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The problem

Let X1, . . . ,Xn be i.i.d. vectors in Rd . The diameter is defined by

Dn(X) = max
1≤i<j≤n

‖Xi − Xj‖ ,

where ‖ · ‖ is any norm.

Goal: asymptotic behaviour of Dn as n→∞.

This is a non standard extreme value problem since the pairs
(Xi ,Xj) are dependent. One may expect limit laws which are not
extreme value or max-stable distributions.
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What can be expected

I If max1≤i≤n ‖Xi‖/an →P 1, then Dn = OP(2an).

I If the cloud is “more or less isotropic”, the origin must be
roughly at the center of the cloud and the diameter must be
of the order of magnitude of twice the largest norm of the
points of the sample. More precisely: then we expect that
Dn/(2an) converges in probability, possibly to 1, for “more or
less isotropic” clouds.
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Earlier results on the diameter

I For bounded support: Molchanov and Mayer (not discussed
here).

I Max domain of attraction of the Fréchet distribution (next
slides).

I Spherical random variables in the domain of attraction of the
Gumbel distribution: Asymptotic distribution of the maximum
interpoint distance in a sample of random vectors with a
spherically symmetric distribution
Sreenivasa Rao Jammalamadaka and Svante Janson
Annals of applied probability 2015.
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Fréchet case

A random vector X is in the max-domain of attraction of a
multivariate Fréchet distribution iff there exists a probability
measure σ on the unit Sd−1 (relative to the chosen norm) such that

nP
(
‖X‖ > anx ,

X

‖X‖
∈ ·
)
⇒ x−ασ .

The point process of exceedences Nn =
∑n

i=1 δ ‖Xi‖
an

,
Xi
‖Xi‖

converges

weakly to a Poisson point process N =
∑∞

i=1 δΓ
−1/α
i ,Θi

with mean measure d(−x−α])⊗ σ,
Γ1, Γ2, . . . are the point of a mean 1 PPP on [0,∞),
Θ1,Θ2, . . . , are i.i.d. with law σ on Sd−1, independent of the PPP.
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The limiting point process N has a finite number of points outside
any ball B(0, ε). This easily yields that

Dn

an
⇒ max

i<j
‖Γ−1/α

i Θi − Γ
−1/α
j Θj‖ .

The maximum is achieved over a finite (random) number of pairs
of points.

The limiting distribution is in the domain of attraction of the
Fréchet distribution and depends on the chosen norm.

Partial results in Henze and Klein (1996), Henze and Lao (2010,
unpublished).
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Gumbel case

A random vector X is in the multivariate domain of attraction of
the Gumbel distribution if there exist sequences an, bn such that

max1≤i≤n Xi − bn

an
⇒ G

where G is a multivariate max-stable law with Gumbel marginals.

The point process of exceedences converges weakly

n∑
i=1

δXi−bn
an

⇒
∞∑
i=1

δΓi
,

where Γi , i ≥ 1 are the points of a PPP with mean measure
− log G on [−∞,∞]d \ {−∞}.

However, the diameter of the limiting point process is infinite. The
same continuous mapping argument cannot be used here.
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Euclidean spherical random vectors
A random vector X is spherically distributed with respect to the
euclidean norm on Rd if it can be expressed as X = RW, where W
is uniformly distributed on the unit sphere Sd−1 and independent
of R.

The level lines of the density are spheres.

X is in the multivariate domain of attraction of the Gumbel law iff
R is in the univariate domain of attraction of the Gumbel law. Let
F (x) = P(R ≤ x),

bn = F←(1− 1/n) , an = ψ(bn) ,

where ψ is a so-called auxiliary function1 such that ψ(x)/x → 0
and

lim
n→∞

nP(R > bn + anx) = e−x .

1e.g. ψ = (1 − F̃ )/F̃ ′, where 1 − F̃ is absolutely continuous and equivalent
at ininfity to 1 − F
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Theorem (JJ12)

I If d ≥ 2,

D
(2)
n (X)− 2bn

an
+

d − 1

2
log

an
bn
− log log

an
bn
− log cd ⇒ Λ ,

where Λ has a standard Gumbel law and cd = (d−1)2d−4Γ(d/2)√
π

.

I If d = 1, then W = ±1 with probability 1/2 and

D
(2)
n (X)− 2bn

an
⇒ Λ+ + Λ− ,

where Λ− et Λ+ are indepedent random variable with Gumbel
law.
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I The proof for d ≥ 2 uses a criterion for convergence of U
statistics to a Poisson distribution and relies heavily on the
independence of R and W.

I The uniformlity assumption on W can be easily relaxed but
not the independence of R and W.

I At the end of their paper, J & J ask what happens in the non
spherical case, e.g. for a non standard Gaussian distribution.
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Elliptical distributions
The simple case of a non standard Gaussian distribution is not
covered by the previous result. This is a particular case of an
ellipical distribution in Rd which can be expressed as

X = RAW ,

where as before W is uniformly distributed on Sd−1
2 and

independent of R and A is a full rank d × d matrix.

If R2 has a χ2 law with d degrees of freedom, then X is a Gaussian
vector.

The vector X has a (euclidean) polar representation

X = TU

with T = ‖X‖2 and U = X/‖X‖2 but T and U are not
independent and U is not uniform.

I In order to study the diameter, we must find where the points
with a very large norm are.
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Another representation

Let λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 be the ordered eigenalues of AA′.

Without loss of generality, we can assume that
A = Pdiag(

√
λ1, . . . ,

√
λd) where PP ′ = Id . Set W = P ′W and

Y = PX = R(
√
λ1W1, . . . ,

√
λdWd) .

Let {Xi , i ≥ 1} be i.i.d. with the same distribution as X and
Yi = PXi . Then

‖Y‖2
2 = ‖X‖2

2 = R2
∑
i=1

λ2
i W 2

i ,

‖Y1 − Y2‖2 = ‖X1 − X2‖2 ,

D
(2)
n (X) = D

(2)
n (Y) .
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Assume that λ1 = · · · = λk > λk+1 ≥ · · · ≥ λd . Then

‖Y‖2
2 = λ1R2(W 2

1 + · · ·+ W 2
k ) + R2

d∑
i=k+1

λ2
i W 2

i .

Since W ∈ Sd−1, ‖Y‖2 is largest when Wk+1 = · · · = Wd = 0.

Thus we can write ‖Y‖2 = RV with V bounded by λ1.
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Fondamental property of the domain of attraction of the Gumbel
law: rapid variation. For all a > 1,

lim
x→∞

P(R > ax)

P(R > x)
= 0 .

This implies that if R and V are nonnegative independent random
variables and V is bounded by a > 0, then, conditionally on RV
large, V is concentrated close to its maximum:

lim
x→∞

P(RV > x , V ≤ a− ε)
P(RV > x)

= 0

If V has a density in a neighbourhood of a with a certain
smoothness, the rate of convergence and limiting distribution of V
given RV is large can be obtained.

Berman (1983), Hashorva (2006,2007,2008),
Fougères and S. (2010), Barbe et Seifert (2013).
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Example

Let R be in the Gumbel domain of attraction with auxiliary
function ψ and let Θ be uniformly distributed on [−π, π]. What is
the asymptotic behaviour of Θ given that R cos Θ > x as x →∞?
Set φ(x) =

√
ψ(x)/x . Then

P(0 ≤ Θ ≤ φ(x)u,R cos Θ > x) =

∫ φ(x)u

0
P(R > x/ cos v)dv

= φ(x)

∫ u

0
P(R > x/ cos(φ(x)v))dv

∼ φ(x)

∫ u

0
P(R > x/(1− φ2(x)v 2/2)) dv

∼ φ(x)

∫ u

0
P(R > x + ψ(x)v 2/2)dv

∼ φ(x)P(R > x)

∫ u

0
e−t

2/2 dv .
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Theorem
As x →∞, conditionally on ‖Y‖ > x ,(
‖Y‖ − x

ψA(x)
,W1, . . . ,Wk ,

Wk+1

φA(x)
, . . . ,

Wd

φA(x)

)
⇒ (E ,W(k), τk+1Gk+1, . . . , τdGd) , (∗)

where all components are independent and

I E has a standard exponential distribution,
I W(k) is uniformly distributed on Sk−1

2 ,
I Gk+1, . . . ,Gd are i.i.d. N(0,1),
I ψA(x) = ψ(x/

√
λ1), φA(x) =

√
ψA(x)/x → 0,

I τi =
√

λ1
λ1−λi , i = k + 1, · · · , d .

The vectors with large norm concentrate on the eigenspace
corresponding to the largest eigenvalue.

The rate of convergence φA(x) and limiting distribution of
Wi/φA(x) for i > k is determined by the geometry of the level
lines.
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Consequences for the diameter

Two cases:

I If k = 1, the large vectors are concentrated around the
principal axis. One can expect a one dimensional type result.

I If k > 1, the vectors with large norm concentrate in a
subspace of dimension k and behave like euclidean spherical
vectors in this subspace. On can expect a result close to the
spherical case.
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From the norm to the diameter: k = 1

Consider the polar representation Yi = ‖Yi‖2Θi , with ‖Θi‖2 = 1,
non uniform and not independent of ‖Yi‖2.

Conditionally on ‖Yi‖2 being large, Yi is close to the line
x2 = · · · = xn = 0. We build two point processes, one on each
half-plane. Formally, set cn = φA(bn) =

√
an/bn and

Pn,i =
(
‖Yi‖2−bn

an
,Θi ,1,

Θi,2

cn
, . . . ,

Θi,d

cn

)
,

N+
n =

n∑
i=1

δPn,i
1{Θi,1>0} ,

N−n =
n∑

i=1

δPn,i
1{Θi,1>0} .
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Point process convergence

The weak convergence (∗) yields

(N+,N−)⇒

( ∞∑
i=1

δ+
Pi
,

∞∑
i=1

δ−Pi

)

with

I P±i = (Γ±i ,±1, τ2G±i ,2, . . . , τdG±i ,d),

I
∑∞

i=1 δΓ±i
are two independent PPP on (−∞,∞] with mean

measure 1
2e
−xdx .

The points can be ordered Γ±1 > Γ±2 > . . . since there is a finite
number of points in each interval [a,∞] with a > −∞.

Then

P(Γ±1 ≤ x) = e−e
−x−log 2

.
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The support function
Let X1, . . . ,Xn be random points in Rd . The support function Sn

of the convex hull of the sample is defined on Sd−1 by

Sn(W) = max
1≤i≤n

〈Xi ,W〉 = max
1≤i≤K

〈X̃i ,W〉 , W ∈ Sd−1 ,

where X̃i , i = 1, . . . ,K are the vertices of the convex hull (K is
random). The diameter can be expressed in terms of the support
function:

Dn = max
W∈Sd−1

+

{Sn(W ) + Sn(−W )} .

For simplicity, we proceed in the case d = 2. Write Xi = (Xi ,Yi )
and using the polar representation we have

Sn(θ) = max
1≤i≤n

(Xi cos θ + Yi sin θ) ,

Dn = max
0≤θ≤π

{Sn(θ) + Sn(θ + π)} .
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Convergence of the support function

Spherical case (Eddy and Gale, 1981)

In the case d = 2, write Sn(θ) = Sn(cos θ, sin θ). Then

{Sn(cnt)− bn}/an ⇒ M(t) , (1)

locally uniformly, where an = ψ(bn), cn =
√

an/bn and M is a
max-stable process

M(t) = sup
i≥1
{Γi + Zi t − t2/2} ,

where {Γi , i ≥ 1} are the decreasing points of a PPP on (−∞,∞]
with mean measure e−xdx and {Zi , i ≥ 1} are i.i.d. standard
Gaussian random variables, independent of the PPP. The process
M is stationary and ergodic and M(0) has a standard Gumbel
distribution.

In the spherical case, this can’t be used to study the diameter.
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Elliptical case, d = 2

In polar coordinates, the previous point process convergence can
be rewritten as

N+
n =

n∑
i=1

δRn,i ,Θn,i
1{|Θi−π/4|≤π/2} ⇒ N+ =

∞∑
i=1

δΓ+
i ,Z

+
i
,

N−n =
n∑

i=1

δRn,i ,Θn,i
1{|Θi−5π/4|≤π/2} ⇒ N− =

∞∑
i=1

δΓ−i ,Z
−
i
,

with Rn,i = Ri−bn
an

, Θn,i = Θi−π/4
cn

, {Γ+
i , i ≥ 1}, {Γ−i , i ≥ 1} are the

points of two independent PPP on (−∞,∞] with mean
measure 1

2e
−x and {Z +

i , i ≥ 1} {Z +
i , i ≥ 1} are two independent

sequences of i.i.d. Gaussian random variables with mean zero and
variance (1− ρ)/(2ρ).
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Convergence of the support function (2)

{(Sn(π/4 + cnt)− bn

an
,
Sn(5π/4 + cnt)− bn

an

)
, t ∈

[
− π

2cn
,
π

2cn

]}
⇒ {(M+(t),M−(t)), t ∈ R} ,

where the convergence is locally uniform and M+ and M− are two
independent max-stable processes with the same distribution,
which can be expressed as

M±(t) = ∨∞i=1{Γ±i −
1

2
(t − Z±i )2} (2)



26/36

Proof.

For t ∈ [−π/(2cn), π/2(cn)],

a−1
n {Sn(π/4 + cnt)− bn}

= a−1
n max

i=1,...,n
{(bn + anRn,i ) cos(cn(t −Θn,i ))− bn}

= max
i=1,...,n

{Rn,i cos(cn(t −Θn,i ))− c−2
n {1− cos(cn(t −Θn,i ))}

→ max
i≥1
{Γ+

i −
1

2
(t − Z +

i )2} .

The convergence is locally uniform.

The limiting processes M+ and M− are non stationary. If
ρ ∈ (0, 1),

P− lim
t→∞

t−2M+(t) = −ρ/(1 + ρ)
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Recall that the diamter is given by

Dn = max
1≤i<j≤n

‖Xi − Xj‖ = max
0≤θ≤π

{Sn(θ) + Sn(θ + π)} .

Theorem

Dn − 2bn

an
⇒ max

t∈R
{M+(t) + M−(t)}

= max
i ,j≥1
{Γ+

i + Γ−j −
1− ρ

8ρ
(G +

i − G−j )2} ,

where G±i are i.i.d. standard Gaussian random variables
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Proof.

sup
t∈R
{M+(t) + M−(t)}

= sup
t∈R

{
sup
i≥1

Γ+
i −

1

2
(t − Z +

i )2 + sup
j≥1

Γ+
j −

1

2
(t − Z +

j )2

}

= sup
i≥1

sup
j≥1

sup
t∈R

{
Γ+
i −

1

2
(t − Z +

i )2 + Γ+
j −

1

2
(t − Z +

j )2

}
= sup

i≥1
sup
j≥1

{
Γ+
i + Γ+

j −
1

2
(Z +

i − Z−j )2

}
.

The last equality holds since
inft∈R{(t −Z +

i )2 + (t −Z +
j )2} = (Z +

i −Z−j )2/4. The convergence

of Sn to M+ + M− is only locally uniform, but this is sufficient
because M+ and M− are tangent to downwards parabolae.
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d > 2, k = 1

Recall that λ1 > λ2 ≥ · · · ≥ λd are the eigenvalues of the
covariance matrix.

Theorem

Dn − 2bn

an
→ max

i ,j≥1

Γ+
i + Γ−j −

1

4

d∑
q=2

λq
λ1 − λq

(Z +
i ,q − Z−j ,q)2

 .

the max being almost surely finite and achieved.

There is a discontinuity when λ1 → λ2.
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Case k > 1

We recover the result of JJ12 with adapted constants.

D
(2)
n (X)− 2bn

an
+ dn ⇒ Λ ,

where Λ has a Gumbel law,

dn =
k − 1

2
log

an
bn
− log log

an
bn
− log Ck ,

Ck =
(2d − k − 1)2k−4Γ(k/2)√

π

 d∏
q=k+1

λ1

λ1 − λq

−1/2

.

Proof adapted from JJ12: classical criterion for Poisson
convergence of U-statistics.
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Generalization

Consider a random vector X which can be expressed as

X = Rg(W)

where R is a positive random variable, W is uniformly distributed
on Sd−1, and g : Sd−1 → Rd is a continuous function.

Where is X when ‖X‖ is large?

Depends on the maxima of h(W) = ‖g(W‖:

I achieved at isolated points: concentration at a rate depending
on the shape of the level lines of the density;

I achieved on a submanifold: concentration on the submanifold.

Hashorva, Korshunov and Piterbarg (2015) give expansions of ‖X‖
but did not consider the location of the large vectors.

Related to “implicit extremes” of Scheffler and Stoev (2014).
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The `q (q ≥ 1) norm of euclidean spherical distributions

Let X = RW still be a euclidean spherical vector and consider
‖X‖q and

D
(q)
n (X) = max

1≤i<j≤n
‖Xi − Xj‖q .

For d ≥ 2 and q ≥ 1, q 6= 2, the maximum of the lq norm on the
euclidean sphere is achived at isolated points.

I q ∈ [1, 2): maxw∈Sd−1 ‖w‖q = d1/q−1/2, achieved on the 2d

diagonal points (±d−1/2, . . . ,±d−1/2).

I q ∈ (2,∞): maxw∈Sd−1 ‖w‖q = 1, achieved on the 2d
intersections with the axes.

The diameter is achieved close to diametrically opposed such
points.
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The `q norm of `2 spherical distributions
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35/36

1 ≤ q < 2

D
(q)
n (X)− 2an

bn
⇒

max
1≤j≤2d−1

max
i ,i ′≥1

{
Γ+
i ,j + Γ−i ′,j −

q − 1

4

d∑
`=1

(G +
i ,j ,` + G−i ′,j ,`)

2

}
,

where Γ±i ,j , i ≥ 1 j = 1, . . . , 2d−1 are points of i.i.d. PPP on

(−∞,∞] with mean measure 2−de−x dx and
G±i ,j = (G±i ,j ,1, . . . ,G

±
i ,j ,d), i ≥ 1, j = 1, . . . , 2d−1 are i.i.d. Gaussian

vectors with covariance matrix

1

d(2− q)


d − 1 −1 . . . −1
−1 d − 1 . . . −1

...
...

−1 . . . −1 d − 1

 .
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q ∈ (2,∞]

D
(q)
n (X)− 2an

bn
⇒ max

1≤i≤d
(Γ+

i + Γ−i ) ,

where Γ±i − log(2d), 1 ≤ i ≤ d are i.i.d. Gumbel random variables.


