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Definition of the Coupled CTRM

n
N(t):max{nzO:ZW,-St}
i=1
Number of observations by time t (renewal process)

n
» M(n) := '\/1 Ji maximum jump size after n jumps
=

We call the process {M(N(t))},., with

N(t)
M(N(t)) = v Jis

which is maximum of the jumps by time t, a Coupled Continuous Time
Random Maxima (CTRM).
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Definition of the Coupled CTRM

n
N(t):max{nzO:ZW,-St}
i=1
Number of observations by time t (renewal process)

n
» M(n) := '\/1 Ji maximum jump size after n jumps
=

We call the process {M(N(t))},., with

N(t)
M(N(t)) = v Jis

which is maximum of the jumps by time t, a Coupled Continuous Time
Random Maxima (CTRM).

We are interested in the long-time behaviour of the process:

{b(c)M(N(ct))} - ? asco o
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Scaling limit

Classical extreme value theory

» Observations collected at regular intervals in time

Let]

» F; € MDA(®,) = {b(c) V J,} N {A(t)}pas ¢ — o
=1 ) t>0

> {A(t)}.o @-Fréchet-extremal process, P(A(t) < x) = ®L(x)
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Scaling limit

Classical extreme value theory

» Observations collected at regular intervals in time

Let]

» F; € MDA(®,) = {b(c) V J,} N {A(t)}pas ¢ — o
=1 ) t>0

> {A(t)}.o @-Fréchet-extremal process, P(A(t) < x) = ®L(x)

CTRM with finite mean waiting times

» N(ct) ~ ct-1/uas ¢ — oo, where u = E(W) < o0

. N(ct)
» F; € MDA(®,) = {b(c) V J,-} N {A(t)} 1o flirc = o0
=1 t>0

Interesting case
The waiting times have infinite mean!
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Applications:

» Computer Science: [Resnick, Starica, 1995]

@ W periods between transmissions for a networked computer terminal
@ heavy tailed with P(W > t) ~ Ct® with 8 ~ 0.6
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Applications:

» Computer Science: [Resnick, Starica, 1995]

@ W periods between transmissions for a networked computer terminal
@ heavy tailed with P(W > t) ~ Ct® with 8 ~ 0.6

» Finance: [Mainardi et al, 2000]

@ W waiting times between trades of certain bond futures
@ heavy tailed with 8 ~ 0.95

» Geophysics: [Benson et al, 2007]

@ raindrop release and arrival on the ground
@ earthquakes
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Definition 1 (Sum-max domain of attraction)

The random vector (W, J) is in the sum-max domain of attraction of
(D, A) if there exist ap,, b, > 0 such that

n n
(anz W,-,b,,\/J,-] = (D,A)as n — .
i=1 1

=

(D, A) is then called sum-max stable.
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Definition 1 (Sum-max domain of attraction)

The random vector (W, J) is in the sum-max domain of attraction of
(D, A) if there exist ap,, b, > 0 such that

n n
(anz W,-,b,,\/J,-] = (D,A)as n — .
i=1 1

=

(D, A) is then called sum-max stable.

It follows by projection on either coordinate:
» D is strictly g-stable with 0 < 8 < 1,
» A Fréchet or Weibull distributed.
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Before we come back to the CTRM we have to answer
the following questions:

(1) Are there necessary and sufficient conditions on (W, J) for being
in the sum-max domain of attraction of (D, A)?
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Before we come back to the CTRM we have to answer
the following questions:

(1) Are there necessary and sufficient conditions on (W, J) for being
in the sum-max domain of attraction of (D, A)?

(2) Isit possible to give a characterization of the joint distribution of
(D, A) and of the dependence of D and A?

— For analysing these questions we use
Harmonic Analysis on Semigroups. J
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Harmonic Analysis on semigroup (R, +)

(R4, +) is an abelian semigroup with neutral element e = 0.

Forall t > 0 let p¢(s) := e™*'. Then:
> pe(0) =1,
> pi(s1+ S2) = pe(s1)pi(s2)-
We call the functions p; semigroup characters on (R, +).
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(R4, +) is an abelian semigroup with neutral element e = 0.

Forall t > 0 let p¢(s) := e™*'. Then:
> pe(0) =1,
> pi(s1+ S2) = pe(s1)pi(s2)-
We call the functions p; semigroup characters on (R, +).

For a probabaility measure u on R we get

L(g)(s) = f[ _ est0u(e) = [ esutan.

[0.00)

the usual Laplace transform on R ..
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(R, V) is an abelian semigroup with neutral element e = —co.

Forally € R = (—o0, 00] let 7y(x) := 1[_e (). Then:
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> Ty(X]_ \Y Xz) = Ty(X]_)Ty(Xz).

The functions 7, are the semigroup characters on (R, V).
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Harmonic Analysis on the semigroup (R, V)

Let R = [~o0, c0] denote the two-point compactification of R.
(R, V) is an abelian semigroup with neutral element e = —co.

Forally € R = (—o0, 00] let 7y(x) := 1[_e (). Then:
> 7y(-00) = 1;
> Ty(X]_ \Y X2) = Ty(X]_)Ty(Xz).

The functions 7, are the semigroup characters on (R, V).

For a probability measure u on R we get

AW = [ m00u@) = [ tiy(0u(@0) = )

CDF = Laplace transformation on the max-semigroup.
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Harmonic Analysis on the semigroup (R x R, f/“)

(Ry xR, ?/F) is an abelian semigroup with neutral element e = (0, —0).
The semigroup operation ¥ is defined by

(tl,Xl)VF(tZ,XZ) = (b + b, X1V X2).

For (s,y) € Ry xR let psy(t, X) := e '1_.,(X). Then
> psy(0,—00) = 1;
> psy(ti+ b, X1 V X2) = psy(t, X1)ps,y(t2, X2).
The functions ps , are the semigroup characters on (R4 x R, ¥ ).
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Harmonic Analysis on the semigroup (R x R, f/“)

(Ry xR, ?/F) is an abelian semigroup with neutral element e = (0, —0).
The semigroup operation ¥ is defined by

(tl,Xl)VF(tZ,XZ) = (b + b, X1V X2).

For (s,y) € Ry xR let psy(t, X) := e '1_.,(X). Then
> psy(0,—00) = 1;
> psy(ti+ b, X1 V X2) = psy(t, X1)ps,y(t2, X2).
The functions ps , are the semigroup characters on (R4 x R, ¥ ).

We get for a probability measure u on R, x R:

L()(s,y) = f[ ) f[ Pl (et )

_ f f e 11 (x)u(at. dx).
[O,oo) [—oo,oo]
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Definition 2

For a probability measure z on R, x R we call

o) = [ [ e i (uet 60, (s3) <R xF;

the CDF-Laplace transform (C-L transform) of u.
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Definition 2

For a probability measure z on R, x R we call

amwmwxﬁ ﬁ & (et ), (5.9) <R X

the CDF-Laplace transform (C-L transform) of u.

Let u be the distribution of the random vector (W, J).
» Letting s = 0 we get
L(1)(0,y) = pu(Ry x [-00,y]) = P{I < y} = Fy(y),
the distribution function of J.
» Letting y = oo we get
£u)(s00) = [ e ulat. B) = E[e).

the Laplace transform of W.
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Some properties of the C-L transform

+ —_—
The semigroup operation Vv induces a convolution x on M*(R; X R).
If 1 == P(wy,a,), M2 := Pw,.5,) Where (!Vl,Jl) and (W,, J;) are
independent random vectors on R x R we have

H1 % 2 = Py gy * Pw,.s,) = Pt we,ayva,)-
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Some properties of the C-L transform

+ —_—
The semigroup operation Vv induces a convolution x on M*(R; X R).
If 1 == P(wy,a,), M2 := Pw,.5,) Where (!Vl,Jl) and (W,, J;) are
independent random vectors on R x R we have

H1 % 2 = Py gy * Pw,.s,) = Pt we,ayva,)-

Properties 1

Let 1, be probability measures on R x R.
(i) Convolution:
L * p12)(,y) = L(1)(s,y) - L(2)(s,y) forall (s,y) € Ry xR.
(i) Uniqueness Theorem:
= p2 &= L(u)(s.y) = L(u2)(s.y) forall (s,y) € Ry x R.
(iiiy Continuity Theorem:

fin = 1 = L(un)(s,y) = L(u)(s,y) for all continuity points

(s,y) € Ry xR of the limit.
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Sum-max infinite divisibility

Definition 3

We call a R, x R-valued random vector (D, A) resp. the distribution y
d/'-infinitg divisible, if for all n > 1 there exist a probability measure u,
on Ry xR, such that

= pn
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Sum-max infinite divisibility

Definition 3

We call a R, x R-valued random vector (D, A) resp. the distribution y
d/'-infinitg divisible, if for all n > 1 there exist a probability measure u,
on Ry xR, such that

= pn

Lemma 4

| A\

Let y1,, 1 be probability measures onR. xR foralln > 1.
If " —% 1 as n — oo, then y is V -infinite divisible.

+

Our sum-max stable distributions are V -infinite divisible.

-
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C-L-Exponent

Definition 5

We call the function W : R, x R — R with

L(u)(s.y) = exp(-V(s.y)),

C-L-Exponent.

Let u be the distribution of the random vector (D, A), then we call x, the
left endpoint of A, thatis xo = inf{x € [0, ®0) : FA(X) > 0}. In the
following we only consider the case xo = 0 and F4(0) = 0.




Some Harmonic Analysis
O000000e

Lévy-Khintchine Representation

Theorem 6

A function ¢ : R, xR, — R is the C-L-Transform of a ¥ -infinite divisible
probability measure u, if and only if there exists an a € R, and a Radon
measure n on R x [0, oo] with 1({(0,0)}) = 0 and

f min(1, t)n(dt, [0, 0]) < o0 and p(Ry X (¥, ]) < co Yy > 0,
Ry

such that W := —log(y) has the representation
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Lévy-Khintchine Representation

Theorem 6

A function ¢ : R, xR, — R is the C-L-Transform of a ¥ -infinite divisible

probability measure u, if and only if there exists an a € R, and a Radon
measure n on R x [0, oo] with 1({(0,0)}) = 0 and

f min(1, t)n(dt, [0, 0]) < o0 and p(Ry X (¥, ]) < co Yy > 0,
Ry

such that W := —log(y) has the representation
as —|—f f 1-e 1, (x))n(dt,dx) Yy >0
Y(s,y) = R, [0,00]( % )
00 Yy <0.

and s > 0. We write u ~ [a,n] and call nj the Lévy measure of .
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Let (W;, J;) be i.i.d. R, x R-valued random vectors.

Then there exist a,, b, > 0 such that
a,,ZW,,bn\/J, (D,A) as n — oo with (D, A) ~ [0,7]

if and only if
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Characterization of the sum-max domain of attraction

Let (W;, J;) be i.i.d. R, x R-valued random vectors.

Then there exist a,, b, > 0 such that
a,,ZW,,bn\/J, (D,A) as n — oo with (D, A) ~ [0,7]

if and only if

v
n - Pa,wp,) — 1 asn— oo.

“Un AN U means:
#n(B) = u(B) as n — oo for all B € B(R% ) with (4B) = 0 that are
bounded away from (0, 0).
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Characterization of the sum-max domain of attraction

Properties 1

Let (D1, A1) be ii.d. copies of the limit (D, A) in Theorem 7 above. Then
there exist0 < 8 < 1 and a > 0 such that

(D1, A1)V -+ V (Dp, An) 2 (0D, n*/?A)

foralln > 1. (D,A) is called sum-max stable.
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Characterization of the sum-max domain of attraction

Properties 1

Let (D1, A1) be ii.d. copies of the limit (D, A) in Theorem 7 above. Then
there exist 0 < B < 1 and a > 0 such that

(D1, A1)V -+ V (Dp, An) 2 (0D, n*/?A)

foralln > 1. (D,A) is called sum-max stable.

| \

Properties 2

Let n be the Lévy measure of (D, A). Moreover, let E = diag(1/B,1/a) so
that t € = diag(t~*/#, t~1/*). Then we have for all Borel sets B c R?.
which are bounded away from (0, 0) that

t-n(B) =n(t"EB) forallt> 0.
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Representation of the Lévy measure

Theorem 8

Let n be the Lévy measure of (D, A), where D is 8 sum-stable (0 <3 < 1)
and A has an a-Fréchet distribution (@ > 0). Then there exists
C > 0,K >0 and w € M*(R) with

f x* w(dx) < oo
0
such that

n(dt, dx) = eo(dt)Cax " dx + 1(g ey, (1, X) - (t°w) (aX)KBt P dit.
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Representation of the Lévy measure

Theorem 8

Let n be the Lévy measure of (D, A), where D is 8 sum-stable (0 <3 < 1)
and A has an a-Fréchet distribution (@ > 0). Then there exists
C > 0,K >0 and w € M*(R) with

f x* w(dx) < oo
0

such that

n(dt, dx) = eo(dt)Cax " dx + 1(g ey, (1, X) - (t°w) (aX)KBt P dit.

Corollary 9

| \

The random variables A and D are independent if and only if we have
C > 0 and w = ¢ Iin the representation of the Lévy measure.

\
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Representation of the Lévy measure

Example 10

Recall that the Lévy measure of (D, A) is given by

n(dt, dx) = eo(dt) Cax " dx+ (g, (£ X)- (/" w) (aX) KB # .

Assume that J; = W;. Then
anZW,,an\/W, (D,A) as n — oo with (D, A) ~ [0,7]

where the Lévy measure 7 is given by




Joint Sum-Max Stability
(o] lo}

Representation of the Lévy measure

Example 10

Recall that the Lévy measure of (D, A) is given by

n(dt, dx) = eo(dt) Cax " dx+ (g, (£ X)- (/" w) (aX) KB # .

Assume that J; = W;. Then
anZW,,an\/W, (D,A) as n — oo with (D, A) ~ [0,7]

where the Lévy measure 7 is given by

n(dt’ dX) = 1(0,00)>(]R+(t’ X) ' gt(dX)Kﬁt_ﬂ_ldt,

thatis C = 0, = B and w = &;. — complete dependence




nalysi Joint Sum-Max Stability ~ CTRM Scaling Limi of the limit and gc

[e]e]e/e] }

Theorem 11 (J;-convergence of the joint sum-max process)

Assume that there exist a, > 0, b, > 0 with

n n
(anZ Wi, b, \/Ji) — (D,A) asn — oo.

i=1 i=1

Then
Let) Let] ;

{[a(c) > wib(e)\/ J,-]} = {(D(1), A(t)))np @S C — oo,

i=1 i=1 >0

where the C-L-Transform of the fdds of{(D(t), A(t))},., are given by

=1

S:=(Stse0sSm)s Y i= (Va5 eeer Ym)-

erning equatior
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[e]e]e/e] }

Theorem 11 (J;-convergence of the joint sum-max process)

Assume that there exist a, > 0, b, > 0 with

n n
(anZ VV,',b,-,\/J,-) — (D,A) asn — oo.
i=1 i=1

Then
Let] Let] 3
{[a(c) Z W, b(c) v J,-]} =5 {(D(t), A(t))},.o @S € — oo,

where the C-L-Transform of the fdds of{(D(t), A(t))},., are given by

=1

S:=(Stse0sSm)s Y i= (Va5 eeer Ym)-

erning equatior

> {D(t)}., B - stable subordinator.

» {A(t)}., F-Extremal process, P{A(t) < x}= F(x)"and F is the CDF

of an a-Fréchet distribution.



CTRM Scaling Limit

Limit Theorem for the CTRM

Theorem 12

Assume (W, J))ien are i.i.d. R, x R-valued rv’s and there exist a,, b, > 0
such that

N Plaw.p,)(B) — n(B) as n — co.
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Limit Theorem for the CTRM

Theorem 12

Assume (W, J))ien are i.i.d. R, x R-valued rv’s and there exist a,, b, > 0
such that

N Plaw.p,)(B) — n(B) as n — co.

Then

N(ct)
{ v J,} = [A(E(1)-)t} _, asc —

where b(c) € RV(-a/B).




CTRM Scaling Limit

Limit Theorem for the CTRM

Theorem 12

Assume (W, J))ien are i.i.d. R, x R-valued rv’s and there exist a,, b, > 0
such that

N Plaw.p,)(B) — n(B) as n — co.

Then

N(ct)
{ v J,} = [A(E(1)-)t} _, asc —

where b(c) € RV(-a/B).

where
» N(t)=max{n=0: Y7 W<t}
» {A(t)},.o @-Fréchet extremal process,
» E(t) :=inf{x > 0: D(x) > t} inverse of stable subordinator.



Distribution of the limit and governing equations
[ Jolelele}

Distribution of the limit

Theorem 13

Assume (W;, Jj)ien are i.i.d. R4 x R-valued random vectors and

v
N Pa,w,0,0)(B) — n(B) asn — co.
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Distribution of the limit

Theorem 13

Assume (W;, Jj)ien are i.i.d. R4 x R-valued random vectors and

v
N Pa,w,0,0)(B) — n(B) asn — co.

Then
PA(E()-)" < x| = fowfo ®p(t - U, ©0)P(p(s).a(s))(du. [0, x])ds

is the distribution function of the limit {A(E(t)-)"
t>0
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[ Jolelele}

Distribution of the limit

Theorem 13

Assume (W;, Jj)ien are i.i.d. R4 x R-valued random vectors and

v
N P(a,w.b,0)(B) — n(B) asn — oo.

Then
00 t
PA(E()-)" < x| = fo fo ®p(t - U, ©0)P(p(s).a(s))(du. [0, x])ds
is the distribution function of the limit {A(E(l‘)—)*’}I> o, andforall£ >0 we have

_1V¥p(é
EV(ExX)

fw e “'P{A(E(t)-)" < x}dt

0

> dp(dt) is the (usual) Lévy measure of {D(t)},o
> W is the C-L-Exponent of {(D(t), A(t))} 0

> Wp denotes the (usual) Laplace-Exponent of {D(t)} -
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Example

(Wi, Ji)ien i.i.d. as (W, J) with
» W € DONA(D), D -stable (0 < g < 1) with E(e75P) = exp(-5P).
» J:= WYYZ with Z y-Fréchet, Z and W independent.

Then we have

(7Y W0\ 3) = (0.4) ~ [0.1]
i=1 i=1

as n — oo, where the Lévy measure is

n(dt, dx) = (tl/“/PZ)(dx) tF 1t

(1 B)

that is we have C = 0, @ = By and w = P; in the representation of the
Lévy measure.
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Example

The C-L exponent in this example is given by
V(g x) = (E+x7)
If we set G(t,x) = P{A(E(t)-)" < x} we have

o 51

Inverting the Laplace transform yields

_ ! —)(’“Yu""ﬁ_l (t_ )'B
6ltx) = [ e e Ta-pH™

Observe that
A(E(t)-)" £ (1B)"Y

where B has a g-distribution, Y is standard y-Fréchet, independent of B.
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Example

Moreover
(E+x7YPL(G(x))(E) =&

and an application of the inverse Laplace transform on both sides yields
the governing equation

t58
r1-p)

9 [e"76(t.x)| = ™

where we have used that
> L(Bff(s))(t) = tAL(f(s))(t) (Riemann-Liouville fractional derivative)
» L(e ®f(s))(t) = L(f(s))(t + a).

G(-, x) is called the mild solution of this equation.
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