STOCHASTIC REACTION-DIFFUSION EQUATIONS ON GRAPHS

Wai-Tong (Louis) Fan University of Wisconsin-Madison

April 1-2, 2017

AMS Sectional Meeting Self-similarity and Long-range Dependence in Stochastic Processes

Indiana University Bloomington

《曰》 《圖》 《臣》 《臣》

э.

WAI-TONG (LOUIS) FAN UNIVERSITY OF WISCONSIN-MADISON

How do spatial structure affects the dynamics, competition outcome and genealogies of interacting populations?

[Inankur and Yin 2015]

Our approach: develop and analyze novel RDE and SPDE on graphs

(日) (同) (三) (三)

3

- SPDE on manifolds [Tindel and Viens 1999, 2002]
- SPDE on graphs first appeared in [Cerrai and Freidlin 2014, 2016]

$$\partial_t u = \alpha \Delta u + b(u) + \sigma(u) \dot{W}$$
 on $\overset{\circ}{G}$

イロン イ団 とくほ とくほとう

I nac

$$\left(\nabla_{out} u \cdot \vec{\alpha} = 0 \right) \qquad \qquad \text{on } V$$

as the limit of a two dimensional SPDE.

(I) We introduce more general SPDE on graphs

$$\begin{cases} \partial_t u = \alpha \, \Delta u + b(u) + \sigma(u) \, \dot{W} & \text{on } \overset{\circ}{G} \\ \nabla_{out} u \cdot \vec{\alpha} = -\hat{\beta}(u) & \text{on } V \end{cases}$$

・ロン ・回 と ・ ヨ と ・ ヨ と …

э.

(II) We obtain **the first scaling limit results** which rigorously connect individual based models to both deterministic and noisy RDE on general metric graphs.

SPDE on graphs

Precisely,

$$\partial_t u = \alpha(x) \Delta u(t, x) + b(x, u(t, x)) + \sigma(x, u(t, x)) \dot{W} \quad \text{for } x \in \overset{\circ}{G}$$

$$\nabla_{out} u \cdot \vec{\alpha} = -\hat{\beta}(v, u(t, v)) \quad \text{for } v \in V$$

is the shorthand of

$$u_{t}(x) = P_{t}u_{0}(x) + \int_{0}^{t} P_{t-s}(b(\cdot, u_{s}))(x) ds + \int_{[0,t]\times G} p(t-s, x, y)\sigma(y, u_{s}(y)) dW(s, y) + \int_{0}^{t} \sum_{v \in V} p(t-s, x, v) \hat{\beta}(v, u_{s}(v)) ds,$$

where $\{P_t\}_{t\geq 0}$ is the $\mathcal{C}_{\infty}(G)$ -semigroup and p(t, x, y) the transition density for the symmetric α -diffusion on G [Freidlin and Wentzell 1993, Freidlin and Sheu 2000].

SPDE on graphs

EXAMPLE (BRANCHING RANDOM WALKS)

$$\partial_t u = \alpha_e \Delta u + \beta_e u + \sqrt{4\gamma_e u} \dot{W} \quad \text{on } \overset{\circ}{e}$$

$$7_{out} u \cdot \vec{\alpha} = -\hat{\beta}(u) \quad \text{on } V.$$

EXAMPLE (CONTACT PROCESS)

$$\begin{cases} \partial_t u = \alpha_e \,\Delta u + \beta_e \,u - \delta_e \,u^2 + \sqrt{\gamma_e \,u} \dot{W} & \text{on } \overset{\circ}{e} \\ \nabla_{out} u \cdot \vec{\alpha} = -\hat{\beta}(u) & \text{on } V. \end{cases}$$

EXAMPLE (GINZBURG-LANDAU EQUATION)

$$\begin{cases} \partial_t u = \alpha_e \,\Delta u + \beta_e \,u - \delta_e \,u^3 + \sqrt{\gamma_e} \dot{W} & \text{on } \overset{\circ}{e} \\ \nabla_{out} u \cdot \vec{\alpha} = -\hat{\beta}(u) & \text{on } V. \end{cases}$$

WAI-TONG (LOUIS) FAN UNIVERSITY OF WISCONSIN-MADISON

SPDE on graphs

EXAMPLE (BVM)

$$\partial_t u = \alpha_e \Delta u + \beta_e u(1-u) + \sqrt{\gamma_e u(1-u)} \dot{W} \quad \text{on } \overset{\circ}{e} \\ \nabla_{out} u \cdot \vec{\alpha} = -\hat{\beta} u(1-u) \quad \text{on } V.$$

WAI-TONG (LOUIS) FAN UNIVERSITY OF WISCONSIN-MADISON

INDIVIDUAL BASED MODELING

CASE (I) if w is on e^n and is not adjacent to any vertex, then

$$a^{z,w} = rac{lpha_e \left(L^e
ight)^2}{M^e}$$
 and $b^{z,w} = rac{eta_e}{M^e}$

CASE (II) if w is on e^n and is adjacent to $v \in V$ while z is on \tilde{e} ,

$$a^{z,w} = rac{L^e C_{e, ilde e}}{M^e}$$
 and $b^{z,w} = b^{ ilde e,e}$

= nar

< ロ > < 部 > < 문 > < 문 > …

With rate $a^{z,w}$, z is replaced by an offspring of w. With rate $b^{z,w}$, z is replaced by an offspring of w **only if** w **has type 1**.

THEOREM (F, 2017)

Given $\hat{\beta}(v)$ for all vertex $v \in V$ and a triple $(\alpha_e, \beta_e, \gamma_e)$ for each edge e. Suppose

•
$$L^e/M^e \rightarrow \gamma_e/4\alpha_e$$
 and $L^e \rightarrow \infty$ for all e ,

All L^e are comparable,

Then the approximate density process converges in distribution in $\mathcal{D}([0,\infty), \mathcal{C}_{[0,1]}(G))$ to a continuous $\mathcal{C}_{[0,1]}(G)$ valued process $(u_t)_{t\geq 0}$ which is the weak solution to

$$\begin{cases} \partial_t u = \alpha_e \,\Delta u + \beta_e \,u(1-u) + \sqrt{\gamma_e \,u(1-u)} \dot{W} & \text{on } \overset{\circ}{e} \\ \nabla_{out} u \cdot \vec{\alpha} = -\hat{\beta} \,u(1-u) & \text{on } V \end{cases}$$

We have two more approximating schemes: Interacting SDEs and Interacting random walks. Proof outline:

- Step 1) $\{u^n\}_{n\geq 1}$ is C-tight in $\mathcal{D}([0,T], \mathcal{C}_{[0,1]}(G))$ for every T > 0.
- Step 2) Any sub-sequential limit u is a weak solution.
- Step 3) Weak uniqueness for the SPDE holds

New challenges:

- (A) Interactions near vertex singularities in relation to $\{M^e\}$ and $\{L^e\}$.
- (B) Weak uniqueness via a new duality
- (C) Uniform heat kernel estimates for random walks and diffusions on ${\it G}$

WAI-TONG (LOUIS) FAN UNIVERSITY OF WISCONSIN-MADISON STOCHASTIC REACTION-DIFFUSION EQUATIONS ON GRAPHS

NON-UNIQUENESS OF SPDE

Theorem (Mueller, Mytnik and Perkins 2014)

If 0 < γ < 3/4, then uniqueness in law and pathwise uniqueness fail for

$$\partial_t u(t,x) = rac{1}{2}\Delta u(t,x) + |u(t,x)|^\gamma \dot{W}(t,x), \qquad u(0,x) = 0$$

▲ロ → ▲ 翻 → ▲ 画 → ▲ 画 → の Q @

on the space of $\mathcal{C}(\mathbb{R})$ -valued adapted processes.

Open questions:

- strong uniqueness for case $\gamma = 3/4$.
- strong uniqueness for stochastic FKPP on $\mathcal{C}_+(\mathbb{R})$ -valued processes

DUAL PROCESS

$$\begin{cases} \partial_t u = \alpha \,\Delta u + \beta \,u(1-u) + \sqrt{\gamma \,u(1-u)} \dot{W} & \text{on } \overset{\circ}{G} \\ \nabla_{out} u \cdot \vec{\alpha} = -\hat{\beta} \,u(1-u) & \text{on } V \end{cases}$$
(1.1)

LEMMA (F, 2017)

Suppose α , β , γ/α , $\hat{\beta}$ are nonnegative, bounded and continuous. Then (1.1) has a dual process which is a branching coalescing α -diffusions on G

- branching for a particle X_t occurs at rate $\beta(X_t)dt + \hat{\beta}(X_t)dL_t^V$
- two particles X_t , Y_t coalesce at rate $\gamma(X_t)$

$$\frac{\gamma(X_t)}{\alpha(X_t)}\,dL_t^{(X,Y)}.$$

◆□> ◆□> ◆三> ◆三> ● 三 のへの

Corollary: Weak uniqueness of SPDE (1.1) holds on $C_{[0,1]}(G)$. Useful to the study of time-asymptotic properties.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

WAI-TONG (LOUIS) FAN UNIVERSITY OF WISCONSIN-MADISON STOCHASTIC REACTION-DIFFUSION EQUATIONS ON GRAPHS