Statistical Inference for Extremes of Long Memory Processes

Rafał Kulik

Department of Mathematics and Statistics (University of Ottawa)

Bloomington, IN, 1/04/2017

Statistical Inference for Extremes of Long Memory Processes

Rafał Kulik

Department of Mathematics and Statistics (University of Ottawa)

Bloomington, IN, 1/04/2017

Plan

Introduction

- Tail empirical process and its limit
- Panorama of limit theorems under LRD: Partial Sums
- 2 Tail empirical process and LRD

3 Applications

- Hill estimator
- Value-at-Risk

Open problems

Regular variation

<u>Problem</u>: Assume that $\{X_j, j \ge 0\}$ is a stationary sequence with a marginal df F_X such that

$$\mathbb{P}(|X_0| > x) = \bar{F}_X(x) = x^{-\alpha} \ell(x) , \quad x > 0 , \qquad (1)$$

where $\alpha > 0$ is called the *tail index* and ℓ is a function that is slowly varying at infinity.¹ Let $u_n \to \infty$ be such that $n\bar{F}_X(u_n) \to \infty$. Define

$$\widetilde{T}_n(s) = rac{1}{n\overline{F}_X(u_n)}\sum_{j=1}^n \mathbb{1}_{\{X_j>u_ns\}}, \quad T_n(s) = \mathbb{E}[\widetilde{T}_n(s)].$$

Under the regular variation assumption (1) we have

$$\lim_{n\to\infty} T_n(s) = \lim_{n\to\infty} \frac{\bar{F}_X(u_n s)}{\bar{F}_X(u_n)} = s^{-\alpha} =: T(s) .$$

¹In what follows, ℓ will be a slowly varying, different at each its occurrence $\exists \neg \neg \land \bigcirc$

Central Limit Theorem

Result 1

Assume that $\{X_j, j \ge 0\}$ is a stationary sequence such that (1) holds. Under the appropriate weak dependence conditions and Lindeberg-type assumptions we have

$$\sqrt{n\bar{F}_X(u_n)}\left\{\widetilde{T}_n(s)-T_n(s)\right\}\Rightarrow G(s)$$
(2)

in $\mathbb{D}(0,\infty)$, where $G(\cdot)$ is a Gaussian process. In particular, if X_j 's are *i.i.d.*, then $G = B \circ T$, where B is a Brownian motion on $(0,\infty)$.

^{2 3} **Question:** What about long range dependent sequences (LRD)?

²See Drees (2003), Rootzen (2009), Drees and Rootzen (2010), Kulik, Soulier, Wintenberger (2016).

 3 \Rightarrow denotes convergence in space \mathbb{D} w.r.t. Skorohkod topology, but the space will differ in the subsequent results

Gaussian sequences

Let $\{\eta_j, j \in \mathbb{Z}\}$ be a sequence of i.i.d. standard normal random variables. Define

$$X_j = \sum_{k=1}^{\infty} a_k \eta_{j-k} .$$
(3)

If $a_k = k^{d-1}\ell_a(k)$, $d \in (0, 1/2)$, $\sum_{k=1}^{\infty} a_k^2 = 1$, then $\{X_j, j \ge 0\}$ is a stationary sequence of standard normal random variables such that $\operatorname{var}(\sum_{j=1}^n X_j) \sim n^{2d+1}\ell^2(n)$.

Result 2

We have

$$\frac{1}{n^{d+1/2}\ell(n)}\sum_{j=1}^{[nt]}X_j \Rightarrow C(d)B_H(t), \qquad H = 1/2 + d > 1/2,$$

where $B_H(\cdot)$ is a Fractional Brownian motion.

Functionals of Gaussian sequences

Furthermore, let ϕ be a function such that $\mathbb{E}[\phi(X_0)] = 0$, $\mathbb{E}[\phi^2(X_0)] < \infty$ and define the Hermite rank as

$$\tau = \inf\{m \in \mathbb{N} : J_m(\phi) \neq 0\}, \quad J_m(\phi) = \mathbb{E}[\phi(X_0)H_m(X_0)],$$

where $H_m(\cdot)$ is the *m*th Hermite polynomial.

Result 3 If au(1-2d)>1, then

$$\frac{1}{\sqrt{n}}\sum_{j=1}^{[nt]}\phi(X_j)\stackrel{\mathrm{d}}{\to}\sigma_0B(t),\qquad \sigma_0^2:=\sum_{k=0}^\infty\mathrm{Cov}(\phi(X_0),\phi(X_k))<\infty.$$

Functionals of Gaussian sequences

Result 4

If $\tau(1 - 2d) < 1$, then

$$\frac{1}{a_{n,\tau}}\sum_{j=1}^{[nt]}\phi(X_j) \Rightarrow C(\beta)I_H^{(\tau)}(t), \qquad H = 1/2 + d,$$

where $a_{n,\tau} = n^{1-\tau(1/2-d)}\ell(n)$ and $I_H^{(\tau)}(\cdot)$ is called Hermite-(Rosenblatt) process

$$I_{H}^{(\tau)}(t) := \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} Q_{t}^{(\tau)}(x_{1}, \ldots, x_{\tau}; H) B(dx_{1}) \cdots B(dx_{\tau}).$$

4

⁴Rosenblatt, Taqqu (1977-1979)

Rafał Kulik

Long Memory and Extremes

Bloomington, IN, 1/04/2017

★ E ► ★ E ► E

Let $\{Y_j, j \ge 0\}$ be like in (3). Let $\{Z_j, j \ge 0\}$ be a sequence of i.i.d. regularly varying random variables. For $\phi \ge 0$ define

$$X_j = \phi(Y_j)Z_j , \ j \ge 0 , \ \mathcal{F}_j = \sigma(\{\eta_i, Z_i\}, i \le j) .$$
 (4)

Let τ_p be the Hermite rank of ϕ^p .

- Long Memory Stochastic Volatility (LMSV) model: where $\{\eta_j\}$ and $\{Z_j\}$ are independent.
- Model with leverage: where {(η_j, Z_j)} is a sequence of i.i.d. random vectors. For fixed j, Z_j and Y_j are independent, but Y_j may not be independent of the past {Z_i, i < j}.

Due to Breiman's lemma, if $\mathbb{E}[\phi^{lpha+\epsilon}(Y_0)]<\infty$, then

$$\lim_{x \to +\infty} \frac{\mathbb{P}(|X_0| > x)}{\mathbb{P}(|Z_0| > x)} = \mathbb{E}[\phi^{\alpha}(Y_0)] .$$
(5)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

If $\alpha > 1$, then

$$\operatorname{cov}(X_0, X_k) = \mathbb{E}[Z_0] \operatorname{cov}(\phi(Y_0), \phi(Y_k)) \;, \;\; k \geq 1 \;.$$

If $\alpha \in (1, 2)$, then $\operatorname{var}(X_0) = \infty$, yet covariances are well-defined. If $\alpha > 2$, then $\operatorname{cov}(X_0^2, X_k^2) = \mathbb{E}[Z_0^2] \operatorname{cov}(\phi^2(Y_0), \phi^2(Y_k))$, $k \ge 1$. Define

$$S_{p,n}(t) = \sum_{j=1}^{[nt]} |X_j|^p$$
 .

Then

$$S_{p,n}(t) - \mathbb{E}[S_{p,n}(t)] = \sum_{j=1}^{[nt]} \{|X_j|^p - \mathbb{E}[|X_j|^p \mid \mathcal{F}_{j-1}]\} + \mathbb{E}[|Z_0|^p] \sum_{j=1}^{[nt]} \{\phi^p(Y_j) - \mathbb{E}[\phi^p(Y_j)]\}$$

$$\lim_{n \text{ martingale}} \lim_{n \text{$$

Result 5

Let $c_n = \inf\{x : \mathbb{P}(|X_0| > x) < 1/n\}$ (so that $c_n \approx n^{-1/\alpha}\ell(n)$). Then If $p < \alpha < 2p$ and $1 - \tau_p(1/2 - d) < p/\alpha$, then

$$c_n^{-p}(S_{p,n}-n\mathbb{E}[|X_0|^p]) \Rightarrow L_{\alpha/p}$$

where $L_{\alpha/p}$ is a totally skewed to the right α/p -stable Lévy process. If $p < \alpha < 2p$ and $1 - \tau_p(1/2 - d) > p/\alpha$, then

$$a_{n,\tau}^{-1}(S_{p,n}-n\mathbb{E}[|X_0|^p]) \Rightarrow \frac{J_{\tau_p}(\phi^p)\mathbb{E}[|Z_0|^p]}{\tau_p!}I_H^{(\tau_p)}$$

Solution If $p > \alpha$, then $c_n^{-p} S_{p,n} \Rightarrow L_{\alpha/p}$, where $L_{\alpha/p}$ is a positive α/p -stable Lévy process.

-

- Let us focus on p = 1. Then the theorem is applicable to $\alpha \in (0, 1)$ and $\alpha \in (1, 2)$. If the long memory is not strong enough, that is $1 - \tau_p(1/2 - d) < 1/\alpha$, then we have the classical limit as in i.i.d. case. If the long memory is strong enough then the limiting process has finite variance! (the long memory phase)
- To illustrate this, take $\phi(x) = \exp(x)$ so that $\tau_p = 1$ for all p. Take p = 1. Then the condition $1 \tau_p(1/2 d) < p/\alpha$ becomes $d + 1/2 < 1/\alpha$. Hence, keeping in mind that $d \in (0, 1/2)$, if α is close to 2, we can have the long memory phase only.
- Furthermore, if we consider α > 2p (finite variance case) then only the long memory phase occurs.
- Other interesting phenomena occur when sample covariances are considered.⁵

⁵See Kulik and Soulier (2012).

Infinite variance functionals of Gaussian sequences

Let's go back to the sequence given in (3), that is the long memory Gaussian sequence. Let ϕ be such that

$$\mathbb{P}(\phi(X_0) > x) = x^{-\alpha}\ell(x) .$$

For example, $\phi(x) = \exp(\alpha x^2)$ or $\phi(x) = 1/|x|^r$, r > 0. Then the similar result as Result 5 also holds. The proof is based on point processes and hypercontractivity, but in principle it is based on the decomposition (6). ⁶

⁶See Davis (1983), Sly and Heyde (2008)

TEP for Stochastic Volatility

Theorem 6

Consider the stochastic volatility model given in (4). Assume that $\mathbb{E}[\phi^{\alpha+\epsilon}(Y_0)] < \infty$. Let $\tau = \tau_{\alpha}$ be the Hermite rank of ϕ^{α} . • If $a_{n,\tau}\sqrt{\frac{\bar{F}_X(u_n)}{n}} \rightarrow 0$, then (cf. Result 2) $\sqrt{n\bar{F}_X(u_n)}\left\{\widetilde{T}_n(s)-T_n(s)\right\} \Rightarrow B\circ T(s)$. • If $a_{n,\tau} \sqrt{\frac{F_X(u_n)}{n}} \to \infty$, then $\frac{n}{a_n \tau} \left\{ \widetilde{T}_n(s) - T_n(s) \right\} \Rightarrow \frac{J_{\tau}(\phi^{\alpha})}{\tau! \mathbb{E}[\phi^{\alpha}(Y_0)]} s^{-\alpha} I_H^{(\tau)}(1) .$

TEP for Stochastic Volatility - random levels

The proof of Theorem 6 is based on (more involved than before) martingale-LRD decomposition.

<u>Two issues:</u>

- We want to replace $T_n(s)$ with its limit $T(s) = s^{-\alpha}$.
- We want to get rid of u_n and $\overline{F}_X(u_n)$.

Choose $k = k_n \to \infty$ such that $k/n \to 0$. Choose u_n such that $k = n\bar{F}_X(u_n)$. Let $X_{n:n} \ge X_{n:n-k} \ge \cdots \ge X_{n:1}$ be the order statistics. Then Theorem 6 implies

$$X_{n:n-k}/u_n \stackrel{P}{
ightarrow} 1$$
.

Hence, define

$$\widehat{T}_n(s) = \frac{1}{k} \sum_{j=1}^n \mathbb{1}_{\{X_j > X_{n:n-k}s\}} \, .$$

TEP for Stochastic Volatility - random levels

Theorem 7

Assume that the conditions of Theorem 6 are satisfied. Assume moreover that

$$\lim_{n\to\infty} \left(\frac{n}{a_{n,\tau}} + \sqrt{n\bar{F}(u_n)}\right) \sup_{t\ \epsilon>0} \left|\frac{\bar{F}_X(u_ns)}{\bar{F}_X(u_n)} - s^{-\alpha}\right| = 0.$$
(7)

Then

$$\sqrt{k}\left\{\widehat{T}_n(s)-T(s)\right\}\Rightarrow B_0\circ T(s)$$
,

where B_0 is a Brownian bridge.

78

⁷ Kulik and Soulier (2009)), Bilayi and Kulik (2017)		
⁸ Condition (7) is linked t	o second order regular variation		SQC
Rafał Kulik	Long Memory and Extremes	Bloomington, IN, 1/04/2017	16 / 20

Hill estimator

Note that $\int_1^\infty (T(s)/s) ds = \alpha^{-1}$. Hence, we can consider

$$\widehat{\alpha}^{-1} = \int_1^\infty (\widehat{T}_n(s)/s) \mathrm{d}s = \frac{1}{k} \sum_{j=1}^n \log\left(\frac{X_{n:n-j+1}}{X_{n:n-k}}\right)$$

It is called the Hill estimator.

Corollary 8

Under the conditions of Theorem 7 we have

$$\sqrt{k} \left\{ \widehat{\alpha}^{-1} - \alpha^{-1} \right\} \stackrel{\mathrm{d}}{\to} \int_{1}^{\infty} (B_0 \circ T(s)/s) \mathrm{d}s \stackrel{\mathrm{d}}{=} \mathcal{N}(0, \alpha^{-2}) \;.$$

Conclusion: Long memory (in the stochastic volatility) does not influence the behaviour of the Hill estimator!!!

		・ロト ・聞ト ・ヨト ・ヨト 三田	5
Rafał Kulik	Long Memory and Extremes	Bloomington, IN, 1/04/2017	17 /

20

Value-at-Risk

Let $\{X_j, j \ge 0\}$ be the Stochastic Volatility model Let $p \in (0, 1)$ be *small*. Then we are interested in estimation of $Q(p) = F_Y^{\leftarrow}(1-p)$. The extreme order statistics cannot be really used directly. Hence, the idea is to *go to the intermediate statistics and scale*. Let $p = p_n \rightarrow 0$ and $k/n \rightarrow 0$. The approximation

$$rac{Q(p)}{Q(k/n)}pprox \left(rac{k}{np}
ight)^{1/lpha}$$

suggests the following estimator for Q(p):

$$\widehat{Q}_n(p) = X_{n:n-k} \left(\frac{k}{np}\right)^{1/\widehat{\alpha}}$$

Unfortunately, the limiting distribution of $X_{n:n-k}$ has to be deduced from Theorem 6, hence the long memory influences estimation of the Value-at-Risk.

Open problems

- Tail empirical process for infinite variance functionals of Gaussian sequences;
- Itail empirical process for infinite variance moving averages:

$$X_j = \sum_{k=1}^\infty a_k \eta_{j-k} \; ,$$

where $\{\eta_j, j \in \mathbb{Z}\}\$ are i.i.d. regularly varying random variables with tail index $\alpha > 0$.

It is not clear to me if we have dichotomous behaviour as in Theorem 6!!!

D C	 e 1	
Rata		~
- 1 \ a a	 (u	n

イロト 不得 トイヨト イヨト 二日

Thank you!!!

	~	
		 ĸ

(日) (同) (三) (三)

3