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|. Regularly varying time series

Let {X:, t € Z} be a real valued stationary time series. It is
regularly varying iff for any kK > 0
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| ‘X0| > X> — x—300 (Yo,...,yk).

v

This defines a process { Yy, k > 0} called the tail process,
Basrak and Segers (2009).

Yo has a two-sided Pareto distribution on (—oo, —1] U [1, c0).

v

v

If for some j € {1,...,d}, Xj is extremally independent of Xo,
then Y; = 0.

| Yol is independent of Yj/|Yy| = ©p called the spectral tail
process.

v



Harris recurrent Markov chains

Assume X; = g(®;) with {®;} an aperiodic, recurrent and
irreducible Markov chain with kernel P and which admits an
invariant distribution 7 such that Xy = g(®o) is regularly varying.

» It constitutes a stationary regularly varying time series,
Resnick and Zeber (2013), Janssen and Segers (2014).

» Y} is a multiplicative random walk Y; = A;---A1Yp, t > 0 for
some (A) iid.



Drift condition

Assume the following drift condition holds:
PV(x) < AV(x) + blc(x) ,
where A € (0,1), V(x): E — [1,00) and C is a small set.

» Under these conditions, the chain (®;) is S-mixing with
geometric rate and so is (X;), Meyn and Tweedie (1997).



The DC,, p > 0 condition, Mikosch and W. (2014)

Let {u,} be an increasing sequence such that

lim F(up) = lim Loy

n—o0 n—00 nF(un)

» There exist p € (0,«/2) and a constant ¢ such that
glP < V. (1)

» For every compact set [a, b] C (0, 00),

. 1
limsup sup

————E | V(Pg)1 < 00 .
n—oo a<s<b UnP(Xo > up) [ (®o) {SUn<g(¢o)}] o0

()
Roughly (1) and (2) implies the existence of ci, c; and ng

aP(V(®g) > un) <P(|IX|P > up) < P(V(Po) > up), n> ngp.



Example 1: the GARCH(1,1) process

We consider a GARCH(1,1) process X; = o Z;, where (Z;) is iid
N(0,1) and

af =aqg + Uf,l(oélzt{l + 1) = ao + UfflAt-

Special SRE then DC, holds under Kesten's condition E[Agp] =1
for p < o with V(x) = |x|? and g = x, Mikosch and W. (2014).



Example 2: the AR(p) process

Assume that {Xj,j € Z} is an AR(p) model
)<j:¢1)<j—1+"'+¢p)<j—p+€j> ./2 17
that satisfies the following conditions:

» {cj,j € Z} are iid, regularly varying with index «,
» the polynomial 1 — ¢1z —--- — ¢,zP does not have unit root
inside the unit cercle.

As for Random Coefficients AR, DC, for p < «, holds for some V
and g(x1,...,xp) = x1, Feigin and Tweedie (1985).



Example 3: the Threshold ARCH(1) process

Let £ € R. Assume that {X;} is T-ARCH model
X; =(bro + b X2 1) 2 x, ey + (bao + b XP 1) 221 5y |
that satisfies the following conditions:

> b,'j > 0;
» {Z;,j € 7} are iid gaussian r.v.,

» the Lyapunov exponent

7 = plog by)> + (1 — p)log byl + E[log(| Z1])] ,

where p = P(Z; < 0), is strictly negative;
> (b11 \Y bgl)p/2E”Zo‘p] < 1.

Then DC,, holds.



A counterexample

Let {Z;,j € Z} be iid positive integer valued r.v. regularly varying
with index 8 > 1.

Define the Markov chain {Xj,j > 0} by the following recursion:

X — ){,;1—1 if)<j71>1,
Tz if X 1 =1.

Since 8 > 1, the chain admits a stationary distribution 7 on N
given by

7['(/7) _ P(Zo Z n)

L= s
E[Z]

Karamata's Theorem implies that 7 is regularly varying with index
a=p0-1.



v

v

v

v

The state {1} is an atom and the return time to the atom is
distributed as Zj,

The chain is not geometrically ergodic and DC, cannot hold,
The time series is regularly varying with Y; =1 for all j > 0,

It admits a phantom distribution, the distribution of Zp,
O'Brien (1987), Doukhan et al. (2015)

IP( max Xj < u,,) —P(Z; < u,)EE 0
1<j<n




Il. The tail empirical process.
I1.1. Univariate TEP

The univariate tail empirical process is defined by

n

en(t) = n/:_(u,,) ;{R{X,->unt} - 'E(unt)}

relevant to infer the marginal tail.

» In the iid case then
nF(up) en(t) = W(t™?).

where W is the standard Brownian motion and = means
weak convergence in the space D(0, co] endowed with the J;
topology, Starica and Resnick (1997).



[1.1. Multivariate TEP

For each quantity of interest, an appropriate type of TEP is used.

Joint exceedences, Kulik and Soulier (2015), extremograms, Davis
and Mikosch (2009).

1 n
en(tb ceey th) = nI:_(u ) Z{:[]‘{X,‘+1>Untl ----- Xiph>uUntp}
nJ =1

—P(X1 > upty, ..., Xp > untp)} .

Conditional limiting distributions,

1 n
en(th SR th) = nﬁ(u ) Z ]l{Xi+1Suntla--<7xi+hgunth}l{xi>un}
nJ =1

—P(Xl < upty, ..., Xp < Uptp ’ Xo > Un)




Spectral tail process, Drees et al. (2015).
The relevant TEP is

1

en(t) = —= Z L, /1% <t X upy — P(X1/Xo < upt | Xo > un) -
nF(un) =

Many variations and more generally, cluster functionals, Drees and
Rootzen (2010).

Weighted versions

n

1
en(tb R th) = nﬁ(u ) Z W(Xi+1, e 7Xi+h)H{X,-+1>u,7t1,...,X,-+h>u,,th}
N ji=1

—E[W(Xig1, .-, Xign) | X1 > unt, ..o, X > unty] .




Extremal quantities of interest

» Univariate:
» The tail index. Extreme quantiles.
» Multivariate; extremal dependence:

» various coefficients of extremal dependence; extremograms;
» distribution of the tail process.

v

Multivariate; extremal independence:

» conditional limiting distributions;
» conditional scaling exponents.

Infinite dimensional:

v

» extremal index;
» cluster functionals.



Conditions for time series

To prove the weak convergence of the tail empirical process for
time series, three types of conditions are needed.

» Temporal dependence condition;

v

Tightness criterion;

v

Finite clustering condition;

Bias conditions.

v

We will not discuss the bias issues which are important but of
a completely different nature (second order conditions).



Temporal dependence

» (3-mixing allowing blocks method, Rootzen (2009)

» For a suitable choice of sequences r, and u,, the limiting
distribution of e, is the same as

i Mn 1 Fn
en(t) - z—; nlE(Un) ','Z_;{]l{x(i—l)rn+j} N F(Unt)}

where m, = [n/r,] and the coupling blocks, Yu (1994),
{Xj,j=(0—=1)rm+1,... i}, i=1,...,m, are iid as one
original block of X;.

Given this approximation, we need two more conditions:

> existence of the limiting variance of each block suitably
normalized,

» tightness of the TEP.



The variance of one block

By standard computations, we obtain

n
> Lixus)
j=1

_F(uns) | N P(Xo > uns, X; > ups) CE
'E(Un) J:Zl :E(u,,) + O(rnF(un))

Z o> S); 2 802) 4 O(rn ()

If we assume that r,F(u,) — 0, then the sum right above must a

limit.



Note that joint regular variation of (Xp, Xj) implies that for fixed
L > 0, by definition of the tail process {Y},j > 1},

L
X0>u,,sX >u,,)_ a
fm 3TV oSy
This implies that for each L > 1,
L
I|nnl|orlf . Z Xoush | =5~ Z;P(Yj >1).

Thus a necessary condition for the quantity on the left hand side
to have a finite limit is

Y P(Y;j>1) <
=1



Finite Clustering condition

A sufficient condition is

1
lim limsup = P(Xo > ups, X; > ups) =0.
L—o0 naoop F(Un) L<%;rn ( ° ! ’ ! )

(known under the misleading name Anti-Clustering condition).
If Condition FC holds, then for s < t,

lim \/nF(un) cov(en(t), en(s)) = s> P(Y} > t/s).

n—00 ‘
JEZ

where {Y;,j € Z} is the tail process (extended to negative integers
thanks to the forward-backward formula of Basrak and Segers,
2009).



» If the time series is extremally independent, i.e. Y; = 0 for
Jj # 0, then the limit is the same as in the iid case.

» |f Condition FC holds, then the extremal index 6 of the chain
{X:} is positive and is given by, Basrak and Segers (2009),

H:P(makagl) >0.
k>1

» In the counterexample § = 0, Roberts et al. (2006).



Checking Condition FC for Markov chains

Lemma
Under the DC,, and minorization conditions, Condition FC holds.

Proof: The set C is a regenerative set. Let 7¢ be the first return
to C. Fix an integer L > 0 and split the sum at 7¢:

I'n

,;-(1un)E[Z;]l{sun<xo}]l{sun<xj}}
1 <
< F‘(u,,)E j_ZLﬂ{su,,<xo}]l{su,,<xj}
+ = . Zr: Ltsup<xo} Lisun<x} Lire<ra}
F(un) !

Jj=Tc+1

The last term is dealt with by standard regenerative arguments.



For r > 1, the sum up to the first visit is bounded by
F l(un)E[Zj:L ]l{su,,<X0}]l{su,,<Xj}}

< /mE[ZjiL 1 ou,<x;}y | Xo = x} vn(dx)

Un

— _ o TC H
< CuyPr L/ E[ZJZLrJV(Xj) | Xo = x} Vn(dx)

The geometric drift condition states precisely that there exists
r > 1 such that

E[ZT’*L V(D)) | Xo = x} < ClxPP .

=

Plugging this bound into the integral yields

F~(un)E Zi Lfsup<xo} Lsunargy | < Cr .
j=L



Tightness
Tightness of the process e, under the 5-mixing condition holds
under the following sufficient condition:

» for each a> 0, s,t > a,

2

rn
Z L uns< X<t} <[sTr -t
=

[im su =
i T

This condition can be proved for Markov chains which satisfy the
DC,, and minorization conditions as above.

Moreover, the following restriction on the block size is needed
In

lim ————— =0.
n=20 \/nF(up)



Theorem

Let DC, and minorization conditions hold and assume moreover
that there exists n > 0 such that

lim log**t"(n){ F(u, }}:0.
n—00 & (){ ( )+ nF(Un)

Let sy > 0 be fixed.

» The TEP converges weakly in (>°([so1l,00)) to a centered
Gaussian process at the rate \/ nF(uy).

» If¢p: RIFY 5 R s such that
[9(x05 - - xn)| < c((Ixo] VI)P + -+ (|xn| V1)%),

with q; + gy < pA«/2 for all i,i" =0,...,h, then converges
weakly to a centered Gaussian process at the rate \/nF(u,).



Examples and a counterexample

Most usual Markovian time series satisfy the DC, condition

» GARCH(1,1),
» SRE,
» AR(p),

» Functional autoregressive process: X:11 = g(X:) + Z; with
lim: o0 |g(x)] < A < 1,
» Threshold models, AR-ARCH models, etc.

The counterexample does not satisfy the DC,, condition and the
TEP converges at another rate than the iid case. The limit is not
gaussian if var(Z) = oo.



II1. Statistical applications

> In the case of extremal independence, Y; = 0 for all j # 0,
under the DC, and minorization conditions, the univariate
TEP has the same limit as in the iid case.

» Thus most of the statistical inference works similarly as in the
iid case.



The Hill estimator

The classical Hill estimator of v = 1/« is defined as

A nn—j+1
yzk2|og+< J )

n n—k
Corollary

Under the DC, and minorization conditions and if one can neglect
the bias, then

VE{d =7} =N (0,072 142 B(Y; > 1] Yo > 1)
j=1

Notice the limit distribution is the one from the iid case multiplied
by the sum of the extremograms.



Estimation of the cluster index

Under Condition DC,, the cluster index exists, Mikosch and
Wintenberger (2014),

hhj;o by (h) = by, b (h) = h n"_?go F(un)
Define
1 n—h
b+(h) = E Z :”'{)<j+"'+)<j+h>xn:n7k} '
j=1
Corollary

Under the DC, and minorization conditions and if one can neglect
the bias, \/k(by (h) — b, (h)) converges weakly to a gaussian r.v..



What about the counterexample?
In most statistical applications, we are interested in the behavior of
the TEP e, at X,.,—k/un. Both quantities behave in a very non
usual way but the ultimate estimation seems to work normally.




Thanks!
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