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Introduction Tail empirical process and its limit

Regular variation

Problem: Assume that {Xj,j > 0} is a stationary sequence with a marginal
df Fx such that

P(|Xo| > x) = Fx(x) = x"“(x), x>0, (1)

where v > 0 is called the tail index and ¢ is a function that is slowly
varying at infinity.} Let u, — oo be such that nFx(u,) — co. Define

1 & -
Ta(s) = n/:_x(un); ]l{Xj>uns} » Ta(s) =E[Ty(s)] -

Under the regular variation assumption (1) we have

lim T,(s) = lim 71:_2((u,,s)

o .
n—co n—00 FX(Un) =s " =T(s).

'In what follows, £ will be a slowly varying, different at each its occurrence
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Introduction Tail empirical process and its limit

Central Limit Theorem

Result 1

Assume that {Xj,j > 0} is a stationary sequence such that (1) holds.
Under the appropriate weak dependence conditions and Lindeberg-type
assumptions we have

nFx (up) {fn(s) _ Tn(s)} = G(s) (2)

in D(0, 00), where G(-) is a Gaussian process. In particular, if X;'s are
i.i.d., then G = Bo T, where B is a Brownian motion on (0, c0).

2 3 Question: What about long range dependent sequences (LRD)?

?See Drees (2003), Rootzen (2009), Drees and Rootzen (2010), Kulik, Soulier,
Wintenberger (2016).

3= denotes convergence in space D w.r.t. Skorohkod topology, but the space will
differ in the subsequent results
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Gaussian sequences

Let {n;,j € Z} be a sequence of i.i.d. standard normal random variables.
Define

X; = Z aKTj—k - (3)
If ax = k9710,(k), d € (0,1/2), S°%2, a2 =1, then {X;,j > 0} is a

stationary sequence of standard normal random varlables such that
n , 2d+1 g2
var(_jy Xj) ~ n= T 5(n).

Result 2
We have
[nt]
nd+1/2€ ZX:C Bu(t), H=1/2+d>1/2,
where By(-) is a Fractional Brownian motion.
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Functionals of Gaussian sequences

Furthermore, let ¢ be a function such that E[¢(Xp)] = 0, E[¢?(Xp)] < oo
and define the Hermite rank as

T=inf{m e N: Jn(¢) # 0}, JIm(d) =E[p(Xo)Hm(X0)] ,
where Hp,(+) is the mth Hermite polynomial.

Result 3
If 7(1 —2d) > 1, then

[nt] 00
% ST 0(X) S ooB(t), o= Cov(6(X), (X)) < 0.
j=1 k=0
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Functionals of Gaussian sequences

Result 4
If 7(1 —2d) < 1, then

[nt]
2N o00) = COIPW, H=1/2+44,
nT i

where a,, = n*~"1/2=dy(n) and I,(_,T)(-) is called Hermite-(Rosenblatt)
process

II(-/T)(t) = / / Q,ET)(Xl,.-.,XT; H)B(dxy) - - - B(dx;).

*Rosenblatt, Taqqu (1977-1979)
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Panorama of limit theorems under LRD: Partial Sums
Stochastic volatility

Let {Y},j > 0} be like in (3). Let {Z},j > 0} be a sequence of i.i.d.
regularly varying random variables. For ¢ > 0 define

Xi=o(Yj)Z;, j=0, Fi=o({ni,Zi},i <j). (4)

Let 7, be the Hermite rank of ¢”.

@ Long Memory Stochastic Volatility (LMSV) model: where {;} and
{Z;} are independent.

@ Model with leverage: where {(n;, Z;)} is a sequence of i.i.d. random
vectors. For fixed j, Z; and Yj are independent, but Y; may not be
independent of the past {Z;,i < j}.

Due to Breiman's lemma, if E[¢p*1¢(Yp)] < oo, then

Bl > %)
x—+o00 P(|Zp| > x)

= E[¢%(Y0)] - (5)
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Panorama of limit theorems under LRD: Partial Sums
Stochastic volatility
If > 1, then
cov(Xo, Xx) = E[Zp]cov(o(Yo), o(Yk)), k>1.

If « € (1,2), then var(Xp) = oo, yet covariances are well-defined.
If a > 2, then cov(X2, X2) = E[ZZ]cov(¢?(Yo), 9*(Yk)), k > 1. Define

[nt]
Spn(t) =Y 1% .
j=1
Then
Sp.n(t) = E[Spn(t)] =
[nt] [nt]
=Y AIXIP —EIXIP | Fial} +E[ 271> _{6°(Y)) — E[¢"(V))]} -
= j=1
" martingale” "long me?r?ory part”
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Panorama of limit theorems under LRD: Partial Sums
Stochastic volatility

Result 5

Let ¢, = inf{x : P(|Xo| > x) < 1/n} (so that c, ~ n~Y/*4(n)). Then
Q Ifp<a<?2pandl—1,(1/2—d) < p/c, then
&5 P(Spn — nE[|Xol?]) = L

n a/p >

where L, is a totally skewed to the right o/ p-stable Lévy process.

Q@ Ifp<a<2pandl—1,(1/2—d) > p/a, then

I (PVENZ0P] )

3, 7(Spn — nE[| Xo|?]) = H

n,T I
Tp!

Q@ Ifp>a,thenc,”Sp =1L where L

Lévy process.

is a positive o/ p-stable

a/p a/p

v
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Panorama of limit theorems under LRD: Partial Sums
Stochastic volatility

@ Let us focus on p = 1. Then the theorem is applicable to a € (0,1)
and a € (1,2). If the long memory is not strong enough, that is
1—17,(1/2 —d) < 1/, then we have the classical limit as in i.i.d.
case. If the long memory is strong enough then the limiting process
has finite variance! (the long memory phase)

e To illustrate this, take ¢(x) = exp(x) so that 7, =1 for all p. Take
p = 1. Then the condition 1 — 7,(1/2 — d) < p/a becomes
d+1/2 < 1/a. Hence, keeping in mind that d € (0,1/2), if v is
close to 2, we can have the long memory phase only.

e Furthermore, if we consider a > 2p (finite variance case) then only
the long memory phase occurs.

@ Other interesting phenomena occur when sample covariances are
considered. °

®See Kulik and Soulier (2012).
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Introduction Panorama of limit theorems under LRD: Partial Sums

Infinite variance functionals of Gaussian sequences

Let's go back to the sequence given in (3), that is the long memory
Gaussian sequence. Let ¢ be such that

P(p(Xo) > x) = x~%(x) .

For example, ¢(x) = exp(ax?) or ¢(x) = 1/|x|", r > 0. Then the similar
result as Result 5 also holds. The proof is based on point processes and
hypercontractivity, but in principle it is based on the decomposition (6). °

®See Davis (1983), Sly and Heyde (2008)
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Tail empirical process and LRD

TEP for Stochastic Volatility

Theorem 6

Consider the stochastic volatility model given in (4). Assume that
E[¢p*t¢(Yp)] < cc. Let T = 7, be the Hermite rank of ¢*.

o Ifan, w — 0, then (cf. Result 2)

nFx (up) {7~',,(s) — T,,(s)} —~ Bo T(s).

o Ifan, M — 00, then

n

an,r

[Tols) ~ Tuls)} = msa/ﬁ)(l) .
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TEP for Stochastic Volatility - random levels

The proof of Theorem 6 is based on (more involved than before)
martingale-LRD decomposition.
Two issues:

o We want to replace T,(s) with its limit T(s) = s~ .
o We want to get rid of u, and Fx(u,).

Choose k = k, — oo such that k/n — 0. Choose u, such that

k = nFx(u,). Let Xp.n > Xpn—k > -+ > Xp1 be the order statistics.
Then Theorem 6 implies

Xpin—k/un > 1.

Hence, define

~ 1 <
Ta(s) = p Z Lix>Xpn s} -
j=1
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Tail empirical process and LRD

TEP for Stochastic Volatility - random levels

Theorem 7

Assume that the conditions of Theorem 6 are satisfied. Assume moreover
that

I:'X(u,,s) B S_a

Fx(up)

lim < o nl:_(u,,)) sup
n—oo

an,r te>0

~0. (7)
Then
\/E{?n(s) - T(s)} = Byo T(s),

where By is a Brownian bridge.

78

"Kulik and Soulier (2009), Bilayi and Kulik (2017)

8Condition (7) is linked to second order regular variation
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Applications Hill estimator

Hill estimator

Note that [°(T(s)/s)ds . Hence, we can consider
Ta(s)/s)ds = lo ””‘”1) .
/ ( / ) Z < nn k

It is called the Hill estimator.

Corollary 8

Under the conditions of Theorem 7 we have

\f{a_l—a_l}ﬁ/ (Byo T(s)/s)ds = N(0,a7?) .

Conclusion: Long memory (in the stochastic volatility) does not influence
the behaviour of the Hill estimator!!!
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Value-at-Risk
Value-at-Risk

Let {Xj,j > 0} be the Stochastic Volatility model Let p € (0,1) be small.
Then we are interested in estimation of Q(p) = Fy (1 — p). The extreme
order statistics cannot be really used directly. Hence, the idea is to go to
the intermediate statistics and scale. Let p = p, — 0 and k/n — 0. The

approximation
Qp) (k)l/a
Qk/m) ~ \p

suggests the following estimator for Q(p):

R k 1/a
Qn(p) = Xn:n—k (np> .

Unfortunately, the limiting distribution of X,,.,_x has to be deduced from
Theorem 6, hence the long memory influences estimation of the
Value-at-Risk.
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Open problems

@ Tail empirical process for infinite variance functionals of Gaussian
sequences;

@ Tail empirical process for infinite variance moving averages:

o
Xi = aunj ,
k=1

where {;,j € Z} are i.i.d. regularly varying random variables with
tail index a > 0.

It is not clear to me if we have dichotomous behaviour as in Theorem 6!!!
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Thank you!!!
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