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Behavior of the generalized Rosenblatt process at extreme critical exponent values

This talk is based on the paper:

S. Bai and M.S. Taqqu. “Behavior of the generalized Rosenblatt process at extreme
critical exponent values”. To appear in The Annals of Probability, 2016.
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Self-similarity

We will focus on self-similar processes with stationary increments

Definition: A process Z(t), t ≥ 0 is self-similar with parameter H > 0 if for any real a the
finite-dimensional distributions of Z(at), t ≥ 0 are the same as those of aHZ(t), t ≥ 0.

The self-similar processes we will focus on, are by order of complexity:

Trivial process X (t) = Xt is self-similar with H = 1.

Brownian motion is self-similar with H = 1/2.

Fractional Brownian motion is self-similar with 0 < H < 1.

The Rosenblatt process is self-similar with 1/2 < H < 1.

The Generalized Rosenblatt process is self-similar with 1/2 < H < 1.
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The Trivial process

Any right-continuous self-similar process X (t) with E|X (t)|2 <∞, stationary increments
and H = 1 is the trivial process

X (t) = tX (1) a.s.
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Fractional Brownian motion

BH(t), t ≥ 0, called Fractional Brownian motion, is a process characterized by the
following properties:

(i) BH is a centered Gaussian process

(ii) BH has stationary increments.

(iii) BH is self-similar with index H ∈ (0, 1), that is for any a > 0,

{BH(at), t ≥ 0} f.d.d.
= {aHBH(t), t ≥ 0}

These imply:

EBH(t)2 = t2HEB(1)2 = σ2t2H

EBH(t1)BH(t2) =
σ2

2
[t2H1 + t2H2 − |t1 − t2|2H ]
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Single Wiener-Itô stochastic integral

To represent Fractional Brownian motion we’ll use a Wiener-Itô stochastic integral with
respect to standard Brownian motion B(t), t ≥ 0:

I =

∫
R

f (x)dB(x)

This integral is defined first for each simple non-random f ∈ L2(R) and then defined by
isometry as a limit in L2(Ω).

Since I is a limit of Gaussian variables, I is also Gaussian, with mean 0 and variance
‖f ‖22 =

∫
R f (x)2dx .
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Representation of Fractional Brownian motion

Fractional Brownian motion with 1/2 < H < 1 can be represented as a Wiener-Itô
integral with respect to standard Brownian motion,

BH(t) = CH

∫
R

(
(t − x)

H−1/2
+ − (−x)

H−1/2
+

)
dB(x)

= C ′H

∫
R

(∫ t

0

(s − x)
H−3/2
+ ds

)
dB(x)

Using this representation, it is straightforward to check this process is fractional
Brownian motion.

It is Gaussian, has stationary increments, is self-similar with Hurst parameter H.
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More convenient parametrization

Fractional Brownian motion with 1/2 < H < 1 will now be parametrized buy γ instead of
H as follows:
Instead of

BH(t) = C ′H

∫
R

(∫ t

0

(s − x)
H−3/2
+ ds

)
dB(x)

we write:

BH(t) = C ′H

∫
R

(∫ t

0

(s − x)γ+ds

)
dB(x)

where
γ = H − 3/2.

Here:
1/2 < H < 1⇔ −1 < γ < −1/2.
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Brownian motion

Fractional Brownian motion

are Gaussian processes.

The non-Gaussian processes

The Rosenblatt process

The generalized Rosenblatt process

will be constructed using a double Wiener-Itô integral.
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Double Wiener-Itô integral

Thus, to construct a non-Gaussian self-similar process with stationary increments, we will
use a double Wiener-Itô integral:

I =

∫ ′
R2

f (x , y)dB(x)dB(y)

where the prime means to exclude the diagonal {x = y}, and f satisfies∫∫
R2 f (x , y)2dxdy <∞.

The integral I is defined again as a limit of sums

I = lim
∑
n,m

′
f (xn, xm)(B(xn)− B(xn−1))(B(xm)− B(xm−1))

where {xn} forms a partition of [a, b] and where we exclude diagonals.
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Representation of the Rosenblatt process

The Rosenblatt process, {Zγ,γ(t), t ≥ 0} is a NON-Gaussian self-similar process with
stationary increments, which is given by the double Wiener-Itô integral

Zγ,γ(t) = Aγ

∫ ′
R2

(∫ t

0

(s − x1)γ+(s − x2)γ+ds

)
dB(x1)dB(x2)

It is again “straightforward” to check that Zγ,γ has stationary increments and is
self-similar with parameter

H = 2γ + 1 + 1/2 + 1/2 = 2γ + 2,

so that
1/2 < H < 1⇔ −3/4 < γ < −1/2.

Note that γ < 0.
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The Rosenblatt distribution

We first focus on the marginal distribution of Zγ,γ at time t = 1, i.e. the distribution of
the random variable

Z = Zγ,γ(1) = ZH(1)

called the Rosenblatt distribution. As defined, this distribution is standardized.

EZ = 0

EZ 2 = 1

However, Z is not Gaussian, and its distribution is not known in closed form.
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Plots of the CDF and PDF of the Rosenblatt distribution
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These are tabulated as well! (Highest curve H = 0.9)
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A mystery !!!
It seems that the CDFs of the Rosenblatt distributions intersect at the same point for any H. In
fact, this is true even for extremes:
For H = 1 : Z1 = standardized chi squared
For H = 1/2 : Z1/2 = N(0, 1):

P(Z1 ≤ −0.6256) = P(Z1/2 ≤ −0.6256) = 0.2658.

Conjecture:
∀ 1/2 < H < 1 : P(ZH ≤ −0.6256) = 0.2658.

There seems to be a second common point: P(ZH ≤ 1.3552) = 0.9123.
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Generalized Rosenblatt process

Consider the standardized generalized Rosenblatt process

Zγ1,γ2(t) = A(γ1, γ2)

∫ ′
R2

∫ t

0

(s − x1)γ1+ (s − x2)γ2+ ds dB(x1)dB(x2),

A(γ1, γ2) is chosen so that Var[Zγ1,γ2(1)] = 1, (EZγ1,γ2(t) = 0 automatically), where

(γ1, γ2) ∈ ∆ = {(γ1, γ2),−1 < γ1, γ2 < −1/2, γ1 + γ2 > −3/2}

γ1

γ2

(− 1
2
,− 1

2
)
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2
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2
)

m

e1

e2

d
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Basic Properties

γ1

γ2
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Basic properties:
• When γ1 = γ2 = γ, then Zγ,γ(t) is the Rosenblatt process.
• Zγ1,γ2(t) is H-self-similar with stationary increments, with

H = γ1 + γ2 + 2 ∈ (1/2, 1).

• H is close to 1 when γ1 and γ2 are both close to −1/2.
• Symmetry Zγ1,γ2(t) = Zγ2,γ1(t).
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Do Generalized Rosenblatt Processes Form a Richer Class?

Zγ1,γ2(t) = A(γ1, γ2)

∫ ′
Rk

∫ t

0

(s − x1)γ1+ (s − x2)γ2+ ds dB(x1)dB(x2).

Recall Var[Zγ1,γ2(1)] = 1.

Goal: show
{Zγ,γ} $ {Zγ1,γ2}.

Fixing H = 2γ + 2 = γ1 + γ2 + 2, the covariance structures are the same:

Cov[Zγ,γ(s),Zγ,γ(t)] = Cov[Zγ1,γ2(s),Zγ1,γ2(t)] =
1

2

(
|s|2H + |t|2H − |s − t|2H

)
.

Idea: compute the third cumulant (moment) µ3(γ1, γ2) = EZγ1,γ2(1)3.

Show µ3(γ1, γ2) varies on the line γ1 + γ2 + 2 = H (H fixed).
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k-th cumulant of

∫ ′
R2

f (x1, x2)dB(x1)dB(x2)

=2k−1(k − 1)!

∫
Rk

f̃ (x1, x2)f̃ (x2, x3) . . . f̃ (xk−1, xk)f̃ (xk , x1)dx1 . . . dxk .

where

f̃ (x1, x2) =
1

2
(f (x1, x2) + f (x2, x1))

is the symmetrized version of f (x1, x2).
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Third cumulant of Zγ1,γ2(1) as a function of (γ1, γ2)
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Figure : µ3(γ1, γ2) contour on ∆ = {(γ1, γ2) : −1 < γ1, γ2 < −1/2, γ1 + γ2 > −3/2}. Values in
red are higher than values in blue.

Interesting finding: µ3(γ1, γ2) ≈ 0 when (γ1, γ2) is close to the boundaries (except the
northeast corner).
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Question

How does the generalized Rosenblatt process

Zγ1,γ2(t) = A(γ1, γ2)

∫ ′
Rk

∫ t

0

(s − x1)γ1+ (s − x2)γ2+ ds dB(x1)dB(x2)

with Var[Zγ1,γ2(1)] = 1, behave (in distribution) as (γ1, γ2) approaches the boundary of
∆?

∆ = {(γ1, γ2),−1 < γ1, γ2 < −1/2, γ1 + γ2 > −3/2}
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Diagonal Boundary
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Diagonal Boundary

γ1

γ2
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2
)

Theorem. (Bai Taqqu 2016)

When γ1 + γ2 → −3/2 (H → 1/2) with γ1, γ2 > −1 + ε for arbitrarily fixed small ε > 0,
we have

Zγ1,γ2(t)⇒ B(t),

⇒: weak convergence in C [0, 1], B(t): a standard Brownian motion.

Explanation: as H ↓ 1/2, LRD ↓ SRD. Brownian motion is the typical SRD limit.
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Side Boundary
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Side Boundary
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Theorem. (Bai Taqqu 2016)

When (γ1, γ2)→ (−1/2, γ) or (γ1, γ2)→ (γ,−1/2), where −1 < γ < −1/2 , we have

Zγ1,γ2(t)⇒WBγ+3/2(t),

Bγ+3/2(t): standard fractional Brownian motion with Hurst exponent γ + 3/2;
W : a standard normal random variable; Bγ+3/2(t) and W are independent.

Explanation: when γ1 ↑ −1/2, the moving average w.r.t. dB(x1) gets so extremely LRD
that it becomes frozen. Zγ1,γ2(t) = A(γ1, γ2)

∫ ′
Rk

∫ t

0
(s − x1)γ1+ (s − x2)γ2+ ds dB(x1)dB(x2).
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Corner 1
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The limit depends on how one gets to the corner!
Let (γ1, γ2)→ (−1/2,−1) in such a way that

γ1 + γ2 + 3/2

γ2 + 1
= 1 +

γ1 + 1/2

γ2 + 1
→ ρ ∈ [0, 1],

When ρ = 0, the line coincides with the diagonal edge d of the triangle ∆, which has
slope −1. When ρ = 1, the line coincides with the vertical side e1 of ∆, which has slope
−∞.
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Corner 1
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γ1
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Theorem. (Bai Taqqu 2016)

If (γ1, γ2)→ (−1/2,−1) in such a way that

γ1 + γ2 + 3/2

γ2 + 1
= 1 +

γ1 + 1/2

γ2 + 1
→ ρ ∈ [0, 1],

then
Zγ1,γ2(t)⇒ Xρ(t) := ρ1/2WB(t) + (1− ρ)1/2B ′(t)

W : a standard normal random variable, B(t) and B ′(t): standard Brownian motions
W , B(t) and B ′(t) are independent.

The limit Xρ(t) is an independent linear combination of the two limits obtained earlier.
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Corner 2

γ1

γ2
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d

Suppose that γ1 ≥ γ2. Let (γ1, γ2)→ (−1/2,−1/2) in such a way that

γ1 + 1/2

γ2 + 1/2
→ ρ ∈ [0, 1].

When ρ = 0, the line coincides with the vertical side e1 of ∆, which has slope +∞.
When ρ = 1, the line coincides with the middle line m, which has slope 1.
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Corner 2

γ1
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Theorem. (Bai Taqqu 2016)

Suppose that γ1 ≥ γ2. If (γ1, γ2)→ (−1/2,−1/2) in such a way that

γ1 + 1/2

γ2 + 1/2
→ ρ ∈ [0, 1], then

Zγ1,γ2(t)⇒ Yρ(t) := t ·

[
(ρ+ 1)−1 + (2

√
ρ)−1√

2(ρ+ 1)−2 + (2ρ)−1
· X1 +

(ρ+ 1)−1 − (2
√
ρ)−1√

2(ρ+ 1)−2 + (2ρ)−1
· X2

]
,

X1 and X2: independent standardized χ2
1 random variables.
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Corner 2

γ1
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• When ρ = 0, the line coincides with the vertical side e1 of ∆, which has slope +∞. In
this case, the limit Yρ(t) = t√

2
(X1 − X2), X1,X2 i.i.d. chi squared, which has the same

distribution as t (WB), where W and B are two independent standard normal random
variables

• When ρ = 1, the line coincides with the middle line m, which has slope 1. In this case,
the limit Yρ(t) reduces to tX1, where X1 is a standardized chi-squared random variable
with one degree of freedom.
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No convergence in L2(Ω)

Theorem.
In the previous theorems, the weak convergence cannot be extended to convergence in
L2(Ω), nor even to convergence in probability.

Sketch of the proof:

• Convergence in L2(Ω) implies convergence in probability. But on a fixed-order Wiener
chaos, they are equivalent:
Convergence in probability ⇒ Tightness (+ Hypercontractivity on fixed-order Chaos) ⇒
Boundedness in Lp(Ω), ∀p > 2, ⇒ Uniform integrability ⇒ Convergence in L2(Ω)
(Schreiber (1969) or Nourdin Rosinski (2014), Lemma 2.1).

• No Cauchy convergence in L2(Ω) as

lim sup
(α1,α2),(γ1,γ2)→ boundary point

E (Zα1,α2(1)− Zγ1,γ2(1))2 > 0.
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Rates of convergence

• Let dTV (X ,Y ) denote the total variation distance between the distributions of random
variables X and Y , namely

dTV (X ,Y ) = sup
S∈B(R)

|P(X ∈ S)− P(Y ∈ S)|,

where B(R) denotes the Borel sets on R.

• Let dW (X ,Y ) denote the Wasserstein distance between the distributions of random
variables X and Y , namely,

dW (X ,Y ) = sup
h∈L
{|Eh(X )− Eh(Y )|},

where L is the class of 1-Lipschitz functions (h ∈ L if |h(x)− h(y)| ≤ |x − y |).
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Diagonal convergence

(− 1
2
,− 1

2
)

(− 1
2
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2
)

N (Dε) ∩∆

Dε

Theorem.
Let Zγ1,γ2 = Zγ1,γ2(1), and let N be a standard normal random variable. Let (γ1, γ2)
approach the line segment Dε := {γ1 + γ2 + 3/2 = 0 : γ1, γ2 > −1 + ε}. Then there
exists a neighborhood N (Dε) of Dε, such that when (γ1, γ2) ∈ N (Dε) ∩∆, we have

C1(γ1 + γ2 + 3/2)3/2 ≤ dTV (Zγ1,γ2 ,N) ≤ C2(γ1 + γ2 + 3/2)3/2.

Nourdin Peccati (2015): dTV (Zγ1,γ2 ,N) � max
(
|EZ 3

γ1,γ2 |, |EZ 4
γ1,γ2 − 3|

)
.

There are partial results on other boundaries.
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Side convergence
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Let Y be the limit (product of independent standard normal) as

(γ1, γ2)→ (−1/2, γ), −1 < γ < −1/2

(away from the corners). Then

dW (Zγ1,γ2(1),Y ) = O
(

(−γ1 − 1/2)1/2
)
.

We use Eichelsbacher and Thäle (2014):

dW (Zγ1,γ2(1),Y ) ≤ C

(
1 +

1

6
κ3(Zγ1,γ2)2 − 1

3
κ4(Zγ1,γ2) +

1

120
κ6(Zγ1,γ2)

)1/2

.
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Recently Arras, Azmoodeh, Poly and Swan (2016) obtained the rate of convergence
when the limit is

∑q
i=1 αiXi where Xi ’s are standardized chi-square random variables with

one degree of freedom. Appying their Theorem 3.1 to the convergence of (γ1, γ2) ∈ ∆ to
the corner (−1/2,−1/2), they obtained as (γ1, γ2)→ (−1/2,−1/2) that

dW (Zγ1,γ2(1),Yρ(1)) = O((−γ1 − 1/2)1/2),

where Yρ(1) is the limit (recall ρ ∈ [0, 1] parameterizes the direction). See Example 3.2
of Arras et al. (2016).

34 / 40



Behavior of the generalized Rosenblatt process at extreme critical exponent values

Thank you for your attention!
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M. Schreiber. Fermeture en probabilité de certains sous-espaces d’un espace L2.
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 14(1):36–48, 1969.

E.V. Slud. The moment problem for polynomial forms in normal random variables. The
Annals of Probability, pages 2200–2214, 1993.

M.S. Veillette and M.S. Taqqu. Properties and numerical evaluation of the Rosenblatt
distribution. Bernoulli, 19(3):982–1005, 2013.

36 / 40



Behavior of the generalized Rosenblatt process at extreme critical exponent values

Alternative proof for side convergence
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The method-of-moments proof gives little intuitive insight of the convergence. We also
give an alternate proof of the convergence on the diagonal side boundary. The proof is
based on discretization which removes the singularities at s = x1 and s = x2 of the
integrand, so that one is able to interchange the integration orders between∫ ′
R2 ·B(dx1)B(dx2) and

∫ t

0
·ds. Then one uses the triangular approximation described at

the end of the proof.
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The Trivial process

Any right-continuous self-similar process X (t) with E|X (t)|2 <∞, stationary increments
and H = 1 is the trivial process X (t) = tX (1) a.s..

Indeed, due to stationary increments

EX (t)X (s) =
1

2

[
EX (t)2 + EX (s)2 − EX (t − s)2

]
Using this and self-similarity

E[X (t)− tX (1)]2 = EX (t)2 − 2tEX (1)X (t) + t2EX (1)2

=t2EX (1)2 − 2t
1

2

[
EX (1)2 + t2EX (1)2 − (t − 1)2EX (1)2

]
+ t2EX (1)2

=t2EX (1)2 − 2t2EX (1)2 + t2EX (1)2 = 0

We get for any fixed t > 0,
X (t) = tX (1) a.s.,

and then X (t) = tX (1) a.s. for all t by right-continuity.
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Tool: Cumulant Formula
The m-th cumulant (m ≥ 2) of

∑n
i=1 ciZγ1,γ2 (ti ), ci ∈ R, ti ∈ [0,∞), equals

κm

(
n∑

i=1

ciZγ1,γ2 (ti )

)
=

1

2
(m − 1)!AmCm(γ1, γ2; t, c),

where

A(γ1, γ2) =
[
(γ1 + γ2 + 2)(2(γ1 + γ2) + 3)

]1/2
×
[
B(γ1 + 1,−γ1 − γ2 − 1)B(γ2 + 1,−γ1 − γ2 − 1) + B(γ1 + 1,−2γ1 − 1)B(γ2 + 1,−2γ2 − 1)

]−1/2
.

Cm(γ1, γ2; t, c) =
∑

σ∈{1,2}m

n∑
i1,...,im=1

ci1 . . . cim

∫ ti1

0

ds1 . . .

∫ tim

0

dsm

m∏
j=1

[
(sj − sj−1)

γσj
+γ
σ′
j−1

+1

+ B(γσ′
j−1

+ 1,−γσj − γσ′j−1
− 1)

+(sj−1 − sj )
γσj

+γ
σ′
j−1

+1

+ B(γσj + 1,−γσj − γσ′j−1
− 1)

]
,

where

B(x, y) =

∫ 1

0

ux−1(1− u)y−1du, x, y > 0,

is the beta function, the sum
∑
σ∈{1,2}m runs over σ = (σ1, . . . , σm) with σi = 1 or 2, and σ′ is the

complement of σ, namely, σ′i = 1 if σi = 2 and σ′i = 2 if σi = 1, i = 1, . . . ,m. Moreover σ′0 = σ′m and
s0 = sm, i = 1, . . . ,m.
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Behavior of the generalized Rosenblatt process at extreme critical exponent values

No limit at corners if not following straight-line directions

To get limits for Zγ1,γ2(t) at the corners, the parameters (γ1, γ2) have to approach the
corners along some straight-line direction. If not, the limit will not exist.

Proof.
Suppose that the direction parameter ρ(γ1, γ2) does not converge as (γ1, γ2) approaches
the corner (− 1

2
,−1). Then there are two subsequences of (γ1, γ2), such that ρ(γ1, γ2) of

the first subsequence converges to ρ1 and ρ(γ1, γ2) of the second subsequence converges
to ρ2, with ρ1 6= ρ2. By the theorem, the corresponding processes Zγ1,γ2(t) converge to
two different limits. Therefore, the original process Zγ1,γ2(t) does not converge if (γ1, γ2)
does not follow a straight-line direction.
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