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I. Regularly varying time series

Let {Xt , t ∈ Z} be a real valued stationary time series. It is
regularly varying iff for any k ≥ 0

L
(
X0

x
,
X1

x
. . . ,

Xk

x
| |X0| > x

)
→x→∞ (Y0, . . . ,Yk).

I This defines a process {Yk , k ≥ 0} called the tail process,
Basrak and Segers (2009).

I Y0 has a two-sided Pareto distribution on (−∞,−1] ∪ [1,∞).

I If for some j ∈ {1, . . . , d}, Xj is extremally independent of X0,
then Yj ≡ 0.

I |Y0| is independent of Yj/|Y0| = Θ0 called the spectral tail
process.
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Harris recurrent Markov chains

Assume Xt = g(Φt) with {Φt} an aperiodic, recurrent and
irreducible Markov chain with kernel P and which admits an
invariant distribution π such that X0 = g(Φ0) is regularly varying.

I It constitutes a stationary regularly varying time series,
Resnick and Zeber (2013), Janssen and Segers (2014).

I Yt is a multiplicative random walk Yt = At · · ·A1Y0, t ≥ 0 for
some (At) iid.
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Drift condition

Assume the following drift condition holds:

PV (x) ≤ λV (x) + b1C(x) ,

where λ ∈ (0, 1), V (x) : E → [1,∞) and C is a small set.

I Under these conditions, the chain (Φt) is β-mixing with
geometric rate and so is (Xt), Meyn and Tweedie (1997).
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The DCp, p > 0 condition, Mikosch and W. (2014)
Let {un} be an increasing sequence such that

lim
n→∞

F̄ (un) = lim
n→∞

1

nF̄ (un)
= 0 .

I There exist p ∈ (0, α/2) and a constant c such that

|g |p ≤ cV . (1)

I For every compact set [a, b] ⊂ (0,∞),

lim sup
n→∞

sup
a≤s≤b

1

upnP(X0 > un)
E
[
V (Φ0)1{sun<g(Φ0)}

]
<∞ .

(2)

Roughly (1) and (2) implies the existence of c1, c2 and n0

c1P(V (Φ0) > un) ≤ P(|X |p > un) ≤ c2P(V (Φ0) > un), n ≥ n0.
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Example 1: the GARCH(1,1) process

We consider a GARCH(1,1) process Xt = σt Zt , where (Zt) is iid
N (0, 1) and

σ2
t = α0 + σ2

t−1(α1Z
2
t−1 + β1) = α0 + σ2

t−1At .

Special SRE then DCp holds under Kesten’s condition E[A
α/2
0 ] = 1

for p < α with V (x) = |x |p and g = x , Mikosch and W. (2014).
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Example 2: the AR(p) process

Assume that {Xj , j ∈ Z} is an AR(p) model

Xj = φ1Xj−1 + · · ·+ φpXj−p + εj , j ≥ 1 ,

that satisfies the following conditions:

I {εj , j ∈ Z} are iid, regularly varying with index α,

I the polynomial 1− φ1z − · · · − φpzp does not have unit root
inside the unit cercle.

As for Random Coefficients AR, DCp for p < α, holds for some V
and g(x1, . . . , xp) = x1, Feigin and Tweedie (1985).
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Example 3: the Threshold ARCH(1) process

Let ξ ∈ R. Assume that {Xj} is T-ARCH model

Xj =(b10 + b11X
2
j−1)1/2Zj1{Xj−1<ξ} + (b20 + b21X

2
j−1)1/2Zj1{Xj−1≥ξ} ,

that satisfies the following conditions:

I bij > 0;

I {Zj , j ∈ Z} are iid gaussian r.v.,

I the Lyapunov exponent

γ = p log b
1/2
11 + (1− p) log b

1/2
21 + E[log(|Z1|)] ,

where p = P(Z1 < 0), is strictly negative;

I (b11 ∨ b21)p/2E[|Z0|p] < 1.

Then DCp holds.
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A counterexample

Let {Zj , j ∈ Z} be iid positive integer valued r.v. regularly varying
with index β > 1.

Define the Markov chain {Xj , j ≥ 0} by the following recursion:

Xj =

{
Xj−1 − 1 if Xj−1 > 1 ,

Zj if Xj−1 = 1 .

Since β > 1, the chain admits a stationary distribution π on N
given by

π(n) =
P(Z0 ≥ n)

E[Z0]
, n ≥ 1 .

Karamata’s Theorem implies that π is regularly varying with index
α = β − 1.
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I The state {1} is an atom and the return time to the atom is
distributed as Z0,

I The chain is not geometrically ergodic and DCp cannot hold,

I The time series is regularly varying with Yj = 1 for all j ≥ 0,

I It admits a phantom distribution, the distribution of Z0,
O’Brien (1987), Doukhan et al. (2015)

P
(

max
1≤j≤n

Xj ≤ un
)
− P(Zj ≤ un)n/E[Z ] → 0
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II. The tail empirical process.
II.1. Univariate TEP

The univariate tail empirical process is defined by

en(t) =
1

nF̄ (un)

n∑
i=1

{1{Xi>unt} − F̄ (unt)}

relevant to infer the marginal tail.

I In the iid case then√
nF̄ (un) en(t)⇒W (t−α) .

where W is the standard Brownian motion and ⇒ means
weak convergence in the space D(0,∞] endowed with the J1

topology, Starica and Resnick (1997).
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II.1. Multivariate TEP

For each quantity of interest, an appropriate type of TEP is used.

Joint exceedences, Kulik and Soulier (2015), extremograms, Davis
and Mikosch (2009).

en(t1, . . . , th) =
1

nF̄ (un)

n∑
i=1

{1{Xi+1>unt1,...,Xi+h>unth}

− P(X1 > unt1, . . . ,Xh > unth)} .

Conditional limiting distributions,

en(t1, . . . , th) =
1

nF̄ (un)

n∑
i=1

1{Xi+1≤unt1,...,Xi+h≤unth}1{Xi>un}

− P(X1 ≤ unt1, . . . ,Xh ≤ unth | X0 > un)
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Spectral tail process, Drees et al. (2015).

The relevant TEP is

en(t) =
1

nF̄ (un)

n∑
i=1

1{Xi+1/|Xi |≤t,Xi>un} − P(X1/X0 ≤ unt | X0 > un) .

Many variations and more generally, cluster functionals, Drees and
Rootzen (2010).

Weighted versions

en(t1, . . . , th) =
1

nF̄ (un)

n∑
i=1

Ψ(Xi+1, . . . ,Xi+h)1{Xi+1>unt1,...,Xi+h>unth}

− E[Ψ(Xi+1, . . . ,Xi+h) | X1 > unt1, . . . ,Xh > unth] .
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Extremal quantities of interest

I Univariate:
I The tail index. Extreme quantiles.

I Multivariate; extremal dependence:
I various coefficients of extremal dependence; extremograms;
I distribution of the tail process.

I Multivariate; extremal independence:
I conditional limiting distributions;
I conditional scaling exponents.

I Infinite dimensional:
I extremal index;
I cluster functionals.
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Conditions for time series

To prove the weak convergence of the tail empirical process for
time series, three types of conditions are needed.

I Temporal dependence condition;

I Tightness criterion;

I Finite clustering condition;

I Bias conditions.

• We will not discuss the bias issues which are important but of
a completely different nature (second order conditions).
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Temporal dependence

I β-mixing allowing blocks method, Rootzen (2009)

I For a suitable choice of sequences rn and un, the limiting
distribution of en is the same as

ẽn(t) =
mn∑
i=1

1

nF̄ (un)

rn∑
j=1

{1{X̃(i−1)rn+j} − F̄ (unt)}

where mn = [n/rn] and the coupling blocks, Yu (1994),
{X̃j , j = (i − 1)rn + 1, . . . , irn}, i = 1, . . . ,mn are iid as one
original block of Xi .

Given this approximation, we need two more conditions:

I existence of the limiting variance of each block suitably
normalized,

I tightness of the TEP.
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The variance of one block

By standard computations, we obtain

1

F̄ (un)
var

 rn∑
j=1

1{Xj>uns}


∼ F̄ (uns)

F̄ (un)
+

rn∑
j=1

P(X0 > uns,Xj > uns)

F̄ (un)
+ O(rnF̄ (un))

∼ s−α +
rn∑
j=1

P(X0 > uns,Xj > uns)

F̄ (un)
+ O(rnF̄ (un)) .

If we assume that rnF̄ (un)→ 0, then the sum right above must a
limit.
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Note that joint regular variation of (X0,Xj) implies that for fixed
L > 0, by definition of the tail process {Yj , j ≥ 1},

lim
n→∞

L∑
j=1

P(X0 > uns,Xj > uns)

F̄ (un)
= s−α

L∑
j=1

P(Yj > 1) .

This implies that for each L > 1,

lim inf
n→∞

1

F̄ (un)
var

 rn∑
j=1

1{Xj>uns}

 ≥ s−α
L∑

j=0

P(Yj > 1) .

Thus a necessary condition for the quantity on the left hand side
to have a finite limit is

∞∑
j=1

P(Yj > 1) <∞ .
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Finite Clustering condition

A sufficient condition is

lim
L→∞

lim sup
n→∞

1

F̄ (un)

∑
L<|j |≤rn

P(X0 > uns,Xj > uns) = 0 .

(known under the misleading name Anti-Clustering condition).

If Condition FC holds, then for s ≤ t,

lim
n→∞

√
nF̄ (un) cov(en(t), en(s)) = s−α

∑
j∈Z

P(Yj > t/s) .

where {Yj , j ∈ Z} is the tail process (extended to negative integers
thanks to the forward-backward formula of Basrak and Segers,
2009).
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I If the time series is extremally independent, i.e. Yj = 0 for
j 6= 0, then the limit is the same as in the iid case.

I If Condition FC holds, then the extremal index θ of the chain
{Xt} is positive and is given by, Basrak and Segers (2009),

θ = P
(

max
k≥1

Yk ≤ 1
)
> 0 .

I In the counterexample θ = 0, Roberts et al. (2006).
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Checking Condition FC for Markov chains

Lemma

Under the DCp and minorization conditions, Condition FC holds.

Proof: The set C is a regenerative set. Let τC be the first return
to C. Fix an integer L > 0 and split the sum at τC :

1

F̄ (un)
E
[ rn∑
j=L

1{sun<X0}1{sun<Xj}

]

≤ 1

F̄ (un)
E

 τC∑
j=L

1{sun<X0}1{sun<Xj}


+

1

F̄ (un)
E

 rn∑
j=τC+1

1{sun<X0}1{sun<Xj}1{τC≤rn}


The last term is dealt with by standard regenerative arguments.
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For r > 1, the sum up to the first visit is bounded by

F̄−1(un)E
[∑τC

j=L
1{sun<X0}1{sun<Xj}

]
≤
∫ ∞
sun

E
[∑τC

j=L
1{sun<Xj} | X0 = x

]
νn(dx)

≤ Cu−pn r−L
∫ ∞
sun

E
[∑τC

j=L
r jV (Xj) | X0 = x

]
νn(dx)

The geometric drift condition states precisely that there exists
r > 1 such that

E
[∑τA

j=L
rkV (Φj) | X0 = x

]
≤ C |x |p .

Plugging this bound into the integral yields

F̄−1(un)E
[∑τA

j=L
1{sun<X0}1{sun<Xj}

]
≤ Cr−L.
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Tightness

Tightness of the process en under the β-mixing condition holds
under the following sufficient condition:

I for each a > 0, s, t ≥ a,

lim sup
n→∞

1

rnF̄ (un)
E

 rn∑
j=1

1{uns<Xj≤rnt}

2 ≤ |s−α − t−α| .

This condition can be proved for Markov chains which satisfy the
DCp and minorization conditions as above.

Moreover, the following restriction on the block size is needed

lim
n→∞

rn√
nF̄ (un)

= 0 .
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Theorem

Let DCp and minorization conditions hold and assume moreover
that there exists η > 0 such that

lim
n→∞

log1+η(n)

{
F̄ (un) +

1√
nF̄ (un)

}
= 0 .

Let s0 > 0 be fixed.

I The TEP converges weakly in `∞([s01,∞)) to a centered

Gaussian process at the rate
√
nF (un).

I If ψ : Rh+1 → R is such that

|ψ(x0, . . . , xh)| ≤ c((|x0| ∨ 1)q0 + · · ·+ (|xh| ∨ 1)qh) ,

with qi + qi ′ ≤ p ∧ α/2 for all i , i ′ = 0, . . . , h, then converges

weakly to a centered Gaussian process at the rate
√

nF (un).
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Examples and a counterexample

Most usual Markovian time series satisfy the DCp condition

I GARCH(1,1),

I SRE,

I AR(p),

I Functional autoregressive process: Xt+1 = g(Xt) + Zt with
limt→∞ |g(x)| ≤ λ < 1,

I Threshold models, AR-ARCH models, etc.

The counterexample does not satisfy the DCp condition and the
TEP converges at another rate than the iid case. The limit is not
gaussian if var(Z ) =∞.
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III. Statistical applications

I In the case of extremal independence, Yj = 0 for all j 6= 0,
under the DCp and minorization conditions, the univariate
TEP has the same limit as in the iid case.

I Thus most of the statistical inference works similarly as in the
iid case.
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The Hill estimator

The classical Hill estimator of γ = 1/α is defined as

γ̂ =
1

k

n∑
j=1

log+

(
Xn:n−j+1

Xn:n−k

)
.

Corollary

Under the DCp and minorization conditions and if one can neglect
the bias, then

√
k {γ̂ − γ} → N

0, α−2

1 + 2
∞∑
j=1

P(Yj > 1 | Y0 > 1)


 .

Notice the limit distribution is the one from the iid case multiplied
by the sum of the extremograms.
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Estimation of the cluster index

Under Condition DCp, the cluster index exists, Mikosch and
Wintenberger (2014),

lim
h→∞

b+(h) = b+, b+(h) =
1

h
lim
n→∞

P(X0 + · · ·+ Xh > un)

F (un)
.

Define

b̂+(h) =
1

kh

n−h∑
j=1

1{Xj+···+Xj+h>Xn:n−k} .

Corollary

Under the DCp and minorization conditions and if one can neglect
the bias,

√
k(b̂+(h)− b+(h)) converges weakly to a gaussian r.v..
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What about the counterexample?
In most statistical applications, we are interested in the behavior of
the TEP en at Xn:n−k/un. Both quantities behave in a very non
usual way but the ultimate estimation seems to work normally.
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Thanks!
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