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How does one measure dependence in a stochastic process?

Let X =
(
Xn, n ∈ Z

)
be a stationary process. How long is the

memory in this process?

If EX 2
n <∞ we can use the covariance function.

In heavy tailed processes we often have

P(|Xn| > x) ∈ Reg(−α) as x →∞, some α > 0.



Covariances are not defined if α < 2.

Even if covariances are defined, should we use them?

The key question: why do we want to measure memory?

The original motivation, probably, came from statistics.

How should we modify a statistical procedure designed for
i.i.d. observations to account for dependent data?



Question 1: how does dependence change the behaviour of
sample statistics?

Question 2: do covariances provide a way to answer Question 1?

The most important statistics are

the sum of the observations;

the largest observation.



Let Sn = X1 + . . .+ Xn, n ≥ 1 be the partial sums;

Mn = max(X1, . . . ,Xn), n ≥ 1 the partial maxima.

A useful notion of dependence in a stationary process X should
have an impact on the “size” of Sn and Mn.

What is the “size” of the partial sums and maxima as a function of
n?



Balanced regular variation assumption:

the random variable |X0| is regularly varying with exponent α;

for some 0 ≤ p, q ≤ 1, p + q = 1,

lim
x→∞

P(X0 > x)

P(|X0| > x)
= p, lim

x→∞

P(X0 < −x)

P(|X0| > x)
= q .

Suppose first that (Xn) are i.i.d.

What is the “size” of the partial sums and partial maxima with no
memory?



The quantile sequence:

an = inf
{
x > 0 : P(|X0| > x) ≤ 1/n

}
, n = 1, 2, . . . .

The sequence (an) is Reg(1/α).

Case 1: 0 < α < 1.

Sn/an ⇒ Zα, a standard α-stable random variable, with
skewness p.

Mn/an ⇒ Yα, an α- Fréchet random variable with scale p1/α.



Case 2: 1 < α < 2.

Sn/n→ EX0 and (Sn − nEX0)/an ⇒ Zα, a standard zero
mean α-stable random variable, with skewness p.

Mn/an ⇒ Yα, an α- Fréchet random variable with scale p1/α.

Case 3: α > 2.

Sn/n→ EX0 and (Sn − nEX0)/
√
n⇒ G , a zero mean normal

random variable, with the same variance as X0.

Mn/an ⇒ Yα, an α- Fréchet random variable with scale p1/α.



If α > 2 the variance is finite.

Covariances carry information about Sn.

Var(Sn) =
n∑

i=1

n∑
j=1

Ri−j

=
n−1∑

i=−(n−1)

(n − |i |)Ri

∼ n
∞∑

i=−∞
Ri , n→∞

if
∞∑

i=−∞
|Ri | <∞ .



Sn√
Var(Sn)

forms a tight sequence.

If the covariances are summable, then

Sn√
n

forms a tight sequence.

This does NOT guarantee that n1/2 is the distributional
“size” of Sn.

This does not say what is the distribution of Sn√
Var(Sn)

.



Even if the variance is finite, covariances carry very little
information about partial maxima.

If X is a stationary Gaussian sequence with standard normal
marginals, then

Mn√
2 log n

→ 1 in probability

as long as Rn → 0 as n→∞.



The extremal index is much more informative than covariances for
the “size” of the partial maxima.

Let X =
(
Xn, n ∈ Z

)
be a stationary process with a continuous

marginal distribution F .

Let Y =
(
Yn, n ∈ Z

)
be an i.i.d. sequence with the same marginal

distribution F .



Suppose that there is θ > 0 with the property:

for every τ > 0 there is a sequence (un) such that

P
(

max
i=1,...,n

Yi ≤ un
)
→ e−τ ,

P
(

max
i=1,...,n

Xi ≤ un
)
→ e−θτ .

Then θ is the extremal index of X. We always have θ ≤ 1.



We have both

P
(

max
i=1,...,[nθ]

Yi ≤ un
)
→ e−θτ ,

P
(

max
i=1,...,n

Xi ≤ un
)
→ e−θτ .

Dependence measured through extremal index effectively reduces
the sample size.

Covariances do not provide this type of information



If α < 2, variance does not exist.

Covariances cannot be used.

Some substitutes for covariances have been suggested.

In the stable case covariation and codifference have been used.

Typically, substitutes for covariance carry even less information
than covariance does.



However: codifference is useful to characterize mixing in infinitely
divisible processes.

Codifference can be defined for any stationary process X.

τn = Ee i(Xn−X0) − Ee iXnEe−iX0

= Ee i(Xn−X0) −
∣∣Ee iX0

∣∣2, n ∈ Z ,
τ−n = τ̄n .



For any mixing process

lim
n→∞

(
Ee i(θ1Xn+θ2X0) − Ee iθ1XnEe iθ2X0

)
= 0

for any real θ1, θ2.

In particular, mixing implies τn → 0 as n→∞.

If X is a stationary infinitely divisible process with marginal Lévy
measure not charging the set

{
2πk , k ∈ Z

}
, then

τn → 0 as n→∞ implies mixing.



Mixing and mixing coefficients

For any stationary stochastic process X =
(
Xn, n ∈ Z

)
one can use

ergodic properties and strong mixing to measure dependence.

The process X is mixing if for any k ≥ 1 and Borel sets
C ,D ∈ Rk ,

P
(
(X1, . . . ,Xk) ∈ C , (Xn+1, . . . ,Xn+k) ∈ D

)
→P

(
(X1, . . . ,Xk) ∈ C

)
P
(
(X1, . . . ,Xk) ∈ D

)
.



The process X is ergodic if for any k ≥ 1 and Borel sets
C ,D ∈ Rk ,

1

n

n∑
i=1

P
(
(X1, . . . ,Xk) ∈ C , (Xi+1, . . . ,Xi+k) ∈ D

)
→P

(
(X1, . . . ,Xk) ∈ C

)
P
(
(X1, . . . ,Xk) ∈ D

)
.

Both properties are asymptotic properties and do not provide
“numerical” measures of dependence.



Numerical measures can be obtained by taking “worst” sets at
a distance n.

This leads to notions of strong mixing.

All notions of strong mixing are different ways of quantifying
the proximity to independence of the past and future.

Denote

F0
−∞ = σ(Xk , k ≤ 0), F∞n = σ(Xk , k ≥ n), n ≥ 1 .



The α-mixing coefficient

αX (n) = sup
A∈F0

−∞,B∈F∞n

∣∣P(A ∩ B)− P(A)P(B)
∣∣ ∈ [0, 1/4] .

The β-mixing coefficient

βX (n) =
1

2
sup
I,J

I∑
i=1

J∑
j=1

∣∣P(Ai ∩ Bj)− P(Ai )P(Bj)
∣∣ ∈ [0, 1] ,

the supremum is over all finite partitions I = {A1, . . . ,Ai} and
J = {B1, . . . ,BJ} of Ω into F0

−∞ sets and into F∞n sets.



The φ-mixing coefficient

φX (n) = sup
A∈F0

−∞,P(A)>0,B∈F∞n

∣∣P(B|A)− P(B)
∣∣ ∈ [0, 1] .

Ordering:

2αX (n) ≤ βX (n) ≤ φX (n) .

If αX (n)→ 0 (βX (n)→ 0, φX (n)→ 0)

then X is α-mixing (β-mixing, φ-mixing).



The sequences
(
αX (n)

)
,
(
φX (n)

)
,
(
φX (n)

)
are numerical

measures of dependence.

It is not easy to connect these sequences to the distribution of
the statistics of the observations.

There are some connections to approximate normality of the
partial sums

Weak connections to the partial maxima.



Long range dependence in heavy tailed processes

Suppose a stationary process X =
(
Xn, n ∈ Z

)
has a finite

variance,

It is common to define long range dependence (LRD) via second
order characteristics. One can look at:

rate of decay of covariances;

rate of increase of the variance of the partial sums;

the behaviour of the spectrum at the origin.



1. Rate of decay of covariances

A common requirement for LRD is

∞∑
n=−∞

|RX (n)| =∞ .

Sometimes a more specific requirement is imposed:

(
RX (n)

)
is regularly varying with exponent −d , 0 < d < 1.

RX (n) = n−dL(n), L slowly varying .



2. Rate of increase of the variance of partial sums

A common requirement for LRD is

lim sup
n→∞

Var (X1 + . . .+ Xn)

n
=∞ .

Sometimes a more specific requirement is imposed:(
Var (X1 + . . .+ Xn)

)
is regularly varying

with exponent 2− d , 0 < d < 1.



3. Behaviour of the spectrum at the origin

The spectral measure of a process X is a is a symmetric measure
FX on (−π, π] such that

RX (n) =

∫
(−π,π]

e inx FX (dx)

=

∫
(−π,π]

cos nx FX (dx), n = 0, 1, . . . .

If a spectral density exists, it is denoted by fX .



A common requirement for LRD is

a spectral density exists, and is unbounded near 0.

Sometimes a more specific requirement is imposed:

a spectral density exists, and is regularly varying at 0

with exponent −(1− d), 0 < d < 1.



1 Regular variation of the covariances implies regular variation
of the variance of the partial sums.

2 Regular variation of the spectral density implies regular
variation of the variance of the partial sums.

3 Regular variation of the variance of the partial sums does not
imply anything.



Is regular variation of the covariances equivalent to regular
variation of the spectral density?

The answer is “no” without additional assumptions on the slowly
varying functions.

The general definition of a slowly varying function: a
measurable function L : [0,∞)→ (0,∞) is slowly varying if for
each b > 0

lim
x→∞

L(bx)

L(x)
= 1 .



A function of the Zygmund class: a measurable function
L : [0,∞)→ (0,∞) belongs to the Zygmund class if for any δ > 0
both

the function
(
xδg(x), x > 0

)
is eventually non-decreasing,

the function
(
x−δg(x), x > 0

)
is eventually non-increasing.

Any function of the Zygmund class is slowly varying (but not vice
versa).



Theorem If the covariances satisfy

RX (n) = n−dL(n), n = 1, 2, . . . , 0 < d < 1 ,

and the slowly varying function L belongs to the Zygmund class,
then a spectral density exists and

fX (x) ∼ cd |x |−(1−d)L
(
1/|x |

)
, x → 0 .



Theorem Suppose that the spectral density satisfies

fX (x) = |x |−(1−d)L
(
1/|x |

)
, x → 0, 0 < d < 1 ,

and the function L belongs to the Zygmund class. Assume also
that the spectral density has a bounded variation on the interval
(ε, π) for any 0 < ε < π. Then the covariance function satisfies

RX (n) ∼ c−1
d n−dL(n), n→∞ .



Second-order notions of LRD provide limited information on
the partial sums.

They provide even less information on the partial maxima.

For heavy tailed processes second-order notions may not even
be well defined.

Alternative ways to look at LRD are needed.

It is useful to look at LRD as at a phase transition.



Long range dependence as a phase transition

Suppose that(
Pθ, θ ∈ Θ

)
: laws of a stationary stochastic process

X =
(
Xn, n ∈ Z

)
.

The one-dimensional marginal distributions of the process X
do not change significantly as θ varies.

The behaviour of important functionals of X may change as θ
varies.



Typical important functionals are: partial sums and partial maxima.

Typical examples of families of laws
(
Pθ, θ ∈ Θ

)
: infinite moving

averages and infinitely divisible processes.

Θ0: the subset of Θ corresponding to sequences of i.i.d. random
variables.

Θ0 may or may not be a singleton.



LRD is a phase transition between two parts of the parameter
space: Θ = Θ1 ∪Θ2.

Θ0 ⊂ Θ1, and for θ ∈ Θ1 the functional of interest behaves
similarly to the i..i.d. case, θ ∈ Θ0.

For θ ∈ Θ2, there is a change “in nature and the order of
magnitude” in the behaviour of the functional.



Model 1: infinite moving averages

Xn =
∞∑

j=−∞
ϕn−j εj =

∞∑
j=−∞

ϕj εn−j , n = 1, 2, . . . ,

(εn) are i.i.d. noise variables, or innovations,

(ϕn) are deterministic coefficients.



Conditions for convergence:

Suppose that E |ε|p <∞ for some p > 0.

Case 1 If 0 < p ≤ 1, then the condition

∞∑
j=−∞

|ϕj |p <∞ (1)

is sufficient for convergence of the series X.



Case 2 If 1 < p ≤ 2 and Eε = 0, then condition (1) is sufficient
for convergence of the series X.

If Eε 6= 0, then (1) and the condition

the series
∞∑

j=−∞
ϕj converges (2)

are sufficient for convergence of the series X.



Case 3 If p > 2 and Eε = 0, then the condition

∞∑
j=−∞

ϕ2
j <∞ (3)

is sufficient for convergence of the series X.

If Eε 6= 0, then conditions (3) and (2) are sufficient for
convergence of the series X.

The parameter θ is a sequence of coefficients (ϕj)



Stationary infinitely divisible processes

A stochastic process X =
(
Xn, n ∈ Z

)
is infinitely divisible if for

every n = 1, 2, . . . there is a process Y =
(
Yn, n ∈ Z

)
such that

(
Xn, n ∈ Z

) d
=

 n∑
j=1

Y
(j)
n , n ∈ Z

 ,

where Y(j) =
(
Y

(j)
n , n ∈ Z

)
are i.i.d. copies of Y =

(
Yn, n ∈ Z

)
.



A stationary infinitely divisible process X is characterized by two
parameters:

1 The mean µ and the covariance function R of a stationary
Gaussian process.

2 A σ-finite shift invariant measure ν on RZ such that∫
RZ

min(1, x2
0 ) ν(dx) <∞ .

ν: the Lévy measure of X.

Here x =
(
. . . , x1, x0, x1, x2, . . .

)
.



The joint characteristic function of X: with

R(T ) =
{

x ∈ RT : x(t) = 0 for all but finitely many t ∈ T
}
,

E exp

{
i
∑
t∈T

θ(t)X (t)

}

= exp

{
−1

2
θTRθ + ib(e,θ) +

∫
RZ

(
e i(θ,x) − 1− i

(
θ, [[x]]

))
ν(dx)

}
.

e = (. . . , 1, 1, 1, . . .) .



Truncation:

for x ∈ R,

[[x ]] =


x if |x | ≤ 1
−1 if x < −1
1 if x > 1

;

for a function x = (x(t), t ∈ R),

[[x]] =
(
[[x(t)]], t ∈ R

)
.



Phase transitions in behaviour of the partial sums

Let X =
(
Xn, n ∈ Z

)
be a stationary process.

the partial sum sequence

Sn = X1 + . . .+ Xn, n = 1, 2, . . . ,

the partial sum process

Sn(t) = S[nt], t ≥ 0 .



Case 1: the finite variance case

Let X =
(
Xn, n ∈ Z

)
be i.i.d. zero mean, finite variance σ2.

Central Limit Theorem

1

n1/2
Sn ⇒ σG , G ∼ N(0, 1) .

Invariance Principle(
1

n1/2
Sn(t), t ≥ 0

)
⇒
(
σB(t), t ≥ 0

)
weakly in the J1 topology on D[0,∞).

B is the standard Brownian motion.



Let X =
(
Xn, n ∈ Z

)
be stationary, zero mean, finite variance.

Indications of LRD from the point of view of partial sums:

The order of magnitude an of Sn is different from n1/2.

The limiting process Y in(
1

an
Sn(t), t ≥ 0

)
⇒
(
Y (t), t ≥ 0

)
is different from a Brownian motion.



The limiting process Y in the functional limit theorem must have
two properties.

It must be self-similar: for any c > 0,(
Y (ct), t ≥ 0

) d
=
(
cHY (t), t ≥ 0

)
, some H ≥ 0 .

It must have stationary increments: for any c > 0,(
Y (t + c)− Y (c), t ≥ 0

) d
=
(
Y (t), t ≥ 0

)
.



Fractional Brownian motion is the only self-similar Gaussian
process with stationary increments.

It has Hurst exponent 0 < H < 1.(
BH(t), t ≥ 0

)
is a zero mean Gaussian process with

incremental variance

E
(
BH(t)− BH(s)

)2
= |t − s|2H , t, s ∈ R .

There exist other finite variance self-similar processes with
stationary increments.



A finite variance infinite moving average model:

Xn =
∞∑

j=−∞
ϕn−j εj , n = 1, 2, . . . ,

(εn) i.i.d. zero mean, finite variance σ2
ε .

∞∑
j=−∞

ϕ2
j <∞ .

How do the partial sums behave?



Theorem Suppose that

∞∑
j=−∞

|ϕj | <∞ ,

aϕ =
∞∑

j=−∞
ϕj 6= 0 .

Then (
n−1/2Sn(t), t ≥ 0

)
⇒
(
aϕσεB(t), t ≥ 0

)
as n→∞

weakly in the J1 topology on D[0,∞).

There is no LRD in this case



Balanced regular variation assumption: for some regularly
varying with exponent −β ∈ (−1,−1/2) sequence (bn)

lim
n→∞

ϕn

bn
= c+, lim

n→∞

ϕ−n
bn

= c− ,

c+, c− ≥ 0, not both zero.

Theorem With H = 3/2− β,(
1

n3/2bn
Sn(t), t ≥ 0

)
⇒
(
cϕσεBH(t), t ≥ 0

)
weakly in the J1 topology on D[0,∞).

This process has LRD



Similarly, if the coefficients are summable, but aϕ = 0:

regular variation of coefficients with −β ∈ (−3/2,−1) leads
to a Fractional Brownian limit with H = 3/2− β.

The process is still long range dependent.

The rate of decay of coefficients mostly determines the
memory in moving average processes.



Memory in stationary infinitely divisible processes

LRD in stationary infinitely divisible processes is strongly related to
ergodic-theoretical properties of the Lévy measures.

Ergodic-theoretical setup

(
E , E ,m

)
a σ-finite measure space.

φ : E → E one-to-one, both φ and φ−1 measurable.

φ preserves the measure m.



Dissipative and conservative maps

A set W ∈ E is called wandering if
(
φ−n(W ), n = 1, 2, . . .

)
are

pairwise disjoint mod(m).

Any set of measure 0 is wandering.

A map φ on
(
E , E ,m

)
is conservative if it does not admit a

wandering set of a positive measure.



Example

Let E = Z and m the counting measure.

The right shift φ(x) = x + 1 is measure preserving.

The set W = {0} is a wandering set of a positive measure.

Hence, the right shift is not conservative.



Hopf decomposition: there is a partition of E into φ-invariant
sets C(φ) and D(φ) such that

(i) there is no wandering set of a positive measure which is a
subset of C(φ);

(ii) there is a wandering set W such that D(φ) = ∪∞n=−∞φ
n(W )

mod(m).



Terminology:

C(φ): the conservative part of φ.

D(φ): the dissipative part of φ.

A map φ is dissipative if C(φ) = ∅ mod(m).

A map φ is conservative if D(φ) = ∅ mod(m).

Examples The right shift on Z is dissipative.
Any map preserving a finite measure is conservative.



Let X =
(
Xn, n ∈ Z

)
be a stationary infinitely divisible process.

Assume no Gaussian component: R = 0.

The left shift:

φ
(
(. . . , x−1, x0, x1, . . .)

)
= (. . . , x0, x1, x2, . . .)

preserves the Lévy measure ν.

The memory in the process X is strongly affected by whether φ is
dissipative or conservative.



It is easier to analyze the situation if X is represented as

Xn =

∫
E
f ◦ φn(s)M(ds), n ∈ Z .

M a homogeneous infinitely divisible random measure on E .

Control measure m.

The local 1-dimensional Lévy measure ρ.

f is integrable with respect to M.

φ preserves the measure m.



The Lévy measure of the process X is

ν = (m × ρ) ◦ H−1 ,

with H : E × R→ RZ given by

H(s, x)(n) = xf ◦ φn(s), n ∈ Z, for s ∈ E , x ∈ R.

The ergodic-theoretical properties of the map φ with respect to the
control measure m translate into the properties of the left shift
with respect to the Lévy measure ν.



A typical example of a stationary infinitely divisible process
corresponding to a dissipative map is a moving average process

Xn =

∫ ∞
−∞

f (s − n)M(ds), n ∈ Z, m = Leb.

Dissipative maps contribute to short memory of stationary
infinitely divisible processes.



Theorem Let X be a finite variance stationary infinitely divisible
process. Suppose that the map φ is dissipative, and that∫

E
|f (s)|

∞∑
k=−∞

|f | ◦ φk(s)m(ds) <∞ .

Then (
n−1/2Sn(t), t ≥ 0

)
⇒
(
σXB(t), t ≥ 0

)
as n→∞

in finite-dimensional distributions, where

σ2
X =

∫ ∞
−∞

x2 ρ(dx)

( ∞∑
k=−∞

∫
E
f (s)f ◦ φk(s)m(ds)

)
.



A dissipative map φ and a “small” kernel f lead to short
memory from the point of view of partial sums if σX 6= 0.

If the kernel f is not sufficiently “small”, or if σX = 0, one
can have long memory.

In the limit one will obtain a Fractional Brownian motion with
H 6= 1/2.

If the map φ is conservative, it is hard to have short memory
from the point of view of partial sums even if f is “small”.



Theorem Assume that the map φ in is conservative, and that
f ≥ 0 m-a.e. Unless f = 0 m-a.e., there is no σ ≥ 0 such that(

n−1/2Sn(t), t ≥ 0
)
⇒
(
σB(t), t ≥ 0

)
as n→∞

in terms of convergence of the finite-dimensional distributions.



Example of a process with a conservative map

(pij , i , j ∈ Z): transition probabilities of an irreducible null
recurrent Markov chain on Z.

(πi , i ∈ Z): a σ-finite invariant measure.

m(A) =
∑
i∈Z

πiPi

(
the trajectory of the Markov chain is in A

)
for a measurable A of E = ZZ: a σ-finite measure on E , invariant
under the left shift φ on E .



The kernel:

f (x) = 1(x0 = 0) for x = (. . . , x−1, x0, x1, x2, . . .) ∈ ZZ.

First return time:

τ1 = τ1(x) = inf
{
n ≥ 1 : xn = 0

}
.

How fast the Markov chain returns determines the length of the
memory of the infinitely divisible process!



Theorem Assume that P0(τ1 > n), n = 1, 2, . . . is regularly
varying with exponent −β ∈ (−1, 0). Then

((
P0(τ1 > n)

n

)1/2

Sn(t), t ≥ 0

)
⇒
(
cβBH(t), t ≥ 0

)
as n→∞

in the Skorohod J1 topology on D[0,∞), where BH is the standard
Fractional Brownian motion with H = (1 + β)/2,



Long memory with respect to partial sums when the variance
is infinite

Let X =
(
Xn, n ∈ Z

)
be i.i.d. symmetric, regularly tails,

0 < α < 2.

The quantile sequence:

an = inf
{
x > 0 : P(X0 > x) ≤ 1/n

}
, n = 1, 2, . . . .

Central Limit Theorem

1

an
Sn ⇒ Yα, symmetric α-stable.



Invariance Principle(
1

an
Sn(t), t ≥ 0

)
⇒
(
Yα(t), t ≥ 0

)
weakly in the J1 topology on D[0,∞).

Yα: a symmetric symmetric α-stable Lévy motion.



A heavy tailed infinite moving average model:

Xn =
∞∑

j=−∞
ϕn−j εj , n = 1, 2, . . . .

(εn, n ∈ Z): i.i.d. symmetric ,

balanced regularly varying tails, 0 < α < 2,

the coefficients (ϕn, n ∈ Z) satisfy

∞∑
n=−∞

|ϕn|α−ε <∞ for some 0 < ε < α .



Short memory with respect to partial sums

Theorem If 1 < α < 2, assume that the coefficients are
absolutely summable. Then(

a−1
n Sn(t), t ≥ 0

)
⇒ (c aϕYα(t), t ≥ 0) as n→∞

in finite dimensional distributions, aϕ =
∑
ϕi .

The memory is short unless aϕ = 0.



Long memory with respect to partial sums

Theorem Let 1 < α < 2, and (ϕi ) balanced regularly varying with
−1 < β < −1/α. Then,(

1

nanbn
Sn(t), t ≥ 0

)
⇒
(
cX (L)(t), t ≥ 0

)
weakly in the Skorohod J1 topology on D[0,∞).

X(L): linear fractional symmetric α-stable stable motion,
H = 1 + 1/α + β.

It is a moving average process.



A heavy tailed infinitely divisible model: assume α-stable.

Again: a dissipative map φ tends to lead to short memory.

Theorem If 1 < α < 2, assume that∫
E
|f (s)|

( ∞∑
k=−∞

|f | ◦ φk(s)

)α−1

m(ds) <∞ .

Then (
n−1/αSn(t), t ≥ 0

)
⇒ (b Yα(t), t ≥ 0) as n→∞

in finite-dimensional distributions.



Unless b = 0, the memory with respect to partial sums is
short.

If 1 < α < 2, only “smallness ” of kernel f is required.

There exist processes with dissipative map φ and long memory.

A whole class of examples is dilated fractional stable noises of
Pipiras and Taqqu.



If the map φ is conservative, it is hard for X to have short memory
with respect to partial sums.

Example of a process with a conservative map

The Markov chain setup as above.

The random measure M is now symmetric α-stable.

The limit is no longer a Linear Fractional Stable motion



Theorem Assume that P0(τ1 > n), n = 1, 2, . . . is regularly
varying with −β ∈ (−1, 0). Then for (cn) regularly varying with
exponent (1− β)/α + β,(

c−1
n Sn(t), t ≥ 0

)
⇒
(
cα,βYα,β(t), t ≥ 0

)
as n→∞

in the Skorohod J1 topology on D[0,∞), where Yα,β is the
β-Mittag-Leffler Fractional symmetric α-stable motion.

The limit is self-similar with H = (1− β)/α + β.



(
Sβ(t), t ≥ 0

)
a β-stable subordinator.

Its inverse

Mβ(t) = S←β (t) = inf
{
u ≥ 0 : Sβ(u) ≥ t

}
, t ≥ 0 ,

is the Mittag-Leffler process.

ν(dx) = (1− β)x−β dx ,

a σ-finite measure on [0,∞).



Mα,β: a symmetric α-stable random measure on Ω′ × [0,∞) with
control measure P ′ × ν,

The β-Mittag-Leffler Fractional symmetric α-stable motion:

Yα,β(t) =

∫
Ω′×[0,∞)

Mβ

(
(t − x)+, ω

′)Mα,β(dω′, dx), t ≥ 0 .

It is self-similar with H = (1− β)/α + β.



Long range dependence with respect to partial maxima

Long memory with respect to partial maxima differs from long
memory with respect to partial sums.

With the same marginal tails, the partial maxima grow the
fastest when the sequence is i.i.d.

The long range dependence can only mean smaller partial
maxima.



In the Gaussian case partial maxima are barely affected by
correlations.

Theorem Let X = (Xn, n ∈ Z) be 0 mean variance 1 stationary
Gaussian process with RX (n)→ 0. Then

1√
2 log n

Mn → 1 in probability as n→∞.

An even more precise result can be obtained if RX (n)/ log n→ 0.



Partial maxima for stationary symmetric α-stable processes

The nature of the map φ determines whether long range
dependence is present or not.

If the map φ is dissipative, the memory is short.

If the map φ is conservative, the memory is long.



Theorem Suppose that the map φ is dissipative. Then(
n−1/αMn(t), t ≥ 0

)
⇒ (c YΦα(t), t ≥ 0) as n→∞,

c > 0, in the sense of finite-dimensional distributions.

YΦα : the extremal process corresponding to the standard Fréchet
distribution.



Theorem Suppose that the map φ is conservative. Then

n−1/α max
i=1,...,n

|Xi | → 0 in probability

as n→∞.

With different normalization one can obtain different interesting
limits in the functional extremal theorem.


