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Definition of the Coupled CTRM

For i = 1, 2, ...

(Wi , Ji) iid random variables on R+ × R,
Wi and Ji can be dependent;

Ji jumps of a particle;

Wi waiting times between the jumps.
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Definition of the Coupled CTRM
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Definition of the Coupled CTRM

�

N(t) = max{n ≥ 0 :
n∑

i=1

Wi ≤ t}

Number of observations by time t (renewal process)

� M(n) :=
n∨

i=1
Ji maximum jump size after n jumps

We call the process
{
M(N(t))

}
t>0 with

M(N(t)) =
N(t)∨
i=1

Ji ,

which is maximum of the jumps by time t, a Coupled Continuous Time
Random Maxima (CTRM).
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Definition of the Coupled CTRM

�

N(t) = max{n ≥ 0 :
n∑

i=1

Wi ≤ t}

Number of observations by time t (renewal process)

� M(n) :=
n∨

i=1
Ji maximum jump size after n jumps

We call the process
{
M(N(t))

}
t>0 with

M(N(t)) =
N(t)∨
i=1

Ji ,

which is maximum of the jumps by time t, a Coupled Continuous Time
Random Maxima (CTRM).

We are interested in the long-time behaviour of the process:

{
b̃(c)M(N(ct))

}
t>0
→ ? as c → ∞.
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Scaling limit

Classical extreme value theory

� Observations collected at regular intervals in time

� FJ ∈ MDA(Φα) ⇒
{

b(c)
�ct	∨
i=1

Ji

}
t>0

J1−→ {A(t)
}
t>0 as c → ∞

�
{
A(t)
}
t>0 α-Fréchet-extremal process, P(A(t) ≤ x) = Φt

α(x)
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Scaling limit

Classical extreme value theory

� Observations collected at regular intervals in time

� FJ ∈ MDA(Φα) ⇒
{

b(c)
�ct	∨
i=1

Ji

}
t>0

J1−→ {A(t)
}
t>0 as c → ∞

�
{
A(t)
}
t>0 α-Fréchet-extremal process, P(A(t) ≤ x) = Φt

α(x)

CTRM with finite mean waiting times

� N(ct) ∼ ct · 1/μ as c → ∞, where μ = E(W) < ∞
� FJ ∈ MDA(Φα) ⇒

{
b̃(c)

N(ct)∨
i=1

Ji

}
t>0

J1−→ {A(t)
}
t>0 für c → ∞
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Scaling limit

Classical extreme value theory

� Observations collected at regular intervals in time

� FJ ∈ MDA(Φα) ⇒
{

b(c)
�ct	∨
i=1

Ji

}
t>0

J1−→ {A(t)
}
t>0 as c → ∞

�
{
A(t)
}
t>0 α-Fréchet-extremal process, P(A(t) ≤ x) = Φt

α(x)

CTRM with finite mean waiting times

� N(ct) ∼ ct · 1/μ as c → ∞, where μ = E(W) < ∞
� FJ ∈ MDA(Φα) ⇒

{
b̃(c)

N(ct)∨
i=1

Ji

}
t>0

J1−→ {A(t)
}
t>0 für c → ∞

Interesting case

The waiting times have infinite mean!
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Applications:

� Computer Science: [Resnick, Stărică, 1995]
W periods between transmissions for a networked computer terminal
heavy tailed with P(W > t) ≈ Ct−β with β ≈ 0.6
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Applications:

� Computer Science: [Resnick, Stărică, 1995]
W periods between transmissions for a networked computer terminal
heavy tailed with P(W > t) ≈ Ct−β with β ≈ 0.6

� Finance: [Mainardi et al, 2000]
W waiting times between trades of certain bond futures
heavy tailed with β ≈ 0.95
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Applications:

� Computer Science: [Resnick, Stărică, 1995]
W periods between transmissions for a networked computer terminal
heavy tailed with P(W > t) ≈ Ct−β with β ≈ 0.6

� Finance: [Mainardi et al, 2000]
W waiting times between trades of certain bond futures
heavy tailed with β ≈ 0.95

� Geophysics: [Benson et al, 2007]
raindrop release and arrival on the ground
earthquakes
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Definition 1 (Sum-max domain of attraction)

The random vector (W , J) is in the sum-max domain of attraction of
(D,A) if there exist an, bn > 0 such that
⎛⎜⎜⎜⎜⎜⎝an

n∑
i=1

Wi , bn

n∨
i=1

Ji

⎞⎟⎟⎟⎟⎟⎠ =⇒ (D,A) as n→ ∞.

(D,A) is then called sum-max stable.
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Definition 1 (Sum-max domain of attraction)

The random vector (W , J) is in the sum-max domain of attraction of
(D,A) if there exist an, bn > 0 such that
⎛⎜⎜⎜⎜⎜⎝an

n∑
i=1

Wi , bn

n∨
i=1

Ji

⎞⎟⎟⎟⎟⎟⎠ =⇒ (D,A) as n→ ∞.

(D,A) is then called sum-max stable.

It follows by projection on either coordinate:

� D is strictly β-stable with 0 < β < 1,

� A Fréchet or Weibull distributed.
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Before we come back to the CTRM we have to answer
the following questions:

(1) Are there necessary and sufficient conditions on (W , J) for being
in the sum-max domain of attraction of (D,A)?
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Before we come back to the CTRM we have to answer
the following questions:

(1) Are there necessary and sufficient conditions on (W , J) for being
in the sum-max domain of attraction of (D,A)?

(2) Is it possible to give a characterization of the joint distribution of
(D,A) and of the dependence of D and A?
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Before we come back to the CTRM we have to answer
the following questions:

(1) Are there necessary and sufficient conditions on (W , J) for being
in the sum-max domain of attraction of (D,A)?

(2) Is it possible to give a characterization of the joint distribution of
(D,A) and of the dependence of D and A?

−→ For analysing these questions we use
Harmonic Analysis on Semigroups.
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Harmonic Analysis on semigroup (R+,+)

(R+,+) is an abelian semigroup with neutral element e = 0.

For all t ≥ 0 let ρt(s) := e−st . Then:

� ρt(0) = 1;

� ρt(s1 + s2) = ρt(s1)ρt(s2).

We call the functions ρt semigroup characters on (R+,+).
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Harmonic Analysis on semigroup (R+,+)

(R+,+) is an abelian semigroup with neutral element e = 0.

For all t ≥ 0 let ρt(s) := e−st . Then:

� ρt(0) = 1;

� ρt(s1 + s2) = ρt(s1)ρt(s2).

We call the functions ρt semigroup characters on (R+,+).

For a probabaility measure μ on R+ we get

L(μ)(s) =
∫
[0,∞)

ρs(t)μ(dt) =
∫
[0,∞)

e−stμ(dt).

the usual Laplace transform on R+.
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Harmonic Analysis on the semigroup (R,∨)

Let R = [−∞,∞] denote the two-point compactification of R.
(R,∨) is an abelian semigroup with neutral element e = −∞.

For all y ∈ R = (−∞,∞] let τy(x) := 1[−∞,y](x). Then:

� τy(−∞) = 1;

� τy(x1 ∨ x2) = τy(x1)τy(x2).

The functions τy are the semigroup characters on (R,∨).
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Harmonic Analysis on the semigroup (R,∨)

Let R = [−∞,∞] denote the two-point compactification of R.
(R,∨) is an abelian semigroup with neutral element e = −∞.

For all y ∈ R = (−∞,∞] let τy(x) := 1[−∞,y](x). Then:

� τy(−∞) = 1;

� τy(x1 ∨ x2) = τy(x1)τy(x2).

The functions τy are the semigroup characters on (R,∨).

For a probability measure μ on R we get

Fμ(y) =
∫
[−∞,∞]

τy(x)μ(dx) =
∫
[−∞,∞]

1[−∞,y](x)μ(dx) = μ([−∞, y]).

CDF = Laplace transformation on the max-semigroup.
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Harmonic Analysis on the semigroup (R+ × R, ∨+)

(R+ × R, ∨+) is an abelian semigroup with neutral element e = (0,−∞).
The semigroup operation ∨+ is defined by

(t1, x1)∨+(t2, x2) := (t1 + t2, x1 ∨ x2).

For (s, y) ∈ R+ × R let ρs,y(t , x) := e−st1[−∞,y](x). Then

� ρs,y(0,−∞) = 1;

� ρs,y(t1 + t2, x1 ∨ x2) = ρs,y(t1, x1)ρs,y(t2, x2).

The functions ρs,y are the semigroup characters on (R+ × R, ∨+).
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Harmonic Analysis on the semigroup (R+ × R, ∨+)

(R+ × R, ∨+) is an abelian semigroup with neutral element e = (0,−∞).
The semigroup operation ∨+ is defined by

(t1, x1)∨+(t2, x2) := (t1 + t2, x1 ∨ x2).

For (s, y) ∈ R+ × R let ρs,y(t , x) := e−st1[−∞,y](x). Then

� ρs,y(0,−∞) = 1;

� ρs,y(t1 + t2, x1 ∨ x2) = ρs,y(t1, x1)ρs,y(t2, x2).

The functions ρs,y are the semigroup characters on (R+ × R, ∨+).

We get for a probability measure μ on R+ × R:

L(μ)(s, y) =
∫
[0,∞)

∫
[−∞,∞]

ρs,y(t , x)μ(dt , dx)

=

∫
[0,∞)

∫
[−∞,∞]

e−st1[−∞,y](x)μ(dt , dx).
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Definition 2

For a probability measure μ on R+ × R we call

L(μ)(s, y) =
∫
[0,∞)

∫
[−∞,∞]

e−st1[−∞,y](x)μ(dt , dx), (s, y) ∈ R+ × R;

the CDF-Laplace transform (C-L transform) of μ.
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Definition 2

For a probability measure μ on R+ × R we call

L(μ)(s, y) =
∫
[0,∞)

∫
[−∞,∞]

e−st1[−∞,y](x)μ(dt , dx), (s, y) ∈ R+ × R;

the CDF-Laplace transform (C-L transform) of μ.

Let μ be the distribution of the random vector (W , J).
� Letting s = 0 we get

L(μ)(0, y) = μ(R+ × [−∞, y]) = P {J ≤ y} = FJ(y),

the distribution function of J.

� Letting y = ∞ we get

L(μ)(s,∞) =
∫ ∞

0
e−stμ(dt ,R) = E

[
e−sW

]
,

the Laplace transform of W.
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Some properties of the C-L transform

The semigroup operation
+∨ induces a convolution � onM1(R+ × R).

If μ1 := P(W1,J1), μ2 := P(W2,J2) where (W1, J1) and (W2, J2) are

independent random vectors on R+ × R we have

μ1 � μ2 = P(W1,J1) � P(W2,J2) = P(W1+W2,J1∨J2).
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Some properties of the C-L transform

The semigroup operation
+∨ induces a convolution � onM1(R+ × R).

If μ1 := P(W1,J1), μ2 := P(W2,J2) where (W1, J1) and (W2, J2) are

independent random vectors on R+ × R we have

μ1 � μ2 = P(W1,J1) � P(W2,J2) = P(W1+W2,J1∨J2).

Properties 1

Let μn be probability measures on R+ × R.

(i) Convolution:

L(μ1 � μ2)(s, y) = L(μ1)(s, y) · L(μ2)(s, y) for all (s, y) ∈ R+ × R.

(ii) Uniqueness Theorem:

μ1 = μ2 ⇐⇒ L(μ1)(s, y) = L(μ2)(s, y) for all (s, y) ∈ R+ × R.

(iii) Continuity Theorem:

μn
w→ μ⇐⇒ L(μn)(s, y) → L(μ)(s, y) for all continuity points

(s, y) ∈ R+ × R of the limit.
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Sum-max infinite divisibility

Definition 3

We call a R+ × R-valued random vector (D,A) resp. the distribution μ
∨+ -infinite divisible, if for all n ≥ 1 there exist a probability measure μn

on R+ × R, such that

μ = μ�n
n .
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Sum-max infinite divisibility

Definition 3

We call a R+ × R-valued random vector (D,A) resp. the distribution μ
∨+ -infinite divisible, if for all n ≥ 1 there exist a probability measure μn

on R+ × R, such that

μ = μ�n
n .

Lemma 4

Let μn, μ be probability measures on R+ × R for all n ≥ 1.

If μ�n
n

w−−→ μ as n → ∞, then μ is ∨+ -infinite divisible.

Our sum-max stable distributions are ∨+ -infinite divisible.
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C-L-Exponent

Definition 5

We call the function Ψ : R+ × R→ R with

L(μ)(s, y) = exp(−Ψ(s, y)),

C-L-Exponent.

Remark

Let μ be the distribution of the random vector (D,A), then we call x0 the
left endpoint of A, that is x0 = inf{x ∈ [−∞,∞) : FA (x) > 0}. In the
following we only consider the case x0 = 0 and FA (0) = 0.
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Lévy-Khintchine Representation

Theorem 6

A function ϕ : R+ × R+ → R is the C-L-Transform of a ∨+ -infinite divisible
probability measure μ, if and only if there exists an a ∈ R+ and a Radon
measure η on R+ × [0,∞] with η(

{
(0, 0)

}
) = 0 and

∫
R+

min(1, t)η(dt , [0,∞]) < ∞ and η(R+ × (y,∞]) < ∞ ∀y > 0,

such that Ψ := − log(ϕ) has the representation
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Lévy-Khintchine Representation

Theorem 6

A function ϕ : R+ × R+ → R is the C-L-Transform of a ∨+ -infinite divisible
probability measure μ, if and only if there exists an a ∈ R+ and a Radon
measure η on R+ × [0,∞] with η(

{
(0, 0)

}
) = 0 and

∫
R+

min(1, t)η(dt , [0,∞]) < ∞ and η(R+ × (y,∞]) < ∞ ∀y > 0,

such that Ψ := − log(ϕ) has the representation

Ψ(s, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
as +

∫
R+

∫
[0,∞]

(
1 − e−st1[0,y](x)

)
η(dt , dx) ∀y > 0

∞ ∀y ≤ 0.

and s ≥ 0. We write μ ∼ [a, η] and call η the Lévy measure of μ.
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Characterization of the sum-max domain of attraction

Theorem 7

Let (Wi , Ji) be i.i.d. R+ × R-valued random vectors.

Then there exist an, bn > 0 such that

(an

n∑
i=1

Wi , bn

n∨
i=1

Ji) =⇒ (D,A) as n→ ∞ with (D,A) ∼ [0, η]

if and only if
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Characterization of the sum-max domain of attraction

Theorem 7

Let (Wi , Ji) be i.i.d. R+ × R-valued random vectors.

Then there exist an, bn > 0 such that

(an

n∑
i=1

Wi , bn

n∨
i=1

Ji) =⇒ (D,A) as n→ ∞ with (D,A) ∼ [0, η]

if and only if

n · P(anW ,bnJ)
v−→ η as n → ∞.
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Characterization of the sum-max domain of attraction

Theorem 7

Let (Wi , Ji) be i.i.d. R+ × R-valued random vectors.

Then there exist an, bn > 0 such that

(an

n∑
i=1

Wi , bn

n∨
i=1

Ji) =⇒ (D,A) as n→ ∞ with (D,A) ∼ [0, η]

if and only if

n · P(anW ,bnJ)
v−→ η as n → ∞.

“μn
v−→ μ“ means:

μn(B)→ μ(B) as n→ ∞ for all B ∈ B(R2
+) with μ(∂B) = 0 that are

bounded away from (0, 0).
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Characterization of the sum-max domain of attraction

Properties 1

Let (D1,A1) be i.i.d. copies of the limit (D,A) in Theorem 7 above. Then
there exist 0 < β < 1 and α > 0 such that

(D1,A1)∨+ · · · ∨+(Dn ,An)
d
= (n1/βD, n1/αA)

for all n ≥ 1. (D,A) is called sum-max stable.
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Characterization of the sum-max domain of attraction

Properties 1

Let (D1,A1) be i.i.d. copies of the limit (D,A) in Theorem 7 above. Then
there exist 0 < β < 1 and α > 0 such that

(D1,A1)∨+ · · · ∨+(Dn ,An)
d
= (n1/βD, n1/αA)

for all n ≥ 1. (D,A) is called sum-max stable.

Properties 2

Let η be the Lévy measure of (D,A). Moreover, let E = diag(1/β, 1/α) so
that t−E = diag(t−1/β, t−1/α). Then we have for all Borel sets B ⊂ R2

+

which are bounded away from (0, 0) that

t · η(B) = η(t−EB) for all t > 0.
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Representation of the Lévy measure

Theorem 8

Let η be the Lévy measure of (D,A), where D is β sum-stable (0 < β < 1)
and A has an α-Fréchet distribution (α > 0). Then there exists
C ≥ 0,K > 0 and ω ∈ M1(R) with
∫ ∞

0
xα ω(dx) < ∞

such that

η(dt , dx) = ε0(dt)Cαx−α−1dx + 1(0,∞)×R+(t , x) ·
(
tβ/αω

)
(dx)Kβt−β−1dt .
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Representation of the Lévy measure

Theorem 8

Let η be the Lévy measure of (D,A), where D is β sum-stable (0 < β < 1)
and A has an α-Fréchet distribution (α > 0). Then there exists
C ≥ 0,K > 0 and ω ∈ M1(R) with
∫ ∞

0
xα ω(dx) < ∞

such that

η(dt , dx) = ε0(dt)Cαx−α−1dx + 1(0,∞)×R+(t , x) ·
(
tβ/αω

)
(dx)Kβt−β−1dt .

Corollary 9

The random variables A and D are independent if and only if we have
C > 0 and ω = ε0 in the representation of the Lévy measure.
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Representation of the Lévy measure

Example 10

Recall that the Lévy measure of (D,A) is given by

η(dt , dx) = ε0(dt)Cαx−α−1dx+1(0,∞)×R+(t , x) ·
(
tβ/αω

)
(dx)Kβt−β−1dt .

Assume that Ji = Wi. Then

(an

n∑
i=1

Wi , an

n∨
i=1

Wi) =⇒ (D,A) as n→ ∞ with (D,A) ∼ [0, η]

where the Lévy measure η is given by
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Representation of the Lévy measure

Example 10

Recall that the Lévy measure of (D,A) is given by

η(dt , dx) = ε0(dt)Cαx−α−1dx+1(0,∞)×R+(t , x) ·
(
tβ/αω

)
(dx)Kβt−β−1dt .

Assume that Ji = Wi. Then

(an

n∑
i=1

Wi , an

n∨
i=1

Wi) =⇒ (D,A) as n→ ∞ with (D,A) ∼ [0, η]

where the Lévy measure η is given by

η(dt , dx) = 1(0,∞)×R+(t , x) · εt(dx)Kβt−β−1dt ,

that is C = 0, α = β and ω = ε1. −→ complete dependence
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Theorem 11 (J1-convergence of the joint sum-max process)

Assume that there exist an > 0, bn > 0 with

(an

n∑
i=1

Wi , bn

n∨
i=1

Ji) =⇒ (D,A) as n → ∞.

Then⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝a(c)

�ct	∑
i=1

Wi , b(c)
�ct	∨
i=1

Ji

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

t>0

J1−→ {(D(t),A(t))
}
t>0 as c →∞,

where the C-L-Transform of the fdds of
{
(D(t),A(t))

}
t>0 are given by

L(P(D(tj ),A(tj ))j=1,...,m ))(s, y) =
m∏

j=1

ϕ(D,A)(Σ
m
k=jsk ,min(vj , ..., vm))

(tj−tj−1)

s := (s1, ..., sm), y := (y1, ..., ym).
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Theorem 11 (J1-convergence of the joint sum-max process)

Assume that there exist an > 0, bn > 0 with

(an

n∑
i=1

Wi , bn

n∨
i=1

Ji) =⇒ (D,A) as n → ∞.

Then⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎝a(c)

�ct	∑
i=1

Wi , b(c)
�ct	∨
i=1

Ji

⎞⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

t>0

J1−→ {(D(t),A(t))
}
t>0 as c →∞,

where the C-L-Transform of the fdds of
{
(D(t),A(t))

}
t>0 are given by

L(P(D(tj ),A(tj ))j=1,...,m ))(s, y) =
m∏

j=1

ϕ(D,A)(Σ
m
k=jsk ,min(vj , ..., vm))

(tj−tj−1)

s := (s1, ..., sm), y := (y1, ..., ym).

�
{
D(t)
}
t>0 β − stable subordinator.

�
{
A(t)
}
t>0 F-Extremal process , P

{
A(t) ≤ x

}
= F(x)t and F is the CDF

of an α-Fréchet distribution.
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Limit Theorem for the CTRM

Theorem 12

Assume (Wi , Ji)i∈N are i.i.d. R+ × R-valued rv’s and there exist an, bn > 0
such that

n · P(anW ,bnJ)(B)
v−→ η(B) as n → ∞.
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Limit Theorem for the CTRM

Theorem 12

Assume (Wi , Ji)i∈N are i.i.d. R+ × R-valued rv’s and there exist an, bn > 0
such that

n · P(anW ,bnJ)(B)
v−→ η(B) as n → ∞.

Then⎧⎪⎪⎪⎨⎪⎪⎪⎩b̃(c)
N(ct)∨
i=1

Ji

⎫⎪⎪⎪⎬⎪⎪⎪⎭
t>0

J1−→
{
A(E(t)−)+

}
t>0

as c → ∞

where b̃(c) ∈ RV(−α/β).
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Limit Theorem for the CTRM

Theorem 12

Assume (Wi , Ji)i∈N are i.i.d. R+ × R-valued rv’s and there exist an, bn > 0
such that

n · P(anW ,bnJ)(B)
v−→ η(B) as n → ∞.

Then⎧⎪⎪⎪⎨⎪⎪⎪⎩b̃(c)
N(ct)∨
i=1

Ji

⎫⎪⎪⎪⎬⎪⎪⎪⎭
t>0

J1−→
{
A(E(t)−)+

}
t>0

as c → ∞

where b̃(c) ∈ RV(−α/β).
where
� N(t) = max{n ≥ 0 :

∑n
i=1 Wi ≤ t}

�
{
A(t)
}
t>0 α-Fréchet extremal process,

� E(t) := inf
{
x ≥ 0 : D(x) > t

}
inverse of stable subordinator.
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Distribution of the limit

Theorem 13

Assume (Wi , Ji)i∈N are i.i.d. R+ × R-valued random vectors and

n · P(anW ,bn J)(B)
v−→ η(B) as n →∞.
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Distribution of the limit

Theorem 13

Assume (Wi , Ji)i∈N are i.i.d. R+ × R-valued random vectors and

n · P(anW ,bn J)(B)
v−→ η(B) as n →∞.

Then

P
{
A(E(t)−)+ ≤ x

}
=

∫ ∞
0

∫ t

0
ΦD(t − u,∞)P(D(s),A(s))(du, [0, x])ds

is the distribution function of the limit
{
A(E(t)−)+

}
t>0
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Distribution of the limit

Theorem 13

Assume (Wi , Ji)i∈N are i.i.d. R+ × R-valued random vectors and

n · P(anW ,bn J)(B)
v−→ η(B) as n →∞.

Then

P
{
A(E(t)−)+ ≤ x

}
=

∫ ∞
0

∫ t

0
ΦD(t − u,∞)P(D(s),A(s))(du, [0, x])ds

is the distribution function of the limit
{
A(E(t)−)+

}
t>0

and for all ξ > 0 we have

∫ ∞
0

e−ξt P
{
A(E(t)−)+ ≤ x

}
dt =

1
ξ

ΨD(ξ)

Ψ(ξ, x)
.

� ΦD(dt) is the (usual) Lévy measure of
{
D(t)
}
t≥0

� Ψ is the C-L-Exponent of
{
(D(t),A(t))

}
t>0

� ΨD denotes the (usual) Laplace-Exponent of
{
D(t)
}
t≥0.
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Example

(Wi , Ji)i∈N i.i.d. as (W , J) with

� W ∈ DONA(D), D β-stable (0 < β < 1) with E(e−sD) = exp(−sβ).
� J := W1/γZ with Z γ-Fréchet, Z and W independent.

Then we have

(
n−1/β

n∑
i=1

Wi , n
−1/(βγ)

n∨
i=1

Ji

)
=⇒ (D,A) ∼ [0, η]

as n → ∞, where the Lévy measure is

η(dt , dx) = (t1/γPZ)(dx)
β

Γ(1 − β) t−β−1dt ,

that is we have C = 0, α = βγ and ω = PZ in the representation of the
Lévy measure.



Continuous Time Random Maxima Some Harmonic Analysis Joint Sum-Max Stability CTRM Scaling Limit Distribution of the limit and governing equations

Example

The C-L exponent in this example is given by

Ψ(ξ, x) = (ξ + x−γ)β.

If we set G(t , x) = P
{
A(E(t)−)+ ≤ x

}
we have

L(G(·, x))(ξ) =
∫ ∞

0
e−ξtG(t , x) dt =

1
ξ

ψD(ξ)

ψ(ξ, x)
=

ξβ−1

(ξ + x−γ)β
.

Inverting the Laplace transform yields

G(t , x) =
∫ t

0
e−x−γu uβ−1

Γ(β)
· (t − u)−β

Γ(1 − β) du

Observe that

A(E(t)−)+ d
= (tB)1/γY

where B has a β-distribution, Y is standard γ-Fréchet, independent of B.
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Example

Moreover

(ξ + x−γ)βL(G(·, x))(ξ) = ξβ−1.

and an application of the inverse Laplace transform on both sides yields
the governing equation

∂
β
t

[
etx−γG(t , x)

]
= etx−γ t−β

Γ(1 − β) ;

where we have used that

� L(∂βt f(s))(t) = tβL(f(s))(t) (Riemann-Liouville fractional derivative)

� L(e−as f(s))(t) = L(f(s))(t + a).

G(·, x) is called the mild solution of this equation.
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