xj ’s are
i.i.d., then G = B ◦ T, where B is a Brownian motion on (0,∞).

2 3 Question: What about long range dependent sequences (LRD)?

2See Drees (2003), Rootzen (2009), Drees and Rootzen (2010), Kulik, Soulier,
Wintenberger (2016).

3⇒ denotes convergence in space D w.r.t. Skorohkod topology, but the space will
differ in the subsequent results
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Introduction Panorama of limit theorems under LRD: Partial Sums

Gaussian sequences

Let {ηj , j ∈ Z} be a sequence of i.i.d. standard normal random variables.
Define

Xj =
∞∑
k=1

akηj−k . (3)

If ak = kd−1`a(k), d ∈ (0, 1/2),
∑∞

k=1 a
2
k = 1, then {Xj , j ≥ 0} is a

stationary sequence of standard normal random variables such that
var(

∑n
j=1 Xj) ∼ n2d+1`2(n).

Result 2

We have

1

nd+1/2`(n)

[nt]∑
j=1

Xj ⇒ C (d)BH(t), H = 1/2 + d > 1/2,

where BH(·) is a Fractional Brownian motion.
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Introduction Panorama of limit theorems under LRD: Partial Sums

Functionals of Gaussian sequences

Furthermore, let φ be a function such that E[φ(X0)] = 0, E[φ2(X0)] <∞
and define the Hermite rank as

τ = inf{m ∈ N : Jm(φ) 6= 0} , Jm(φ) = E[φ(X0)Hm(X0)] ,

where Hm(·) is the mth Hermite polynomial.

Result 3

If τ(1− 2d) > 1, then

1√
n

[nt]∑
j=1

φ(Xj)
d→ σ0B(t), σ2

0 :=
∞∑
k=0

Cov(φ(X0), φ(Xk)) <∞.

Rafa l Kulik Long Memory and Extremes Bloomington, IN, 1/04/2017 7 / 20



Introduction Panorama of limit theorems under LRD: Partial Sums

Functionals of Gaussian sequences

Result 4

If τ(1− 2d) < 1, then

1

an,τ

[nt]∑
j=1

φ(Xj)⇒ C (β)I
(τ)
H (t), H = 1/2 + d ,

where an,τ = n1−τ(1/2−d)`(n) and I
(τ)
H (·) is called Hermite-(Rosenblatt)

process

I
(τ)
H (t) :=

∫ ∞
−∞
· · ·
∫ ∞
−∞

Q
(τ)
t (x1, . . . , xτ ;H)B(dx1) · · ·B(dxτ ).

4

4Rosenblatt, Taqqu (1977-1979)
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Introduction Panorama of limit theorems under LRD: Partial Sums

Stochastic volatility

Let {Yj , j ≥ 0} be like in (3). Let {Zj , j ≥ 0} be a sequence of i.i.d.
regularly varying random variables. For φ ≥ 0 define

Xj = φ(Yj)Zj , j ≥ 0 , Fj = σ({ηi ,Zi}, i ≤ j) . (4)

Let τp be the Hermite rank of φp.

Long Memory Stochastic Volatility (LMSV) model: where {ηj} and
{Zj} are independent.

Model with leverage: where {(ηj ,Zj)} is a sequence of i.i.d. random
vectors. For fixed j , Zj and Yj are independent, but Yj may not be
independent of the past {Zi , i < j}.

Due to Breiman’s lemma, if E[φα+ε(Y0)] <∞, then

lim
x→+∞

P(|X0| > x)

P(|Z0| > x)
= E[φα(Y0)] . (5)
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Introduction Panorama of limit theorems under LRD: Partial Sums

Stochastic volatility

If α > 1, then

cov(X0,Xk) = E[Z0]cov(φ(Y0), φ(Yk)) , k ≥ 1 .

If α ∈ (1, 2), then var(X0) =∞, yet covariances are well-defined.
If α > 2, then cov(X 2

0 ,X
2
k ) = E[Z 2

0 ]cov(φ2(Y0), φ2(Yk)), k ≥ 1. Define

Sp,n(t) =

[nt]∑
j=1

|Xj |p .

Then

Sp,n(t)− E[Sp,n(t)] =

=

[nt]∑
j=1

{|Xj |p − E[|Xj |p | Fj−1]}︸ ︷︷ ︸
”martingale”

+E[|Z0|p]

[nt]∑
j=1

{φp(Yj)− E[φp(Yj)]}︸ ︷︷ ︸
”long memory part”

.

(6)
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Introduction Panorama of limit theorems under LRD: Partial Sums

Stochastic volatility

Result 5

Let cn = inf{x : P(|X0| > x) < 1/n} (so that cn ≈ n−1/α`(n)). Then

1 If p < α < 2p and 1− τp(1/2− d) < p/α, then

c−pn (Sp,n − nE[|X0|p])⇒ Lα/p ,

where Lα/p is a totally skewed to the right α/p-stable Lévy process.

2 If p < α < 2p and 1− τp(1/2− d) > p/α, then

a−1
n,τ (Sp,n − nE[|X0|p])⇒

Jτp(φp)E[|Z0|p]

τp!
I

(τp)
H .

3 If p > α, then c−pn Sp,n ⇒ Lα/p, where Lα/p is a positive α/p-stable
Lévy process.
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Introduction Panorama of limit theorems under LRD: Partial Sums

Stochastic volatility

Let us focus on p = 1. Then the theorem is applicable to α ∈ (0, 1)
and α ∈ (1, 2). If the long memory is not strong enough, that is
1− τp(1/2− d) < 1/α, then we have the classical limit as in i.i.d.
case. If the long memory is strong enough then the limiting process
has finite variance! (the long memory phase)

To illustrate this, take φ(x) = exp(x) so that τp = 1 for all p. Take
p = 1. Then the condition 1− τp(1/2− d) < p/α becomes
d + 1/2 < 1/α. Hence, keeping in mind that d ∈ (0, 1/2), if α is
close to 2, we can have the long memory phase only.

Furthermore, if we consider α > 2p (finite variance case) then only
the long memory phase occurs.

Other interesting phenomena occur when sample covariances are
considered. 5

5See Kulik and Soulier (2012).
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Introduction Panorama of limit theorems under LRD: Partial Sums

Infinite variance functionals of Gaussian sequences

Let’s go back to the sequence given in (3), that is the long memory
Gaussian sequence. Let φ be such that

P(φ(X0) > x) = x−α`(x) .

For example, φ(x) = exp(αx2) or φ(x) = 1/|x |r , r > 0. Then the similar
result as Result 5 also holds. The proof is based on point processes and
hypercontractivity, but in principle it is based on the decomposition (6). 6

6See Davis (1983), Sly and Heyde (2008)
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Tail empirical process and LRD

TEP for Stochastic Volatility

Theorem 6

Consider the stochastic volatility model given in (4). Assume that
E[φα+ε(Y0)] <∞. Let τ = τα be the Hermite rank of φα.

If an,τ

√
F̄X (un)

n → 0, then (cf. Result 2)√
nF̄X (un)

{
T̃n(s)− Tn(s)

}
⇒ B ◦ T (s) .

If an,τ

√
F̄X (un)

n →∞, then

n

an,τ

{
T̃n(s)− Tn(s)

}
⇒ Jτ (φα)

τ !E[φα(Y0)]
s−αI

(τ)
H (1) .
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Tail empirical process and LRD

TEP for Stochastic Volatility - random levels

The proof of Theorem 6 is based on (more involved than before)
martingale-LRD decomposition.
Two issues:

We want to replace Tn(s) with its limit T (s) = s−α.

We want to get rid of un and F̄X (un).

Choose k = kn →∞ such that k/n→ 0. Choose un such that
k = nF̄X (un). Let Xn:n ≥ Xn:n−k ≥ · · · ≥ Xn:1 be the order statistics.
Then Theorem 6 implies

Xn:n−k/un
p→ 1 .

Hence, define

T̂n(s) =
1

k

n∑
j=1

1{Xj>Xn:n−k s} .
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Tail empirical process and LRD

TEP for Stochastic Volatility - random levels

Theorem 7

Assume that the conditions of Theorem 6 are satisfied. Assume moreover
that

lim
n→∞

(
n

an,τ
+
√
nF̄ (un)

)
sup
t ε>0

∣∣∣∣ F̄X (uns)

F̄X (un)
− s−α

∣∣∣∣ = 0 . (7)

Then

√
k
{
T̂n(s)− T (s)

}
⇒ B0 ◦ T (s) ,

where B0 is a Brownian bridge.

7 8

7Kulik and Soulier (2009), Bilayi and Kulik (2017)
8Condition (7) is linked to second order regular variation

Rafa l Kulik Long Memory and Extremes Bloomington, IN, 1/04/2017 16 / 20



Applications Hill estimator

Hill estimator

Note that
∫∞

1 (T (s)/s)ds = α−1. Hence, we can consider

α̂−1 =

∫ ∞
1

(T̂n(s)/s)ds =
1

k

n∑
j=1

log

(
Xn:n−j+1

Xn:n−k

)
.

It is called the Hill estimator.

Corollary 8

Under the conditions of Theorem 7 we have

√
k
{
α̂−1 − α−1

} d→
∫ ∞

1
(B0 ◦ T (s)/s)ds

d
= N (0, α−2) .

Conclusion: Long memory (in the stochastic volatility) does not influence
the behaviour of the Hill estimator!!!
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Applications Value-at-Risk

Value-at-Risk

Let {Xj , j ≥ 0} be the Stochastic Volatility model Let p ∈ (0, 1) be small.
Then we are interested in estimation of Q(p) = F←Y (1− p). The extreme
order statistics cannot be really used directly. Hence, the idea is to go to
the intermediate statistics and scale. Let p = pn → 0 and k/n→ 0. The
approximation

Q(p)

Q(k/n)
≈
(

k

np

)1/α

suggests the following estimator for Q(p):

Q̂n(p) = Xn:n−k

(
k

np

)1/α̂

.

Unfortunately, the limiting distribution of Xn:n−k has to be deduced from
Theorem 6, hence the long memory influences estimation of the
Value-at-Risk.
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Open problems

Open problems

1 Tail empirical process for infinite variance functionals of Gaussian
sequences;

2 Tail empirical process for infinite variance moving averages:

Xj =
∞∑
k=1

akηj−k ,

where {ηj , j ∈ Z} are i.i.d. regularly varying random variables with
tail index α > 0.

It is not clear to me if we have dichotomous behaviour as in Theorem 6!!!
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Thank you!!!
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