Random Locations of Periodic Stationary Processes

Yi Shen

Department of Statistics and Actuarial Science University of Waterloo

Joint work with Jie Shen and Ruodu Wang

May 3, $2016 \cdot$ The Fields Institute

Table of contents

1 Existing Results for Stationary Processes on \mathbb{R}

2 Periodic Processes and Invariant Intrinsic Location Functionals

Basic settings

- $\{X(t)\}_{t\in\mathbb{R}}$: A real-valued stationary stochastic process with some path property (continuity, upper-semicontinuity, *etc.*)
- Random locations:

. . .

• Location of the path supremum over interval [0, T]:

$$\tau_{\mathbf{X},T} = \inf\{t \in [0,T] : X(t) = \sup_{s \in [0,T]} X(s)\}$$

• First hitting time in [0, T] to a fixed level a:

$$T^{a}_{\mathbf{X},T} = \inf\{t \in [0,T] : X(t) = a\}$$

• We want to know the distributional properties of these random locations.

Intrinsic location functionals

Definition 1

A mapping L = L(f, I) from $H \times \mathcal{I}$ to $\mathbb{R} \cup \{\infty\}$ is called an intrinsic location functional, if

- 1. $L(\cdot, I)$ is measurable for $I \in \mathcal{I}$;
- 2. For each function $f \in H$, there exists a subset S(f) of \mathbb{R} , equipped with a partial order \leq , satisfying:

a For any
$$c \in \mathbb{R}$$
, $S(f) = S(\theta_c f) + c$;

b For any $c \in \mathbb{R}$ and any $t_1, t_2 \in S(f), t_1 \leq t_2$ implies $t_1 - c \leq t_2 - c$ in $S(\theta_c f)$,

such that for any $I \in \mathcal{I}$, either $S(f) \cap I = \phi$, in which case $L(f, I) = \infty$, or L(f, I) is the maximal element in $S(f) \cap I$ according to \leq .

Existing results for processes on \mathbb{R} I

Theorem 2 (Samorodnitsky and S., 2013)

Let $\mathbf{X} = (X(t), t \in \mathbb{R})$ be a stationary process, and $L_{\mathbf{X},T}$ be an intrinsic location functional. Denote by $F_{\mathbf{X},T}$ the distribution of $L_{\mathbf{X},T}$. Then:

- The restriction of the law $F_{\mathbf{X},T}$ to the interior (0, T) of the interval is absolutely continuous.
- The density, denoted by $f_{\mathbf{X},T}$, can be taken to be equal to the right derivative of the cdf $F_{\mathbf{X},T}$, which exists at every point in the interval (0, T).
- In this case the density is right continuous, has left limits, and has the following properties.

Existing results for processes on \mathbb{R} II

Theorem 2 (Samorodnitsky and S., 2013)

(a) The limits

$$f_{\mathbf{X},T}(0+) = \lim_{t \to 0} f_{\mathbf{X},T}(t) \text{ and } f_{\mathbf{X},T}(T-) = \lim_{t \to T} f_{\mathbf{X},T}(t)$$

exist.

(b) The density has a universal upper bound given by

$$f_{\mathbf{X},T}(t) \le \max\left(\frac{1}{t}, \frac{1}{T-t}\right), \ 0 < t < T.$$

$$(1)$$

Existing results for processes on \mathbb{R} III

Existing results for processes on $\mathbb R$ IV

Theorem 2 (Samorodnitsky and S., 2013)

(c) The density has a bounded variation away from the endpoints of the interval. Furthermore, for every $0 < t_1 < t_2 < T$,

$$TV_{(t_1,t_2)}(f_{\mathbf{X},T}) \le \min(f_{\mathbf{X},T}(t_1), f_{\mathbf{X},T}(t_1-)) + \min(f_{\mathbf{X},T}(t_2), f_{\mathbf{X},T}(t_2-)),$$
(2)

where

$$TV_{(t_1,t_2)}(f_{\mathbf{X},T}) = \sup \sum_{i=1}^{n-1} |f_{\mathbf{X},T}(s_{i+1}) - f_{\mathbf{X},T}(s_i)|$$

is the total variation of $f_{\mathbf{X},T}$ on the interval (t_1, t_2) , and the supremum is taken over all choices of $t_1 < s_1 < \ldots < s_n < t_2$.

Existing results for processes on \mathbb{R} V

Existing results for processes on $\mathbb R$ VI

Theorem 2 (Samorodnitsky and S., 2013)

(d) The density has a bounded positive variation at the left endpoint and a bounded negative variation at the right endpoint, and similar bounds apply.

(e) The limit $f_{\mathbf{X},T}(0+) < \infty$ if and only if $TV_{(0,\varepsilon)}(f_{\mathbf{X},T}) < \infty$ for some (equivalently, any) $0 < \varepsilon < T$, in which case

 $TV_{(0,\varepsilon)}(f_{\mathbf{X},T}) \le f_{\mathbf{X},T}(0+) + \min(f_{\mathbf{X},T}(\varepsilon), f_{\mathbf{X},T}(\varepsilon-)).$ (3)

A similar statement applies to the right endpoint.

Structure of A_T

Theorem 3 (Samorodnitsky and S., 2013)

Let A_T be the set of all possible distributions of intrinsic location functionals for stationary processes on [0, T]. Then A_T is the set of all probability measures on [0, T] the density function of which in (0, T) is càdlàg and satisfies the total variation constraints. More over, A_T is the convex hull generated by:

- (1) the measures μ_t with density functions $f_{\mu_t} = \frac{1}{t} \mathbf{1}_{(0,t)}, 0 < t < T;$
- (2) the measures ν_t with density functions $f_{\nu_t} = \frac{1}{T-t} \mathbf{1}_{(t,T)}, 0 < t < T;$
- (3) the point masses δ_0 , δ_T and δ_∞ .

Periodic framework

• Further assume that the process ${\bf X}$ has a fixed period 1:

$$X(t) = X(t+1), \quad t \in \mathbb{R}.$$

- Equivalently, think **X** as a stationary process defined on a circle with perimeter 1.
- Motivation: commutative Lie group
- Question: what can we say about the distribution of an intrinsic location functional over the interval $[0, T], T \leq 1$?
- All the properties for general stationary processes on $\mathbb R$ still holds.
- And what else?

Structure of the set of possible densities

Theorem 4

Let I_T be the set of all possible càdlàg densities on (0, T) of intrinsic location functionals for periodic stationary processes with period 1. Then I_T is the convex hull generated by the density functions f on (0, T) s.t.

- $1. \ \int_0^T f(t) dt \le 1$
- **2.** $f(t) \in \mathbb{Z}^+, t \in (0, T);$
- **3.** If $f(0+) \ge 1$, $f(T-) \ge 1$, then $f(t) \ge 1$ for all $t \in (0, T)$;

4. f satisfies the total variation constraints.

Ergodic decomposition

- Why are the extreme points of I_T integer-valued?
- The periodic ergodic processes with period 1 must be of a specific form

Proposition 5

Let **X** be a periodic ergodic process with period 1. Then there exists a deterministic function g with period 1, such that X(t) = g(t + U) for $t \in \mathbb{R}$, where U follows a uniform distribution on [0, 1].

Structure of the set of possible densities

• Define A_T as the set of all the càdlàg density functions f on (0, T) s.t.:

$$1. \quad \int_0^T f(s) ds \le 1;$$

- 2. f satisfies the total variation constraints.
- We see $I_T \subseteq A_T$.
- However, $I_T \neq A_T!$
- Example: $T = 1, f = \frac{4}{3}\mathbf{1}_{(0,\frac{3}{4})}$.

Invariant intrinsic location functionals

- An intrinsic location functional L is called invariant, if
 - 1. $L(f, I) \neq \infty$ for any compact interval I and any function f;
 - 2. $L(f, [0, 1]) = L(f, [a, a + 1]) \mod 1$ for any $a \in \mathbb{R}$ and function f.
- Intuitively, the location does not change with the starting/ending point of the interval on the circle.

- A generalization of the location of the path supremum, also including
 - the location of the largest jump/largest drawdown
 - the location of the largest derivative

Properties of invariant ILFs

• A natural lower bound for the density:

Proposition 6

Let L be an invariant intrinsic location functional and **X** be a periodic stationary process with period 1. Then the density $f_{L,T}^{\mathbf{X}}$ satisfies

$$f_{L,T}^{\mathbf{X}} \ge 1$$
 for all $t \in (0, T)$.

• The set of all possible densities becomes the convex hull generated by the density functions f on (0, T) s.t.

$$1. \quad \int_0^T f(t) dt \le 1$$

- **2.** $f(t) \in \mathbb{N}, t \in (0, T);$
- 3. f satisfies the total variation constraints.

Upper bound of the density function

Correspondingly, the upper bound is:

Proposition 7

Let L be an invariant intrinsic location functional, $T \in (0, 1]$, and **X** be a periodic stationary process with period 1. Then $f_{L,T}^{\mathbf{X}}$ satisfies

$$f_{L,T}^{\mathbf{X}}(t) \le \max\left(\lfloor \frac{1-T}{t} \rfloor, \lfloor \frac{1-T}{T-t} \rfloor\right) + 2.$$

This is an improvement of the general upper bound $\max\left(\frac{1}{t}, \frac{1}{T-t}\right)$ on \mathbb{R} .

First-time intrinsic location functionals

Definition 8

An intrinsic location functional L is called a first-time intrinsic location functional, if it has a partially ordered random set representation $(S(\mathbf{X}), \preceq)$ such that for any $t_1, t_2 \in S(\mathbf{X}), t_1 \leq t_2$ implies $t_2 \preceq t_1$.

- A generalization of the first hitting time to a fixed level. (First anything...)
- The density is decreasing.
- The structure of the set of all possible densities is closely related to a problem in risk measure called "joint mixability".

Joint mixability

• Random variables $X_1, ..., X_N$ is said to be a joint mix, if

$$\sum_{i=1}^{N} X_i = C \quad a.s.$$

for some constant C.

- Distributions $F_1, ..., F_N$ is said to be jointly mixable, if there exists a joint mix $X = (X_1, ..., X_N)$, such that $X_i \sim F_i, i = 1, ..., N$.
- Financial applications

Distributions and joint mixability

• The set of all possible densities becomes the convex hull generated by the density functions f on (0, T) s.t.

$$1. \quad \int_0^T f(t) dt \le 1$$

2.
$$f(t) \in \mathbb{Z}^+, t \in (0, T);$$

3. f is decreasing on (0,T).

Proposition 9

Let f be a non-negative, càdlàg, decreasing function on (0, T)s.t. $\int_0^T f(t) dt \leq 1$. Define the distribution functions

$$F_i(x) := \min\{(i - f(x))_+, 1\} \mathbf{1}_{\{x > 0\}}, \quad i = 1, ..., N.$$

Then f is the density of a first-time intrinsic location functional for some stationary periodic process with period 1 if $(F_1, ..., F_N)$ is jointly mixable.

Proposition 10

Let f be a non-negative, càdlàg, decreasing function on (0, T)s.t. $\int_0^T f(t) dt \leq 1$. Define the distribution functions

$$F_i(x) := \min\{(i - f(x))_+, 1\} \mathbf{1}_{\{x > 0\}}, \quad i = 1, ..., N.$$

Then f is the density of a first-time intrinsic location functional for some stationary periodic process with period 1 if $(F_1, ..., F_N)$ is jointly mixable.

Thank You!

References

[Samorodnitsky and Shen (2013)] G. SAMORODNITSKY AND Y. SHEN(2013): Intrinsic location functionals of stationary processes. *Stochastic Processes and their Applications*, 123, 4040-4064.

[Shen, Shen and Wang (2016)] J. SHEN, Y. SHEN AND G. SAMORODNITSKY(2016): Random locations of periodic stationary processes. Working paper.

[Shen (2016)] Y. SHEN(2014): Random locations, ordered random sets and stationarity. *Stochastic Processes and their Applications*, 126, 906-929.