Joint sum-max stability and continuous time random maxima

Peter Scheffler² Katharina Hees¹

¹Department of Medical Biometry University of Heidelberg

²Department of Mathematics University of Siegen

May 2016

	Some Harmonic Analysis	Joint Sum-Max Stability	CTRM Scaling Limit	Distribution of the limit and governing equation

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Distribution of the limit and governing equations

ome Harmonic Analy

Joint Sum-Max Stability

CTRM Scaling Lim

Distribution of the limit and governing equations

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

For <i>i</i> = 1, 2,	
(W_i, J_i)	iid random variables on $\mathbb{R}_+ imes \mathbb{R}$,
	W_i and J_i can be dependent;
J _i	jumps of a particle;
Wi	waiting times between the jumps.

ome Harmonic Analy

Joint Sum-Max Stability

CTRM Scaling Lim

Distribution of the limit and governing equations

▲□▶ ▲□▼ ▲目▼ ▲目▼ ▲□▼ ● ● ●

For <i>i</i> = 1, 2,	
(W_i, J_i)	iid random variables on $\mathbb{R}_+ imes \mathbb{R}$,
	W_i and J_i can be dependent;
J _i	jumps of a particle;
Wi	waiting times between the jumps.

ome Harmonic Analy

Joint Sum-Max Stability

CTRM Scaling Lim

Distribution of the limit and governing equations

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

For <i>i</i> = 1, 2,	
(W_i, J_i)	iid random variables on $\mathbb{R}_+ imes \mathbb{R}$,
	W_i and J_i can be dependent;
J _i	jumps of a particle;
Wi	waiting times between the jumps.

Some Harmonic Analy

Joint Sum-Max Stability

CTRM Scaling Lim

Distribution of the limit and governing equations

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

For <i>i</i> = 1, 2,	
(W_i, J_i)	iid random variables on $\mathbb{R}_+ imes \mathbb{R}$,
	W_i and J_i can be dependent;
J _i	jumps of a particle;
Wi	waiting times between the jumps.

Some Harmonic Analy

Joint Sum-Max Stability 00000

CTRM Scaling Lim

Distribution of the limit and governing equations

Definition of the Coupled CTRM

For <i>i</i> = 1, 2,	
(W_i, J_i)	iid random variables on $\mathbb{R}_+ imes \mathbb{R}$,
	W_i and J_i can be dependent;
J _i	jumps of a particle;
Wi	waiting times between the jumps.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Some Harmonic Analy

Joint Sum-Max Stability

bility CTRM Scaling Limit

Distribution of the limit and governing equations

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Definition of the Coupled CTRM

$$N(t) = \max\{n \ge 0 : \sum_{i=1}^{n} W_i \le t\}$$

Number of observations by time *t* (renewal process)

• $M(n) := \bigvee_{i=1}^{''} J_i$ maximum jump size after *n* jumps

We call the process $\{M(N(t))\}_{t>0}$ with

$$M(N(t)) = \bigvee_{i=1}^{N(t)} J_i$$

which is maximum of the jumps by time *t*, a **Coupled Continuous Time Random Maxima (CTRM)**.

Some Harmonic Analy

Joint Sum-Max Stability 00000

bility CTRM Scaling Limi

Distribution of the limit and governing equations

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Definition of the Coupled CTRM

$$N(t) = \max\{n \ge 0 : \sum_{i=1}^{n} W_i \le t\}$$

Number of observations by time *t* (renewal process)

• $M(n) := \bigvee_{i=1}^{n} J_i$ maximum jump size after *n* jumps

We call the process $\{M(N(t))\}_{t>0}$ with

$$M(N(t)) = \bigvee_{i=1}^{N(t)} J_i,$$

which is maximum of the jumps by time *t*, a **Coupled Continuous Time Random Maxima (CTRM)**.

We are interested in the long-time behaviour of the process:

$$\left\{\tilde{b}(c)M(N(ct))\right\}_{t>0} \rightarrow \mathbf{?} \text{ as } c \rightarrow \infty$$

Continuous Time Random Maxima	Some Harmonic Analysis	Joint Sum-Max Stability	CTRM Scaling Limit	Distribution of the limit and governing equations
00000				

Scaling limit

Classical extreme value theory

Observations collected at regular intervals in time

$$\succ F_{J} \in \mathsf{MDA}(\Phi_{\alpha}) \Rightarrow \left\{ b(c) \bigvee_{i=1}^{\lfloor ct \rfloor} J_{i} \right\}_{t>0} \xrightarrow{J_{1}} \left\{ A(t) \right\}_{t>0} \text{ as } c \to \infty$$

► $\{A(t)\}_{t>0} \alpha$ -Fréchet-extremal process, $P(A(t) \le x) = \Phi_{\alpha}^{t}(x)$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Continuous Time Random Maxima	Some Harmonic Analysis	Joint Sum-Max Stability	CTRM Scaling Limit	Distribution of the limit and governing equations
00000	0000000	00000		00000

Scaling limit

Classical extreme value theory

Observations collected at regular intervals in time

$$\succ F_{J} \in \mathsf{MDA}(\Phi_{\alpha}) \Rightarrow \left\{ b(c) \bigvee_{i=1}^{\lfloor ct \rfloor} J_{i} \right\}_{t>0} \xrightarrow{J_{1}} \left\{ A(t) \right\}_{t>0} \text{ as } c \to \infty$$

► $\{A(t)\}_{t>0} \alpha$ -Fréchet-extremal process, $P(A(t) \le x) = \Phi_{\alpha}^{t}(x)$

CTRM with finite mean waiting times

•
$$N(ct) \sim ct \cdot 1/\mu$$
 as $c \to \infty$, where $\mu = E(W) < \infty$

$$\succ F_J \in \mathsf{MDA}(\Phi_\alpha) \Rightarrow \left\{ \tilde{b}(c) \bigvee_{i=1}^{N(ct)} J_i \right\}_{t>0} \xrightarrow{J_1} \{A(t)\}_{t>0} \text{ für } c \to \infty$$

◆□▶ ◆□▶ ◆三≯ ◆□▶ ◆□▼

Continuous Time Random Maxima	Some Harmonic Analysis	Joint Sum-Max Stability	CTRM Scaling Limit	Distribution of the limit and governing equations
00000	0000000	00000		00000

Scaling limit

Classical extreme value theory

Observations collected at regular intervals in time

$$\succ F_{J} \in \mathsf{MDA}(\Phi_{\alpha}) \Rightarrow \left\{ b(c) \bigvee_{i=1}^{\lfloor ct \rfloor} J_{i} \right\}_{t>0} \xrightarrow{J_{1}} \left\{ A(t) \right\}_{t>0} \text{ as } c \to \infty$$

► $\{A(t)\}_{t>0} \alpha$ -Fréchet-extremal process, $P(A(t) \le x) = \Phi_{\alpha}^{t}(x)$

CTRM with finite mean waiting times

▶
$$N(ct) \sim ct \cdot 1/\mu$$
 as $c \to \infty$, where $\mu = E(W) < \infty$

$$\succ F_J \in \mathsf{MDA}(\Phi_\alpha) \Rightarrow \left\{ \tilde{b}(c) \bigvee_{i=1}^{N(ct)} J_i \right\}_{t>0} \xrightarrow{J_1} \left\{ A(t) \right\}_{t>0} \text{ für } c \to \infty$$

Interesting case

The waiting times have infinite mean!

Continuous Time Random Maxima	Some Harmonic Analysis	Joint Sum-Max Stability	Distribution of the limit and governing equations

Applications:

- Computer Science: [Resnick, Stărică, 1995]
 - W periods between transmissions for a networked computer terminal

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

• heavy tailed with $P(W > t) \approx Ct^{-\beta}$ with $\beta \approx 0.6$

Continuous Time Random Maxima	Joint Sum-Max Stability	
000000		

Applications:

- Computer Science: [Resnick, Stărică, 1995]
 - W periods between transmissions for a networked computer terminal

• heavy tailed with $P(W > t) \approx Ct^{-\beta}$ with $\beta \approx 0.6$

Finance: [Mainardi et al, 2000]

- W waiting times between trades of certain bond futures
- heavy tailed with $\beta \approx 0.95$

Continuous Time Random Maxima	Joint Sum-Max Stability	
000000		

Applications:

- Computer Science: [Resnick, Stărică, 1995]
 - W periods between transmissions for a networked computer terminal

• heavy tailed with $P(W > t) \approx Ct^{-\beta}$ with $\beta \approx 0.6$

Finance: [Mainardi et al, 2000]

- W waiting times between trades of certain bond futures
- heavy tailed with $\beta \approx 0.95$
- Geophysics: [Benson et al, 2007]
 - raindrop release and arrival on the ground
 - earthquakes

Continuous Time Random Maxima	Some Harmonic Analysis	Joint Sum-Max Stability	CTRM Scaling Limit	Distribution of the limit and governing equations
000000				

Definition 1 (Sum-max domain of attraction)

The random vector (W, J) is in the **sum-max domain of attraction** of (D, A) if there exist $a_n, b_n > 0$ such that

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

$$\left(a_n\sum_{i=1}^n W_i, b_n\bigvee_{i=1}^n J_i\right) \Longrightarrow (D, A) \text{ as } n \to \infty.$$

(D, A) is then called **sum-max stable**.

Continuous Time Random Maxima	Some Harmonic Analysis	Joint Sum-Max Stability	CTRM Scaling Limit	Distribution of the limit and governing equations
000000				

Definition 1 (Sum-max domain of attraction)

The random vector (W, J) is in the **sum-max domain of attraction** of (D, A) if there exist $a_n, b_n > 0$ such that

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$\left(a_n\sum_{i=1}^n W_i, b_n\bigvee_{i=1}^n J_i\right) \Longrightarrow (D, A) \text{ as } n \to \infty.$$

(D, A) is then called **sum-max stable**.

It follows by projection on either coordinate:

- *D* is strictly β -stable with $0 < \beta < 1$,
- A Fréchet or Weibull distributed.

Before we come back to the CTRM we have to answer the following questions:

(1) Are there **necessary** and **sufficient** conditions on (W, J) for being in the sum-max domain of attraction of (D, A)?

Before we come back to the CTRM we have to answer the following questions:

- (1) Are there **necessary** and **sufficient** conditions on (W, J) for being in the sum-max domain of attraction of (D, A)?
- (2) Is it possible to give a characterization of the joint distribution of (D, A) and of the dependence of D and A?

Before we come back to the CTRM we have to answer the following questions:

- (1) Are there **necessary** and **sufficient** conditions on (W, J) for being in the sum-max domain of attraction of (D, A)?
- (2) Is it possible to give a **characterization** of the joint distribution of (*D*, *A*) and of the **dependence** of *D* and *A*?

→ For analysing these questions we use Harmonic Analysis on Semigroups.

Harmonic Analysis on semigroup $(\mathbb{R}_+, +)$

 $(\mathbb{R}_+, +)$ is an **abelian semigroup** with neutral element e = 0.

For all $t \ge 0$ let $\rho_t(s) := e^{-st}$. Then:

• $\rho_t(0) = 1;$

•
$$\rho_t(s_1 + s_2) = \rho_t(s_1)\rho_t(s_2).$$

We call the functions ρ_t semigroup characters on $(\mathbb{R}_+, +)$.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Harmonic Analysis on semigroup $(\mathbb{R}_+,+)$

 $(\mathbb{R}_+, +)$ is an **abelian semigroup** with neutral element e = 0.

For all $t \ge 0$ let $\rho_t(\mathbf{s}) := e^{-st}$. Then:

• $\rho_t(0) = 1;$

$$\rho_t(\mathbf{s}_1 + \mathbf{s}_2) = \rho_t(\mathbf{s}_1)\rho_t(\mathbf{s}_2).$$

We call the functions ρ_t semigroup characters on $(\mathbb{R}_+, +)$.

For a probabaility measure μ on \mathbb{R}_+ we get

$$L(\mu)(s) = \int_{[0,\infty)} \rho_s(t) \mu(dt) = \int_{[0,\infty)} e^{-st} \mu(dt).$$

the usual Laplace transform on \mathbb{R}_+ .

Joint Sum-Max Stability C

Distribution of the limit and governing equations

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Harmonic Analysis on the semigroup (\mathbb{R}, \vee)

Let $\overline{\mathbb{R}} = [-\infty, \infty]$ denote the two-point compactification of \mathbb{R} . $(\overline{\mathbb{R}}, \vee)$ is an **abelian semigroup** with neutral element $e = -\infty$.

For all
$$y \in \overline{\mathbb{R}} = (-\infty, \infty]$$
 let $\tau_y(x) := \mathbf{1}_{[-\infty, y]}(x)$. Then:

•
$$\tau_y(-\infty) = 1;$$

$$\quad \bullet \ \tau_y(x_1 \lor x_2) = \tau_y(x_1)\tau_y(x_2).$$

The functions τ_y are the **semigroup characters** on $(\underline{\mathbb{R}}, \vee)$.

Joint Sum-Max Stability

caling Limit Distribution of the limit and 00000

Harmonic Analysis on the semigroup (\mathbb{R}, \vee)

Let $\overline{\mathbb{R}} = [-\infty, \infty]$ denote the two-point compactification of \mathbb{R} . $(\overline{\mathbb{R}}, \vee)$ is an **abelian semigroup** with neutral element $e = -\infty$.

For all
$$y \in \overline{\mathbb{R}} = (-\infty, \infty]$$
 let $au_y(x) := \mathsf{1}_{[-\infty, y]}(x)$. Then:

•
$$\tau_y(-\infty) = 1;$$

$$\quad \bullet \ \tau_y(x_1 \vee x_2) = \tau_y(x_1)\tau_y(x_2).$$

The functions τ_y are the **semigroup characters** on $(\underline{\mathbb{R}}, \vee)$.

For a probability measure μ on $\overline{\mathbb{R}}$ we get

$$F_{\mu}(y) = \int_{[-\infty,\infty]} \tau_y(x) \mu(dx) = \int_{[-\infty,\infty]} \mathbf{1}_{[-\infty,y]}(x) \mu(dx) = \mu([-\infty,y]).$$

CDF = Laplace transformation on the max-semigroup.

Harmonic Analysis on the semigroup $(\mathbb{R}_+ \times \overline{\mathbb{R}}, \overline{\mathbb{V}})$

 $(\mathbb{R}_+ \times \overline{\mathbb{R}}, \overline{\forall})$ is an **abelian semigroup** with neutral element $e = (0, -\infty)$. The semigroup operation $\overline{\forall}$ is defined by

$$(t_1, x_1)^{\ddagger}(t_2, x_2) := (t_1 + t_2, x_1 \vee x_2).$$

For $(s, y) \in \mathbb{R}_+ \times \overline{\mathbb{R}}$ let $\rho_{s,y}(t, x) := e^{-st} \mathbf{1}_{[-\infty,y]}(x)$. Then

•
$$\rho_{s,y}(0,-\infty) = 1;$$

•
$$\rho_{s,y}(t_1 + t_2, x_1 \vee x_2) = \rho_{s,y}(t_1, x_1)\rho_{s,y}(t_2, x_2).$$

The functions $\rho_{s,y}$ are the **semigroup characters** on $(\mathbb{R}_+ \times \overline{\mathbb{R}}, \overline{\mathbb{V}})$.

Harmonic Analysis on the semigroup $(\mathbb{R}_+ \times \overline{\mathbb{R}}, \overline{\mathbb{V}})$

 $(\mathbb{R}_+ \times \overline{\mathbb{R}}, \overline{\forall})$ is an **abelian semigroup** with neutral element $e = (0, -\infty)$. The semigroup operation $\sqrt[7]{}$ is defined by

$$(t_1, x_1)^{\ddagger}(t_2, x_2) := (t_1 + t_2, x_1 \vee x_2).$$

For $(s, y) \in \mathbb{R}_+ \times \overline{\mathbb{R}}$ let $\rho_{s,y}(t, x) := e^{-st} \mathbf{1}_{[-\infty, y]}(x)$. Then

•
$$\rho_{s,y}(0,-\infty) = 1;$$

•
$$\rho_{s,y}(t_1 + t_2, x_1 \vee x_2) = \rho_{s,y}(t_1, x_1)\rho_{s,y}(t_2, x_2).$$

The functions $\rho_{s,y}$ are the **semigroup characters** on $(\mathbb{R}_+ \times \overline{\mathbb{R}}, \sqrt[4]{v})$.

We get for a probability measure μ on $\mathbb{R}_+ \times \overline{\mathbb{R}}$:

$$\begin{aligned} \mathcal{L}(\mu)(s,y) &= \int_{[0,\infty)} \int_{[-\infty,\infty]} \rho_{s,y}(t,x) \mu(dt,dx) \\ &= \int_{[0,\infty)} \int_{[-\infty,\infty]} e^{-st} \mathbf{1}_{[-\infty,y]}(x) \mu(dt,dx). \end{aligned}$$

Some Harmonic Analysis

bint Sum-Max Stability

M Scaling Limit Distribution of the limit and 00000

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Definition 2

For a probability measure μ on $\mathbb{R}_+ \times \overline{\mathbb{R}}$ we call

$$\mathcal{L}(\mu)(s,y) = \int_{[0,\infty)} \int_{[-\infty,\infty]} e^{-st} \mathbf{1}_{[-\infty,y]}(x) \mu(dt,dx), \ (s,y) \in \mathbb{R}_+ \times \overline{\mathbb{R}};$$

the **CDF-Laplace transform** (C-L transform) of μ .

nt Sum-Max Stability CT

Distribution of the limit and governing equations

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Definition 2

For a probability measure μ on $\mathbb{R}_+ \times \overline{\mathbb{R}}$ we call

$$\mathcal{L}(\mu)(s,y) = \int_{[0,\infty)} \int_{[-\infty,\infty]} e^{-st} \mathbf{1}_{[-\infty,y]}(x) \mu(dt,dx), \ (s,y) \in \mathbb{R}_+ \times \overline{\mathbb{R}};$$

the **CDF-Laplace transform** (C-L transform) of μ .

Let μ be the distribution of the random vector (*W*, *J*).

Letting s = 0 we get

$$\mathcal{L}(\mu)(0,y) = \mu(\mathbb{R}_+ \times [-\infty,y]) = P\{J \leq y\} = F_J(y),$$

the distribution function of J.

• Letting $y = \infty$ we get

$$\mathcal{L}(\mu)(\mathbf{s},\infty) = \int_0^\infty e^{-st} \mu(dt,\overline{\mathbb{R}}) = E\left[e^{-sW}\right],$$

the Laplace transform of W.

Joint Sum-Max Stability

ax Stability CTRM Scaling

Distribution of the limit and governing equations

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Some properties of the C-L transform

The semigroup operation $\stackrel{+}{\vee}$ induces a **convolution** \star on $\mathcal{M}^1(\mathbb{R}_+ \times \overline{\mathbb{R}})$. If $\mu_1 := P_{(W_1,J_1)}, \mu_2 := P_{(W_2,J_2)}$ where (W_1, J_1) and (W_2, J_2) are independent random vectors on $\mathbb{R}_+ \times \overline{\mathbb{R}}$ we have

$$\mu_1 \star \mu_2 = P_{(W_1,J_1)} \star P_{(W_2,J_2)} = P_{(W_1+W_2,J_1\vee J_2)}.$$

Joint Sum-Max Stability

RM Scaling Limit Distribution of the limit

Some properties of the C-L transform

The semigroup operation $\stackrel{+}{\vee}$ induces a **convolution** \star on $\mathcal{M}^1(\mathbb{R}_+ \times \overline{\mathbb{R}})$. If $\mu_1 := P_{(W_1,J_1)}, \mu_2 := P_{(W_2,J_2)}$ where (W_1, J_1) and (W_2, J_2) are independent random vectors on $\mathbb{R}_+ \times \overline{\mathbb{R}}$ we have

$$\mu_1 \star \mu_2 = P_{(W_1,J_1)} \star P_{(W_2,J_2)} = P_{(W_1+W_2,J_1\vee J_2)}.$$

Properties 1

Let μ_n be probability measures on $\mathbb{R}_+ \times \overline{\mathbb{R}}$.

(i) Convolution:

 $\mathcal{L}(\mu_1 \star \mu_2)(s, y) = \mathcal{L}(\mu_1)(s, y) \cdot \mathcal{L}(\mu_2)(s, y) \text{ for all } (s, y) \in \mathbb{R}_+ \times \overline{\mathbb{R}}.$

(ii) Uniqueness Theorem:

 $\mu_1 = \mu_2 \iff \mathcal{L}(\mu_1)(s, y) = \mathcal{L}(\mu_2)(s, y) \text{ for all } (s, y) \in \mathbb{R}_+ \times \overline{\mathbb{R}}.$

(iii) Continuity Theorem:

 $\mu_n \xrightarrow{w} \mu \iff \mathcal{L}(\mu_n)(s, y) \to \mathcal{L}(\mu)(s, y)$ for all continuity points $(s, y) \in \mathbb{R}_+ \times \mathbb{R}$ of the limit.

Some Harmonic Analysis

oint Sum-Max Stability

CTRM Scaling Limit

Distribution of the limit and governing equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙へ⊙

Sum-max infinite divisibility

Definition 3

We call a $\mathbb{R}_+ \times \overline{\mathbb{R}}$ -valued random vector (D, A) resp. the distribution μ $\sqrt[+]{v}$ -infinite divisible, if for all $n \ge 1$ there exist a probability measure μ_n on $\mathbb{R}_+ \times \overline{\mathbb{R}}$, such that

$$\mu=\mu_n^{\star n}.$$

int Sum-Max Stability

CTRM Scaling Limit

Distribution of the limit and governing equations

Sum-max infinite divisibility

Definition 3

We call a $\mathbb{R}_+ \times \overline{\mathbb{R}}$ -valued random vector (D, A) resp. the distribution μ \forall -infinite divisible, if for all $n \ge 1$ there exist a probability measure μ_n on $\mathbb{R}_+ \times \overline{\mathbb{R}}$, such that

$$\mu=\mu_n^{\star n}.$$

Lemma 4

Let μ_n, μ be probability measures on $\mathbb{R}_+ \times \overline{\mathbb{R}}$ for all $n \ge 1$. If $\mu_n^{\star n} \xrightarrow{w} \mu$ as $n \to \infty$, then μ is $\overline{\forall}$ -infinite divisible.

Our sum-max stable distributions are $\frac{1}{V}$ -infinite divisible.

Some Harmonic Analysis

Joint Sum-Max S

n-Max Stability CTRM Sc

Distribution of the limit and governing equations

C-L-Exponent

Definition 5

We call the function $\Psi:\mathbb{R}_+\times\overline{\mathbb{R}}\to\mathbb{R}$ with

 $\mathcal{L}(\mu)(s, y) = \exp(-\Psi(s, y)),$

C-L-Exponent.

Remark

Let μ be the distribution of the random vector (D, A), then we call x_0 the **left endpoint** of A, that is $x_0 = \inf\{x \in [-\infty, \infty) : F_A(x) > 0\}$. In the following we only consider the case $x_0 = 0$ and $F_A(0) = 0$.

・ロト・日本・日本・日本・日本・日本

Some Harmonic Analysis

Joint Sum-Max Stability

CTRM Scaling Limit D

Distribution of the limit and governing equations

Lévy-Khintchine Representation

Theorem 6

A function $\varphi : \mathbb{R}_+ \times \overline{\mathbb{R}}_+ \to \mathbb{R}$ is the C-L-Transform of a $\overline{\forall}$ -infinite divisible probability measure μ , if and only if there exists an $a \in \mathbb{R}_+$ and a Radon measure η on $\mathbb{R}_+ \times [0, \infty]$ with $\eta(\{(0, 0)\}) = 0$ and

 $\int_{\mathbb{R}_+} \min(1,t)\eta(dt,[0,\infty]) < \infty \text{ and } \eta(\mathbb{R}_+\times(y,\infty]) < \infty \forall y > 0,$

such that $\Psi := -\log(\varphi)$ has the representation

Some Harmonic Analysis

Joint Sum-Max Stability 00000

tability CTRM Scaling Lim

Distribution of the limit and governing equations

Lévy-Khintchine Representation

Theorem 6

A function $\varphi : \mathbb{R}_+ \times \overline{\mathbb{R}}_+ \to \mathbb{R}$ is the C-L-Transform of a \forall -infinite divisible probability measure μ , if and only if there exists an $a \in \mathbb{R}_+$ and a Radon measure η on $\mathbb{R}_+ \times [0, \infty]$ with $\eta(\{(0, 0)\}) = 0$ and

 $\int_{\mathbb{R}_+} \min(1,t)\eta(dt,[0,\infty]) < \infty \text{ and } \eta(\mathbb{R}_+\times(y,\infty]) < \infty \ \forall y > 0,$

such that $\Psi := -\log(\varphi)$ has the representation

$$\Psi(s,y) = egin{cases} as + \int_{\mathbb{R}_+} \int_{[0,\infty]} ig(1-e^{-st} \mathbf{1}_{[0,y]}(x)ig) \eta(dt,dx) & orall y > 0 \ \infty & orall y \leq 0. \end{cases}$$

and $s \ge 0$. We write $\mu \sim [a, \eta]$ and call η the Lévy measure of μ .

Joint Sum-Max Stability ●○○○○

CTRM Scaling Limit Distri

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Characterization of the sum-max domain of attraction

Theorem 7

Let (W_i, J_i) be i.i.d. $\mathbb{R}_+ \times \mathbb{R}$ -valued random vectors.

Then there exist $a_n, b_n > 0$ such that

$$(a_n \sum_{i=1}^n W_i, b_n \bigvee_{i=1}^n J_i) \Longrightarrow (D, A) \text{ as } n \to \infty \text{ with } (D, A) \sim [0, \eta]$$

if and only if

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Characterization of the sum-max domain of attraction

Theorem 7

Let (W_i, J_i) be i.i.d. $\mathbb{R}_+ \times \mathbb{R}$ -valued random vectors.

Then there exist $a_n, b_n > 0$ such that

$$(a_n \sum_{i=1}^n W_i, b_n \bigvee_{i=1}^n J_i) \Longrightarrow (D, A) \text{ as } n \to \infty \text{ with } (D, A) \sim [0, \eta]$$

if and only if

$$n \cdot P_{(a_n W, b_n J)} \xrightarrow{v} \eta \text{ as } n \to \infty.$$

Characterization of the sum-max domain of attraction

Theorem 7

Let (W_i, J_i) be i.i.d. $\mathbb{R}_+ \times \mathbb{R}$ -valued random vectors.

Then there exist $a_n, b_n > 0$ such that

$$(a_n \sum_{i=1}^n W_i, b_n \bigvee_{i=1}^n J_i) \Longrightarrow (D, A) \text{ as } n \to \infty \text{ with } (D, A) \sim [0, \eta]$$

if and only if

$$n \cdot P_{(a_n W, b_n J)} \xrightarrow{v} \eta \text{ as } n \to \infty.$$

" $\mu_n \xrightarrow{v} \mu$ " means: $\mu_n(B) \to \mu(B)$ as $n \to \infty$ for all $B \in \mathcal{B}(\mathbb{R}^2_+)$ with $\mu(\partial B) = 0$ that are bounded away from (0, 0). Joint Sum-Max Stability O●○○○ aling Limit Distribution of the limit and 00000

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆ ⊙へ⊙

Characterization of the sum-max domain of attraction

Properties 1

Let (D_1, A_1) be i.i.d. copies of the limit (D, A) in Theorem 7 above. Then there exist $0 < \beta < 1$ and $\alpha > 0$ such that

$$(D_1, A_1)^{\ddagger} \cdots \stackrel{\dashv}{\vee} (D_n, A_n) \stackrel{d}{=} (n^{1/\beta}D, n^{1/\alpha}A)$$

for all $n \ge 1$. (D, A) is called sum-max stable.

Characterization of the sum-max domain of attraction

Properties 1

Let (D_1, A_1) be i.i.d. copies of the limit (D, A) in Theorem 7 above. Then there exist $0 < \beta < 1$ and $\alpha > 0$ such that

$$(D_1, A_1)^{\ddagger} \cdots \stackrel{\dashv}{\vee} (D_n, A_n) \stackrel{d}{=} (n^{1/\beta}D, n^{1/\alpha}A)$$

for all $n \ge 1$. (D, A) is called sum-max stable.

Properties 2

Let η be the Lévy measure of (D, A). Moreover, let $E = \text{diag}(1/\beta, 1/\alpha)$ so that $t^{-E} = \text{diag}(t^{-1/\beta}, t^{-1/\alpha})$. Then we have for all Borel sets $B \subset \mathbb{R}^2_+$ which are bounded away from (0, 0) that

 $t \cdot \eta(B) = \eta(t^{-E}B)$ for all t > 0.

Joint Sum-Max Stability

Distribution of the limit and governing equations

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Representation of the Lévy measure

Theorem 8

Let η be the Lévy measure of (D, A), where D is β sum-stable $(0 < \beta < 1)$ and A has an α -Fréchet distribution $(\alpha > 0)$. Then there exists $C \ge 0, K > 0$ and $\omega \in \mathcal{M}^1(\mathbb{R})$ with

$$\int_0^\infty x^\alpha\,\omega(dx)<\infty$$

such that

 $\eta(dt, dx) = \varepsilon_0(dt) C \alpha x^{-\alpha - 1} dx + \mathbf{1}_{(0,\infty) \times \mathbb{R}_+}(t, x) \cdot (t^{\beta/\alpha} \omega)(dx) K \beta t^{-\beta - 1} dt.$

Joint Sum-Max Stability

imit Distribution of the limit and governing equations.

Representation of the Lévy measure

Theorem 8

Let η be the Lévy measure of (D, A), where D is β sum-stable $(0 < \beta < 1)$ and A has an α -Fréchet distribution $(\alpha > 0)$. Then there exists $C \ge 0, K > 0$ and $\omega \in \mathcal{M}^1(\mathbb{R})$ with

$$\int_0^\infty x^\alpha\,\omega(dx)<\infty$$

such that

$$\eta(dt, dx) = \varepsilon_0(dt) C \alpha x^{-\alpha - 1} dx + \mathbf{1}_{(0,\infty) \times \mathbb{R}_+}(t, x) \cdot \left(t^{\beta/\alpha} \omega\right) (dx) K \beta t^{-\beta - 1} dt.$$

Corollary 9

The random variables A and D are independent **if and only if** we have C > 0 and $\omega = \epsilon_0$ in the representation of the Lévy measure.

Joint Sum-Max Stability (○○○●○

ity CTRM Scaling Limit Di O

Distribution of the limit and governing equations

Representation of the Lévy measure

Example 10

Recall that the Lévy measure of (D, A) is given by

$$\eta(dt, dx) = \varepsilon_0(dt) C \alpha x^{-\alpha - 1} dx + \mathsf{1}_{(0, \infty) \times \mathbb{R}_+}(t, x) \cdot (t^{\beta/\alpha} \omega) (dx) \mathcal{K} \beta t^{-\beta - 1} dt.$$

Assume that $J_i = W_i$. Then

$$(a_n \sum_{i=1}^n W_i, a_n \bigvee_{i=1}^n W_i) \Longrightarrow (D, A) \text{ as } n \to \infty \text{ with } (D, A) \sim [0, \eta]$$

where the Lévy measure η is given by

Joint Sum-Max Stability 0 000●0

ability CTRM Scaling Limit

Distribution of the limit and governing equations

Representation of the Lévy measure

Example 10

Recall that the Lévy measure of (D, A) is given by

$$\eta(dt, dx) = \varepsilon_0(dt) C \alpha x^{-\alpha - 1} dx + \mathsf{1}_{(0, \infty) \times \mathbb{R}_+}(t, x) \cdot (t^{\beta/\alpha} \omega) (dx) \mathcal{K} \beta t^{-\beta - 1} dt.$$

Assume that $J_i = W_i$. Then

$$(a_n \sum_{i=1}^n W_i, a_n \bigvee_{i=1}^n W_i) \Longrightarrow (D, A) \text{ as } n \to \infty \text{ with } (D, A) \sim [0, \eta]$$

where the Lévy measure η is given by

$$\eta(dt, dx) = \mathbf{1}_{(0,\infty) \times \mathbb{R}_+}(t, x) \cdot \varepsilon_t(dx) K \beta t^{-\beta-1} dt,$$

that is $C = 0, \alpha = \beta$ and $\omega = \varepsilon_1$. \longrightarrow complete dependence

ome Harmonic Analysis

Joint Sum-Max Stability ○○○○●

y CTRM Scaling Limit

Distribution of the limit and governing equations

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Theorem 11 (J_1 -convergence of the joint sum-max process)

Assume that there exist $a_n > 0$, $b_n > 0$ with

$$(a_n\sum_{i=1}^n W_i, b_n\bigvee_{i=1}^n J_i) \Longrightarrow (D, A) \text{ as } n \to \infty.$$

Then

$$\left\{ \left(a(c) \sum_{i=1}^{\lfloor ct \rfloor} W_i, b(c) \bigvee_{i=1}^{\lfloor ct \rfloor} J_i \right) \right\}_{t>0} \xrightarrow{J_1} \left\{ (D(t), A(t)) \right\}_{t>0} \text{ as } c \to \infty,$$

where the C-L-Transform of the fdds of $\{(D(t), A(t))\}_{t>0}$ are given by

$$\mathcal{L}(P_{(D(t_j),A(t_j))_{j=1,...,m}})(\boldsymbol{s},\boldsymbol{y}) = \prod_{j=1}^m \varphi_{(D,A)}(\Sigma_{k=j}^m \boldsymbol{s}_k,\min(v_j,...,v_m))^{(t_j-t_{j-1})}$$

 $\mathbf{s} := (s_1, ..., s_m), \mathbf{y} := (y_1, ..., y_m).$

00000

Joint Sum-Max Stability CTRM Scaling Limit Distribution of the limit and governing equations

Theorem 11 (J_1 -convergence of the joint sum-max process)

Assume that there exist $a_n > 0$, $b_n > 0$ with

$$(a_n\sum_{i=1}^n W_i, b_n\bigvee_{i=1}^n J_i) \Longrightarrow (D, A) \text{ as } n \to \infty.$$

Then

$$\left\{ \left(a(c) \sum_{i=1}^{\lfloor \alpha \rfloor} W_i, b(c) \bigvee_{i=1}^{\lfloor \alpha \rfloor} J_i \right) \right\}_{t>0} \xrightarrow{J_1} \{ (D(t), A(t)) \}_{t>0} \text{ as } c \to \infty,$$

where the C-L-Transform of the fdds of $\{(D(t), A(t))\}_{t>0}$ are given by

$$\mathcal{L}(P_{(D(t_j),A(t_j))_{j=1,...,m}})(\boldsymbol{s},\boldsymbol{y}) = \prod_{j=1}^m \varphi_{(D,A)}(\boldsymbol{\Sigma}_{k=j}^m \boldsymbol{s}_k,\min(\boldsymbol{v}_j,...,\boldsymbol{v}_m))^{(t_j-t_{j-1})}$$

 $\mathbf{s} := (s_1, ..., s_m), \mathbf{y} := (y_1, ..., y_m).$

- $\{D(t)\}_{t>0}$ β stable subordinator.
- ► $\{A(t)\}_{t>0}$ **F-Extremal process**, $P\{A(t) \le x\} = F(x)^t$ and F is the CDF of an α -Fréchet distribution. シック・ボート 小田 ト 小田 ト ふうく

Joint Sum-Max Stability CTRM Scaling Limit

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Limit Theorem for the CTRM

Theorem 12

Assume $(W_i, J_i)_{i \in \mathbb{N}}$ are i.i.d. $\mathbb{R}_+ \times \mathbb{R}$ -valued rv's and there exist $a_n, b_n > 0$ such that

$$n \cdot P_{(a_n W, b_n J)}(B) \xrightarrow{v} \eta(B) \text{ as } n \to \infty.$$

Joint Sum-Max Stability CTRM Scaling Limit

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Limit Theorem for the CTRM

Theorem 12

Assume $(W_i, J_i)_{i \in \mathbb{N}}$ are i.i.d. $\mathbb{R}_+ \times \mathbb{R}$ -valued rv's and there exist $a_n, b_n > 0$ such that

$$n \cdot P_{(a_n W, b_n J)}(B) \xrightarrow{v} \eta(B) \text{ as } n \to \infty.$$

Then

$$\left\{\tilde{b}(c)\bigvee_{i=1}^{N(ct)}J_i\right\}_{t>0}\xrightarrow{J_1}\left\{A(E(t)-)^+\right\}_{t>0} \text{ as } c\to\infty$$

where $\tilde{b}(c) \in \mathsf{RV}(-\alpha/\beta)$.

Joint Sum-Max Stability CTRM Scaling Limit

Limit Theorem for the CTRM

Theorem 12

Assume $(W_i, J_i)_{i \in \mathbb{N}}$ are i.i.d. $\mathbb{R}_+ \times \mathbb{R}$ -valued rv's and there exist $a_n, b_n > 0$ such that

$$n \cdot P_{(a_n W, b_n J)}(B) \xrightarrow{v} \eta(B) \text{ as } n \to \infty.$$

Then

$$\left\{\tilde{b}(c)\bigvee_{i=1}^{N(ct)}J_i\right\}_{t>0}\xrightarrow{J_1}\left\{A(E(t)-)^+\right\}_{t>0}\text{ as } c\to\infty$$

where $\tilde{b}(c) \in \mathsf{RV}(-\alpha/\beta)$.

where

$$N(t) = \max\{n \ge 0 : \sum_{i=1}^{n} W_i \le t\}$$

- $\{A(t)\}_{t>0} \alpha$ -Fréchet extremal process,
- $E(t) := \inf \{x \ge 0 : D(x) > t\}$ inverse of stable subordinator.

Some Harmonic Analys

int Sum-Max Stability C

CTRM Scaling Limit

Distribution of the limit and governing equations

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Distribution of the limit

Theorem 13

Assume $(W_i, J_i)_{i \in \mathbb{N}}$ are *i.i.d.* $\mathbb{R}_+ \times \mathbb{R}$ -valued random vectors and

$$n \cdot P_{(a_n W, b_n J)}(B) \xrightarrow{v} \eta(B) \text{ as } n \to \infty.$$

oint Sum-Max Stability C

CTRM Scaling Limit

Distribution of the limit and governing equations

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Distribution of the limit

Theorem 13

Assume $(W_i, J_i)_{i \in \mathbb{N}}$ are *i.i.d.* $\mathbb{R}_+ \times \mathbb{R}$ -valued random vectors and

$$n \cdot P_{(a_n W, b_n J)}(B) \xrightarrow{v} \eta(B) \text{ as } n \to \infty.$$

Then

$$P\{A(E(t)-)^{+} \le x\} = \int_{0}^{\infty} \int_{0}^{t} \Phi_{D}(t-u,\infty) P_{(D(s),A(s))}(du,[0,x]) ds$$

is the distribution function of the limit $\{A(E(t)-)^+\}_{t>0}$

bint Sum-Max Stability C

CTRM Scaling Limit

Distribution of the limit and governing equations

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Distribution of the limit

Theorem 13

Assume $(W_i, J_i)_{i \in \mathbb{N}}$ are i.i.d. $\mathbb{R}_+ \times \mathbb{R}$ -valued random vectors and

$$n \cdot P_{(a_n W, b_n J)}(B) \xrightarrow{v} \eta(B) \text{ as } n \to \infty.$$

Then

$$P\{A(E(t)-)^{+} \le x\} = \int_{0}^{\infty} \int_{0}^{t} \Phi_{D}(t-u,\infty) P_{(D(s),A(s))}(du,[0,x]) ds$$

is the distribution function of the limit $\{A(E(t)-)^+\}_{t>0}$ and for all $\xi > 0$ we have

$$\int_{0}^{\infty} e^{-\xi t} P\left\{A(E(t)-)^{+} \leq x\right\} dt = \frac{1}{\xi} \frac{\Psi_{D}(\xi)}{\Psi(\xi, x)}$$

- Φ_D(dt) is the (usual) Lévy measure of {D(t)}_{t≥0}
- Ψ is the C-L-Exponent of {(D(t), A(t))}_{t>0}
- Ψ_D denotes the (usual) Laplace-Exponent of {D(t)}_{t≥0}.

Continuous Time Random Maxima	Some Harmonic Analysis	Joint Sum-Max Stability	Distribution of the limit and governing equations
Example			

 $(W_i, J_i)_{i \in \mathbb{N}}$ i.i.d. as (W, J) with

- $W \in DONA(D)$, $D\beta$ -stable $(0 < \beta < 1)$ with $E(e^{-sD}) = \exp(-s^{\beta})$.
- $J := W^{1/\gamma}Z$ with $Z \gamma$ -Fréchet, Z and W independent.

Then we have

$$\left(n^{-1/\beta}\sum_{i=1}^{n}W_{i},n^{-1/(\beta\gamma)}\bigvee_{i=1}^{n}J_{i}\right)\Longrightarrow(D,A)\sim[0,\eta]$$

as $n \to \infty$, where the Lévy measure is

$$\eta(dt, dx) = (t^{1/\gamma} P_Z)(dx) \frac{\beta}{\Gamma(1-\beta)} t^{-\beta-1} dt,$$

that is we have C = 0, $\alpha = \beta \gamma$ and $\omega = P_Z$ in the representation of the Lévy measure.

Continuous Time Random Maxima	Some Harmonic Analysis	Joint Sum-Max Stability	Distribution of the limit and governing equations

Example

The C-L exponent in this example is given by

$$\Psi(\xi, x) = (\xi + x^{-\gamma})^{\beta}.$$

If we set $G(t, x) = P\{A(E(t)-)^+ \le x\}$ we have

$$L(G(\cdot,x))(\xi) = \int_0^\infty e^{-\xi t} G(t,x) dt = \frac{1}{\xi} \frac{\psi_D(\xi)}{\psi(\xi,x)} = \frac{\xi^{\beta-1}}{(\xi+x^{-\gamma})^{\beta}}.$$

Inverting the Laplace transform yields

$$G(t,x) = \int_0^t e^{-x^{-\gamma}u} \frac{u^{\beta-1}}{\Gamma(\beta)} \cdot \frac{(t-u)^{-\beta}}{\Gamma(1-\beta)} du$$

Observe that

$$A(E(t)-)^+ \stackrel{d}{=} (tB)^{1/\gamma} Y$$

where *B* has a β -distribution, *Y* is standard γ -Fréchet, independent of *B*.

Some Harmonic Analysis	Joint Sum-Max Stability	CTRM Scaling Limit	Distribution of the limit and governing equations
			00000

Example

Moreover

$$(\xi + x^{-\gamma})^{\beta}L(G(\cdot, x))(\xi) = \xi^{\beta-1}.$$

and an application of the inverse Laplace transform on both sides yields the **governing equation**

$$\partial_t^{\beta} \left[e^{t \mathbf{x}^{-\gamma}} G(t, \mathbf{x}) \right] = e^{t \mathbf{x}^{-\gamma}} \frac{t^{-\beta}}{\Gamma(1-\beta)};$$

where we have used that

• $L(\partial_t^{\beta} f(s))(t) = t^{\beta} L(f(s))(t)$ (Riemann-Liouville fractional derivative)

(日) (日) (日) (日) (日) (日) (日) (日) (日)

• $L(e^{-as}f(s))(t) = L(f(s))(t+a).$

 $G(\cdot, x)$ is called the **mild solution** of this equation.

Some Harmonic Analysis	Joint Sum-Max Stability	CTRM Scaling Limit	Distribution of the limit and governing equations
			00000

References:

- K. Hees and H.P. Scheffler, On joint sum/max stability and sum/max domains of attraction, in preparation.
- K. Hees and H.P. Scheffler, Limit theorems for Coupled Continuous Time Random Maxima, in preparation.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?