Locally stationary Hawkes processes

François Roueff LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay

Talk based on Roueff, von Sachs, and Sansonnet [2016]

Outline

Introduction

Non-stationary Hawkes processes

Locally stationary Hawkes processes

Numerical experiments

References

Introduction

Non-stationary Hawkes processes

Locally stationary Hawkes processes

Numerical experiments

References

Hawkes processes and applications

A Hawkes process is a self-exciting point process with linear conditional intensity (see Hawkes [1971]).

• •	• •	•	• •	• •	•	• • •	•	•
	· · ·	· ·					· •	

Hawkes processes and applications

A Hawkes process is a self-exciting point process with linear conditional intensity (see Hawkes [1971]).

.

Applications of this model include:

- ▷ seismology Ogata [1988],
- ▶ genomics Reynaud-Bouret and Schbath [2010],
- ▶ neuroscience Reynaud-Bouret et al. [2013],
- finance: microstructure dynamics for high-frequency data Bowsher [2007], Bacry et al. [2015, 2013]...

▷ A point process *N* is identified with a random measure with discrete support: $N = \sum_k \delta_{T_k}$, where δ_t is the Dirac measure at point *t*.

- ▷ A point process *N* is identified with a random measure with discrete support: $N = \sum_k \delta_{T_k}$, where δ_t is the Dirac measure at point *t*.
- \triangleright We will consider point processes on \mathbb{R}^{ℓ} (often with $\ell = 1$).

- ▷ A point process *N* is identified with a random measure with discrete support: $N = \sum_k \delta_{T_k}$, where δ_t is the Dirac measure at point *t*.
- \triangleright We will consider point processes on \mathbb{R}^{ℓ} (often with $\ell = 1$).
- ▷ We do not consider marked or multivariate point processes.

- ▷ A point process *N* is identified with a random measure with discrete support: $N = \sum_k \delta_{T_k}$, where δ_t is the Dirac measure at point *t*.
- \triangleright We will consider point processes on \mathbb{R}^{ℓ} (often with $\ell = 1$).
- ▷ We do not consider marked or multivariate point processes.
- ▷ For a test function g, we denote $N(g) = \int g \, \mathrm{d}N = \sum_k g(T_k).$

- ▷ A point process *N* is identified with a random measure with discrete support: $N = \sum_k \delta_{T_k}$, where δ_t is the Dirac measure at point *t*.
- \triangleright We will consider point processes on \mathbb{R}^{ℓ} (often with $\ell = 1$).
- ▷ We do not consider marked or multivariate point processes.
- ▷ For a test function g, we denote $N(g) = \int g \, \mathrm{d}N = \sum_{k} g(\mathcal{T}_{k}).$
- ▷ (Some) notation on functional norms:

 \triangleright The L^q -norm of g is denoted by $|g|_q$ for $q \in [1; \infty]$, and

- ▷ A point process *N* is identified with a random measure with discrete support: $N = \sum_k \delta_{T_k}$, where δ_t is the Dirac measure at point *t*.
- \triangleright We will consider point processes on \mathbb{R}^{ℓ} (often with $\ell = 1$).
- ▷ We do not consider marked or multivariate point processes.
- ▷ For a test function g, we denote $N(g) = \int g dN = \sum_{k} g(T_k).$
- ▷ (Some) notation on functional norms:
 - ▷ The L^q-norm of g is denoted by |g|_q for q ∈ [1; ∞], and
 ▷ We will use a polynomial weighted L¹ norm depending on some β > 0, |h|_(β) := |h × | · |^β|₁ = ∫ |h(s)| |s|^β ds.

▷ A stationary Hawkes process on \mathbb{R} is often defined as a point process $N = \sum_{k} \delta_{T_{k}}$ on the real line with conditional intensity

$$\lambda(t) = \lambda_c + \int_{-\infty}^{t^-} p(t-s) N(\mathrm{d}s) = \lambda_c + \sum_{T_i < t} p(t-T_i), \quad (1)$$

where $\lambda_c > 0$ and $p : \mathbb{R}_+ \to \mathbb{R}_+$ satisfies $\int p < 1$.

▷ A stationary Hawkes process on \mathbb{R} is often defined as a point process $N = \sum_k \delta_{T_k}$ on the real line with conditional intensity

$$\lambda(t) = \lambda_c + \int_{-\infty}^{t^-} p(t-s) N(\mathrm{d}s) = \lambda_c + \sum_{T_i < t} p(t-T_i) , (1)$$

where $\lambda_c > 0$ and $p: \mathbb{R}_+ o \mathbb{R}_+$ satisfies $\int p < 1$.

▷ A description as a Cluster process (Hawkes and Oakes [1974]) can be used to define a more general class of spatial stationary Hawkes processes in ℝ^ℓ :

▷ A stationary Hawkes process on \mathbb{R} is often defined as a point process $N = \sum_k \delta_{\mathcal{T}_k}$ on the real line with conditional intensity

$$\lambda(t) = \lambda_c + \int_{-\infty}^{t^-} p(t-s) N(\mathrm{d}s) = \lambda_c + \sum_{T_i < t} p(t-T_i), \quad (1)$$

where $\lambda_c > 0$ and $p : \mathbb{R}_+ \to \mathbb{R}_+$ satisfies $\int p < 1$.

- ▷ A description as a Cluster process (Hawkes and Oakes [1974]) can be used to define a more general class of spatial stationary Hawkes processes in ℝ^ℓ :
 - ▷ Start with a center process $N_c = \sum_k \delta_{t_k^c}$, taken as a Poisson point process (PPP) with intensity λ_c .

▷ A stationary Hawkes process on \mathbb{R} is often defined as a point process $N = \sum_k \delta_{T_k}$ on the real line with conditional intensity

$$\lambda(t) = \lambda_c + \int_{-\infty}^{t^-} p(t-s) N(\mathrm{d}s) = \lambda_c + \sum_{T_i < t} p(t-T_i), \quad (1)$$

where $\lambda_c > 0$ and $p : \mathbb{R}_+ \to \mathbb{R}_+$ satisfies $\int p < 1$.

- ▷ A description as a Cluster process (Hawkes and Oakes [1974]) can be used to define a more general class of spatial stationary Hawkes processes in ℝ^ℓ :
 - ▷ Start with a center process $N_c = \sum_k \delta_{t_k^c}$, taken as a Poisson point process (PPP) with intensity λ_c .
 - ▷ Given N_c , generate independent component processes or clusters $N(\cdot|t_k^c)$ with descendants propagating through a fertility measure μ ,

▷ A stationary Hawkes process on \mathbb{R} is often defined as a point process $N = \sum_k \delta_{\mathcal{T}_k}$ on the real line with conditional intensity

$$\lambda(t) = \lambda_c + \int_{-\infty}^{t^-} p(t-s) N(\mathrm{d}s) = \lambda_c + \sum_{T_i < t} p(t-T_i), \quad (1)$$

where $\lambda_c > 0$ and $p : \mathbb{R}_+ \to \mathbb{R}_+$ satisfies $\int p < 1$.

- ▷ A description as a Cluster process (Hawkes and Oakes [1974]) can be used to define a more general class of spatial stationary Hawkes processes in ℝ^ℓ :
 - ▷ Start with a center process $N_c = \sum_k \delta_{t_k^c}$, taken as a Poisson point process (PPP) with intensity λ_c .
 - ▷ Given N_c , generate independent component processes or clusters $N(\cdot|t_k^c)$ with descendants propagating through a fertility measure μ ,

▷ The superposition $N = \int N(\cdot|t^c) N_c(\mathrm{d}t^c) = \sum_k N(\cdot|t_k^c)$ defines a spatial Hawkes process

6/40

▷ Offspring process: given a location $t \in \mathbb{R}^{\ell}$, we let $M(\cdot|t)$ be a PPP with control measure $\mu(\cdot - t)$.

- ▷ Offspring process: given a location $t \in \mathbb{R}^{\ell}$, we let $M(\cdot|t)$ be a PPP with control measure $\mu(\cdot t)$.
- ▷ Define successive generations of descendants as follows :

- ▷ Offspring process: given a location $t \in \mathbb{R}^{\ell}$, we let $M(\cdot|t)$ be a PPP with control measure $\mu(\cdot t)$.
- ▷ Define successive generations of descendants as follows : Generation 0 : $N^{(0)}(\cdot|t^c) = \delta_{t^c}$.

- ▷ Offspring process: given a location $t \in \mathbb{R}^{\ell}$, we let $M(\cdot|t)$ be a PPP with control measure $\mu(\cdot t)$.
- ▷ Define successive generations of descendants as follows : Generation 0 : $N^{(0)}(\cdot|t^c) = \delta_{t^c}$. Generation 1 : $N^{(1)}(\cdot|t^c) = M(\cdot|t^c)$.

- ▷ Offspring process: given a location $t \in \mathbb{R}^{\ell}$, we let $M(\cdot|t)$ be a PPP with control measure $\mu(\cdot t)$.
- ▷ Define successive generations of descendants as follows : Generation 0 : $N^{(0)}(\cdot|t^c) = \delta_{t^c}$. Generation 1 : $N^{(1)}(\cdot|t^c) = M(\cdot|t^c)$.

Generation n+1 : Denoting $N^{(n)}(\cdot|t^c) = \sum_i \delta_{t_i^{(n)}}$,

$$\mathcal{N}^{(n+1)}(\cdot|t^c) = \int \mathcal{M}(\cdot|s) \ \mathcal{N}^{(n)}(\mathrm{d}s|t^c) = \sum_i \mathcal{M}(\cdot|t_i^{(n)})$$

.

- ▷ Offspring process: given a location $t \in \mathbb{R}^{\ell}$, we let $M(\cdot|t)$ be a PPP with control measure $\mu(\cdot t)$.
- ▷ Define successive generations of descendants as follows : Generation 0 : $N^{(0)}(\cdot|t^c) = \delta_{t^c}$. Generation 1 : $N^{(1)}(\cdot|t^c) = M(\cdot|t^c)$.

Generation n+1 : Denoting $N^{(n)}(\cdot|t^c) = \sum_i \delta_{t_i^{(n)}}$

$$N^{(n+1)}(\cdot|t^c) = \int M(\cdot|s) N^{(n)}(\mathrm{d}s|t^c) = \sum_i M(\cdot|t_i^{(n)})$$

.

▷ and finally set
$$N(\cdot|t^c) = \sum_{k \geqslant 0} N^{(k)}(\cdot|t^c)$$
.

- ▷ Each cluster $N(\cdot|t^c)$ has a finite mean number of points if and only if $\int d\mu < 1$.
- ▷ The distribution of $N(\cdot t^c | t^c)$ does not depend on t^c .
- Since N_c is a homogeneous PPP, the resulting process N is a stationary finite intensity point process.
- ▷ The conditional intensity $\lambda(t)$ in (1) is obtained by setting $\mu(dt) = p(t)dt$.

First and second order moments of stationary Hawkes processes

- ▷ The mean intensity m_1 of N is given by $m_1 = \frac{\lambda_c}{1 \int d\mu}$.
- \triangleright The Bartlett spectrum of N defined by

$$\operatorname{Cov}\left(N(g_1),N(g_2)\right) = \int \hat{g}_1(\omega)\overline{\hat{g}_2(\omega)} \Gamma(\mathrm{d}\omega)$$

with

$$\hat{g}_j(\omega) = \int g_j(t) \,\mathrm{e}^{-\mathrm{i}\omega t} \,\mathrm{d}t \;, \quad j=1,2 \;,$$

is given by

$$\Gamma(\mathrm{d}\omega) = rac{m_1}{2\pi} \left| 1 - \int \mathrm{e}^{-\mathrm{i}t\omega} \mu(\mathrm{d}t) \right|^{-2} \,\mathrm{d}\omega$$

A parametric example

Consider a specific class of Gamma-shaped fertility functions p, depending on parameters $\zeta, \delta, \eta, \theta > 0$

$$p(t) = \zeta \frac{\theta^{\eta}}{\Gamma(\eta)} (t - \delta)^{\eta-1}_+ e^{-\theta(t-\delta)}$$

Then the stationarity assumption simply reads

$$\int \boldsymbol{p} = \boldsymbol{\zeta} < 1 \; .$$

Moreover,

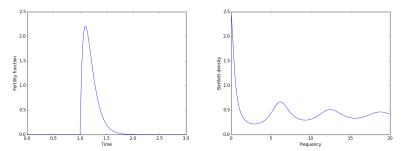
$$\hat{\boldsymbol{\rho}}(\omega) = \int \boldsymbol{\rho}(t) e^{-it\omega} dt = \zeta e^{-i\delta\omega} (1 + i\omega/\theta)^{-\eta}$$

٠

٠

Bartlett spectrum of a Hawkes process with Gamma shape fertility

A positive δ induces a periodic phenomenon in the self-excitation. Here we take $\zeta = 0.6$, $\delta = 1$, $\eta = 2$, $\theta = 10$.



In many applications, it is interesting to investigate whether the statistical behavior evolves in time or space.

- In many applications, it is interesting to investigate whether the statistical behavior evolves in time or space.
- ▷ For instance, one can think of a Gamma shape fertility with time-varying parameters.

- In many applications, it is interesting to investigate whether the statistical behavior evolves in time or space.
- ▷ For instance, one can think of a Gamma shape fertility with time-varying parameters.
- ▷ In the latter case, the Bartlett spectrum should also evolves along the time, resulting in a time-frequency analysis.

- In many applications, it is interesting to investigate whether the statistical behavior evolves in time or space.
- ▷ For instance, one can think of a Gamma shape fertility with time-varying parameters.
- ▷ In the latter case, the Bartlett spectrum should also evolves along the time, resulting in a time-frequency analysis.
- Our goal is to provide a reasonable modeling approach for a comprehensive statistical analysis in this non-stationary context.

Introduction

Non-stationary Hawkes processes

Locally stationary Hawkes processes

Numerical experiments

References

Non-stationary Hawkes processes, using conditional intensity

Non-stationary Hawkes processes often refer to a process initiated in the empty state at the origin,

$$\lambda(t) = \lambda_c + \int_{\underline{0}}^{t^-} p(t-s) N(\mathrm{d}s) , \quad t \ge 0 .$$

▷ In Chen and Hall [2013], additional non-stationarity is introduced by letting λ_c depend on time,

$$\lambda(t) = \lambda_{c}(t) + \int_{0}^{t^{-}} p(t-s) N(\mathrm{d}s) , \quad t \ge 0 .$$

▷ We propose the more general form

$$\lambda(t) = \lambda_{c}(\underline{t}) + \int_{-\infty}^{t^{-}} p(t - \underline{s; t}) N(\mathrm{d}s) .$$

Non-stationary Hawkes processes, using clusters

Similarly, in the cluster construction, one can

- ▷ Replace the constant baseline intensity λ_c of N_c by a baseline intensity function $t \mapsto \lambda_c(t)$.
- ▷ Replace the control measure $\mu(\cdot s)$ of the offspring process $M(\cdot|s)$ by "any" measure $\mu(\cdot|s)$.

Non-stationary Hawkes processes, using clusters

Similarly, in the cluster construction, one can

- ▷ Replace the constant baseline intensity λ_c of N_c by a baseline intensity function $t \mapsto \lambda_c(t)$.
- ▷ Replace the control measure $\mu(\cdot s)$ of the offspring process $M(\cdot|s)$ by "any" measure $\mu(\cdot|s)$.

Question

What should replace the condition

$$\int \mu < 1$$

.)

used to guaranty the existence of a finite mean intensity stationary Hawkes process ? Non-stationary Hawkes processes, stability

Consider the two following conditions :

(C-1)
$$\zeta_1 = \sup_s \int \mu(\mathrm{d}t|s) < 1.$$

(C-2) $\int \mu(\cdot|s) \mathrm{d}s$ admits a density bounded by $\zeta_1 < 1$.

Then if $\mu(\cdot|s) = \mu(\cdot - s)$, they both are equivalent to $\int d\mu < 1$.

Non-stationary Hawkes processes, stability

Consider the two following conditions :

$$(\mathsf{C-1}) \ \zeta_1 = \sup_s \int \mu(\mathrm{d}t|s) < 1.$$

(C-2) $\int \mu(\cdot|s) \mathrm{d}s$ admits a density bounded by $\zeta_1 < 1$.

Then if $\mu(\cdot|s) = \mu(\cdot - s)$, they both are equivalent to $\int \mathrm{d}\mu < 1$.

It turns out that

▷ (C-1) implies that $\mathbb{E} \int N(\mathrm{d}s|t^c) \leq (1-\zeta_1)^{-1}$ (each cluster has a uniformly bounded finite mean number of points).

Non-stationary Hawkes processes, stability

Consider the two following conditions :

$$(\mathsf{C-1}) \ \zeta_1 = \sup_s \int \mu(\mathrm{d}t|s) < 1.$$

(C-2) $\int \mu(\cdot|s) ds$ admits a density bounded by $\zeta_1 < 1$.

Then if $\mu(\cdot|s) = \mu(\cdot-s)$, they both are equivalent to $\int \mathrm{d}\mu < 1$.

It turns out that

- ▷ (C-1) implies that $\mathbb{E} \int N(\mathrm{d}s|t^c) \leq (1-\zeta_1)^{-1}$ (each cluster has a uniformly bounded finite mean number of points).
- ▷ (C-2) and $|\lambda_c|_{\infty} < \infty$ imply that *N* admits a finite mean intensity bounded by $|\lambda_c|_{\infty} / (1 \zeta_1)$.

Non-stationary Hawkes processes, density assumption Suppose that the measure $\mu(\cdot|s)$ admits a density, written as

$$t\mapsto d(t-s;s)$$
.

Then
$$(c_1)$$
 reads $\zeta_1 := \sup_s \int d(r;s) \mathrm{d}r < 1$.

Non-stationary Hawkes processes, density assumption Suppose that the measure $\mu(\cdot|s)$ admits a density, written as

$$t\mapsto d(t-s;s)=:p(t-s;t)$$
.

Then (C-1) reads
$$\zeta_1 := \sup_s \int d(r;s) dr < 1$$
.
While (C-2) reads $\zeta_1 := \sup_t \int p(r;t) dr < 1$.

Non-stationary Hawkes processes, density assumption Suppose that the measure $\mu(\cdot|s)$ admits a density, written as

$$t\mapsto d(t-s;s)=:p(t-s;t)$$
.

Then (C-1) reads
$$\zeta_1 := \sup_s \int d(r;s) dr < 1$$
.
While (C-2) reads $\zeta_1 := \sup_t \int p(r;t) dr < 1$.

Definition (Non-stationary Hawkes processes)

We call a non-stationary Hawkes process a process defined as N above under the condition

(NS-1)
$$\zeta_1 := \sup_t \int p(r; t) dr < 1$$
 and $|\lambda_c|_{\infty} < \infty$,
which implies that N has finite mean intensity bounded by
 $|\lambda_c|_{\infty} / (1 - \zeta_1)$.

Introduction

Non-stationary Hawkes processes

Locally stationary Hawkes processes

Numerical experiments

References

Parallel with time series

A Hawkes process with fertility function p is often paralleled with an autoregressive (AR) time series with parameter θ , since in both cases, conditional intensity/expectation are linear functions of the past, resulting in similar Bartlett/spectral density formula

$$\frac{m_1}{2\pi} \left| 1 - \int \boldsymbol{p}(t) e^{-it\omega} dt \right|^{-2} \quad / \quad \frac{\sigma^2}{2\pi} \left| 1 - \sum_k \frac{\theta_k}{e^{-i\lambda k}} \right|^{-2}$$

(here expressed as functions of ω and λ , resp.)

Parallel with time series

A Hawkes process with fertility function p is often paralleled with an autoregressive (AR) time series with parameter θ , since in both cases, conditional intensity/expectation are linear functions of the past, resulting in similar Bartlett/spectral density formula

$$\frac{m_1}{2\pi} \left| 1 - \int \boldsymbol{p}(t) e^{-it\omega} dt \right|^{-2} / \frac{\sigma^2}{2\pi} \left| 1 - \sum_k \theta_k e^{-i\lambda k} \right|^{-2}$$

(here expressed as functions of ω and λ , resp.)

We can draw the same parallel between the previously introduced non-stationary Hawkes process and time-varying AR (TVAR) processes defined by the equation

$$X_t = \mu(t) + \sum_k \theta_k(t) X_{t-k} + \sigma(t) \epsilon_t .$$

Asymptotic setting: locally stationary TVAR processes

We propose to follow the approach used in Dahlhaus [1996] for time series, using rescaled time-varying parameters σ , μ and θ ,

$$X_t = \mu(t) + \sum_k heta_k(t) X_{t-k} + \sigma(t) \epsilon_t$$

Asymptotic setting: locally stationary TVAR processes

We propose to follow the approach used in Dahlhaus [1996] for time series, using rescaled time-varying parameters σ , μ and θ ,

$$X_{t,T} = \mu(t/T) + \sum_{k} \theta_k(t/T) X_{t-k,T} + \sigma(t/T) \epsilon_t$$

We thus get a collection of processes $(X_{t,T})_{t\in\mathbb{Z}}$, T > 0.

Asymptotic setting: locally stationary TVAR processes

We propose to follow the approach used in Dahlhaus [1996] for time series, using rescaled time-varying parameters σ , μ and θ ,

$$X_{t,T} = \mu(t/T) + \sum_{k} \theta_k(t/T) X_{t-k,T} + \sigma(t/T) \epsilon_t$$

We thus get a collection of processes $(X_{t,T})_{t\in\mathbb{Z}}$, T > 0.

Two important consequences as $T \rightarrow \infty$

- ▷ A *T*-sample $X_{1,T}, \ldots, X_{T,T}$ basically involves the parameter function $u \mapsto (\sigma(u), \mu(u), \theta(u))$ on a fixed interval $u \in [0, 1]$, allowing us for a consistent estimation of these parameters.
- ▷ If $u \mapsto (\sigma(u), \mu(u), \theta(u))$ is smooth, a subsample $X_{t,T}$ with indices t such that $t/T \simeq u \in (0, 1)$, can be approximated by a stationary AR process with parameter $(\sigma(u), \mu(u), \theta(u))$.

Asymptotic setting: locally stationary Hawkes processes

Definition (Locally stationary Hawkes processes) A locally stationary Hawkes process with

 \triangleright local baseline intensity $\lambda_c^{<LS>} : \mathbb{R}^{\ell} \to \mathbb{R}_+$ and

 $\triangleright \text{ local fertility function } p^{\leq LS >} : \mathbb{R}^{\ell} \times \mathbb{R}^{\ell} \to \mathbb{R}_{+}$

is a collection $(N_T)_{T>0}$ such that, for all T > 0, N_T is a non-stationary Hawkes processes with baseline intensity $t \mapsto \lambda_c^{<LS>}(t/T)$ and fertility function $(r, t) \mapsto p^{<LS>}(r; t/T)$.

Asymptotic setting: locally stationary Hawkes processes

Definition (Locally stationary Hawkes processes) A locally stationary Hawkes process with

- \triangleright local baseline intensity $\lambda_c^{<LS>} : \mathbb{R}^{\ell} \to \mathbb{R}_+$ and
- $\triangleright \text{ local fertility function } p^{\leq LS >} : \mathbb{R}^{\ell} \times \mathbb{R}^{\ell} \to \mathbb{R}_{+}$

is a collection $(N_T)_{T>0}$ such that, for all T > 0, N_T is a non-stationary Hawkes processes with baseline intensity $t \mapsto \lambda_c^{<LS>}(t/T)$ and fertility function $(r, t) \mapsto p^{<LS>}(r; t/T)$.

- ▷ For a given real location t, the scaled location u = t/T is typically called an absolute location.
- ▷ At each u, we denote by $N(\cdot; u)$ a stationary Hawakes process with baseline intensity $\lambda_c^{<LS>}(u)$ and fertility function $p^{<LS>}(\cdot; u)$.

Assumptions on local baseline intensity and local fertility function

Condition (NS-1) becomes
(LS-1)
$$\zeta_1^{} := \sup_u \int p^{}(r; u) \, dr < 1$$
 and $|\lambda_c^{}|_{\infty} < \infty$.
Note that it does not involve T .

Assumptions on local baseline intensity and local fertility function

Condition (NS-1) becomes
(LS-1)
$$\zeta_1^{} := \sup_u \int p^{}(r; u) \, dr < 1$$
 and $|\lambda_c^{}|_{\infty} < \infty$.
Note that it does not involve T .

More regularity assumptions:

- ▷ (LS-2): β -Hölder type smoothness condition on $\lambda_c^{<LS>}(u)$
- ▷ (LS-3): β-Hölder type smoothness conditions on p^{<LS>}(t, u) w.r.t. its second argument u.
- ▷ (LS-4): some β-power decay condition on p^{<LS>}(·; u) uniformly bounded w.r.t. u.

Laplace functional

We use Laplace functionals to show that, for a given absolute location u, as $T \to \infty$, in the neighborhood of Tu,

 N_T can be approximated by $N(\cdot; u)$.

For all T > 0 and $u \in \mathbb{R}^{\ell}$, letting g denote some test function, \triangleright the Laplace functional of N_T is denoted by

$$\mathcal{L}_T(g) = \mathbb{E}\left[\exp N_T(g)\right]$$
.

▷ the Laplace functional of $N(\cdot; u)$ is denoted by

$$\mathcal{L}(g; u) = \mathbb{E}\left[\exp \mathcal{N}(g; u)\right]$$
.

Hence we compare $\mathcal{L}_T \circ S^{-Tu}$ with $\mathcal{L}(\cdot; u)$, where

$$S^{-Tu}g:t\mapsto g(t-Tu)$$
.

Approximation results

▷ A typical result is that if $|g|_1, |g|_\infty, |g|_{(\beta)} \leq 1$, then

$$\left|\mathcal{L}_{T}\circ S^{-Tu}(g)-\mathcal{L}(g;u)\right|=O\left(T^{-\beta}\right) \ ,$$

where constants in O-terms only depend on $\lambda_c^{<LS>}$ and $p^{<LS>}$.

Approximation results

▷ A typical result is that if $|g|_1, |g|_\infty, |g|_{(\beta)} \leq 1$, then

$$\left|\mathcal{L}_{T}\circ S^{-Tu}(g)-\mathcal{L}(g;u)\right|=O\left(T^{-\beta}\right) \ ,$$

where constants in *O*-terms only depend on $\lambda_c^{<LS>}$ and $p^{<LS>}$.

▷ In fact, under suitable conditions, the result holds uniformly in z for functions $g = g(\cdot; z)$ which are holomorphic w.r.t. z, see [Roueff et al., 2016, Theorem 2].

Approximation results

▷ A typical result is that if $|g|_1, |g|_\infty, |g|_{(\beta)} \leq 1$, then

$$\left|\mathcal{L}_{T}\circ S^{-Tu}(g)-\mathcal{L}(g;u)\right|=O\left(T^{-\beta}\right) \ ,$$

where constants in O-terms only depend on $\lambda_c^{<LS>}$ and $p^{<LS>}$.

- ▷ In fact, under suitable conditions, the result holds uniformly in z for functions $g = g(\cdot; z)$ which are holomorphic w.r.t. z, see [Roueff et al., 2016, Theorem 2].
- ▷ Consequently, we obtain, if $|g_j|_1$, $|g_j|_{\infty}$, $|g_j|_{(\beta)} \leq 1$ for j = 1, ..., m, then

$$\left|\operatorname{Cum}\left(\{N_{\mathcal{T}}\circ S^{-\mathcal{T}u}(g_j)\}_{1\leqslant j\leqslant m}\right)-\operatorname{Cum}\left(\{N(g_j;u)\}_{1\leqslant j\leqslant m}\right)\right|=O\left(\mathcal{T}^{-\beta}\right).$$

Example of application: approximation of local mean density

- ▷ For all T > 0 and $t \in \mathbb{R}^{\ell}$, let $m_{1T}(t)$ denote the mean density function of N_T .
- ▷ For all $u \in \mathbb{R}^{\ell}$ Let $m_1^{<Ls>}(u)$ denote the local mean intensity, that is, the mean intensity of $N(\cdot; u)$, which is given by

$$m_1^{}(u) = \frac{\lambda_c^{}(u)}{1 - \int \rho^{}(\cdot; u)}$$

 \triangleright The previous result with m = 1 implies:

$$\sup_{t:|t-Tu|\leqslant b} \left| \frac{m_1 T(t) - m_1^{<\mathtt{LS}>}(u)}{1-T} \right| = O\left((1+b^\beta) T^{-\beta} \right)$$

Another application : time-frequency analysis

Suppose that $\ell = 1$. We can define and approximate the local Bartlett spectrum as follows :

▷ For all $u \in \mathbb{R}^{\ell}$, let $\gamma^{\leq LS \geq}(\omega; u)$ denote the local Bartlett density, that is, the Bartlett density of $N(\cdot; u)$ which is

$$\gamma^{\leq LS>}(\omega; u) = \frac{m_1^{\leq LS>}(u)}{2\pi} \left| 1 - \widehat{p^{\leq LS>}}(\omega; u) \right|^{-2}$$

where

$$\widehat{\mathbf{p}^{\mathsf{LS}>}}(\omega; u) = \int \mathbf{p}^{\mathsf{LS}>}(t; u) \, \mathrm{e}^{-\mathrm{i}\omega t} \, \mathrm{d}t$$

 \triangleright The cumulent approximation result with m = 2 implies:

$$\operatorname{Var}\left(N_{T}(S^{-Tu}g)\right) = \int |\hat{g}(\omega)|^{2} \gamma^{<\mathtt{LS}>}(\omega; u) \, \mathrm{d}\omega + O(T^{-\beta})$$

▷ Kernel estimation of $\gamma^{\leq LS>}(\omega; u)$ can thus be achieved by an empirical estimate of $Var(N_T(S^{-Tu}g))$ for a well chosen g.

Introduction

Non-stationary Hawkes processes

Locally stationary Hawkes processes

Numerical experiments

References

Simulation of a locally stationary Hawkes process

If $\ell = 1$ and $p^{LS>}(\cdot; u)$ is supported on \mathbb{R}_+ for all u, we can use that N_T has conditional intensity given by

$$\lambda_{T}(t) = \lambda_{c}^{\langle \mathsf{LS} \rangle}(t/T) + \int p^{\langle \mathsf{LS} \rangle}(t-s;t/T) N_{T}(\mathrm{d}s) .$$

Use Ogata's modified thinning algorithm Ogata [1981] to simulate the non-stationary Hawkes process N_T on the interval [0, T].

Simulated examples

- \triangleright We take a time-constant baseline intensity $\lambda_c^{<LS>}(u) = 1/2$.
- ▷ The local fertility function p < LS> (·; u) is set as a Gamma-shaped function with time varying parameters.

Simulated examples

- \triangleright We take a time-constant baseline intensity $\lambda_c^{<LS>}(u) = 1/2$.
- ▷ The local fertility function p^{<LS>}(·; u) is set as a Gamma-shaped function with time varying parameters.
- ▷ Example 1 [Time varying scale $\theta(u)$ and overall fertility $\zeta(u)$]:

$$p^{\leq LS>}(s; u) = \zeta(u) \ \theta(u) e^{-\theta(u)s} \mathbb{1}_{s>0} \ ,$$

with $\zeta(u)$, $\theta(u)$ of cosine form.

Simulated examples

- \triangleright We take a time-constant baseline intensity $\lambda_c^{<LS>}(u) = 1/2$.
- ▷ The local fertility function p^{<LS>}(·; u) is set as a Gamma-shaped function with time varying parameters.
- Example 1 [Time varying scale $\theta(u)$ and overall fertility $\zeta(u)$]:

$$p^{\leq LS>}(s; u) = \zeta(u) \ \theta(u) \mathrm{e}^{-\theta(u)s} \mathbb{1}_{s>0} \ ,$$

with ζ(u), θ(u) of cosine form.
 ▷ Example 2 [Time varying delay δ(u)]:

$$p^{\leq LS>}(s;u) = \frac{1}{2}(s-\delta(u))_{+}\mathrm{e}^{-(s-\delta(u))}$$

with $\delta(u) = (6 - 10u) \times \mathbb{1}_{[0;1/2]}(u) + (10u - 4) \times \mathbb{1}_{(1/2;1]}(u)$ inducing a periodic phenomenon in the self-excitation.

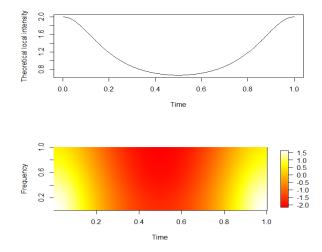


Figure: Theoretical local mean density (top) and Bartlett spectrum (bottom) for Example 1.

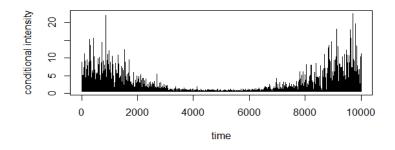


Figure: Conditional intensity function of a simulated Hawkes process following Example 1, with T = 10000.

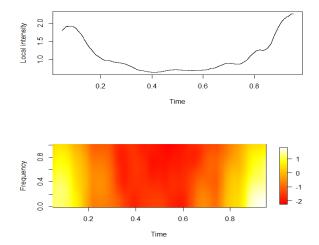


Figure: Estimation of the local mean density (top) and of the local Bartlett spectrum (bottom) for Example 1.

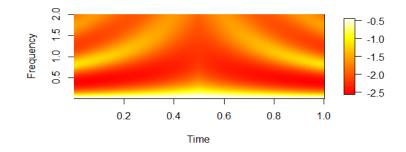


Figure: Theoretical local Bartlett spectrum for Example 2 (local mean density being constant over time).

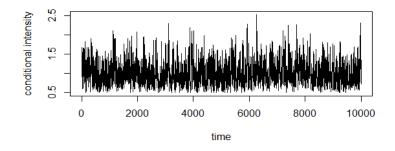


Figure: Conditional intensity function of a simulated Hawkes process following Example 2, with T = 10000.

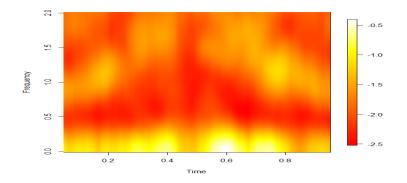


Figure: Estimation of the local Bartlett spectrum for Example 2.

Self-exciting point processes ("Hawkes" processes) are somewhat similar to autoregressive processes in time series.

- Self-exciting point processes ("Hawkes" processes) are somewhat similar to autoregressive processes in time series.
- ▷ Unfortunately, unlike linear locally stationary time series, we cannot rely on a simple representation such as the TVMA(∞) (or spectral representation).

- Self-exciting point processes ("Hawkes" processes) are somewhat similar to autoregressive processes in time series.
- ▷ Unfortunately, unlike linear locally stationary time series, we cannot rely on a simple representation such as the TVMA(∞) (or spectral representation).
- Local stationary approximations can still be obtained using local Laplace transforms and its derivatives (control of cumulants).

- Self-exciting point processes ("Hawkes" processes) are somewhat similar to autoregressive processes in time series.
- ▷ Unfortunately, unlike linear locally stationary time series, we cannot rely on a simple representation such as the TVMA(∞) (or spectral representation).
- Local stationary approximations can still be obtained using local Laplace transforms and its derivatives (control of cumulants).
- Definitions of (local) mean intensity and a local Bartlett spectrum follow.

- Self-exciting point processes ("Hawkes" processes) are somewhat similar to autoregressive processes in time series.
- ▷ Unfortunately, unlike linear locally stationary time series, we cannot rely on a simple representation such as the TVMA(∞) (or spectral representation).
- Local stationary approximations can still be obtained using local Laplace transforms and its derivatives (control of cumulants).
- Definitions of (local) mean intensity and a local Bartlett spectrum follow.
- ▷ Work in progress: Asymptotic estimation theory.

Introduction

Non-stationary Hawkes processes

Locally stationary Hawkes processes

Numerical experiments

References

References |

- E. Bacry, S. Delattre, M. Hoffmann, and J.F. Muzy. Some limits for Hawkes processes and application to financial statistics. *Stochastic Process. Appl.*, 123(7):2475–2499, 2013.
- E. Bacry, I. Mastromatteo, and J-F. Muzy. Hawkes processes in finance. ArXiv e-prints, (1502.04592v2), 2015.
- C.G. Bowsher. Modelling security market events in continuous time: Intensity based, multivariate point process models.
 J. Econometrics, 141(2):876-912, Dec 2007.
- F. Chen and P. Hall. Inference for a non-stationary self-exciting point process with an application in ulta-high frequency financial data modeling. *J. Appl. Probab.*, 50:1006–1024, 2013.
- R. Dahlhaus. On the Kullback-Leibler information divergence of locally stationary processes. *Stochastic Process. Appl.*, 62: 139–168, 1996.

References II

- A.G. Hawkes. Spectra of some self-exciting and mutually exciting point processes. *Biometrika*, 58(1):83-90, 1971.
- A.G. Hawkes and D. Oakes. A cluster process representation of a self-exciting process. *Journal of Applied Probability*, 11(3): 493–503, 1974.
- Y. Ogata. On Lewis' simulation method for point processes. Information Theory, IEEE Transactions on, 27(1):23-31, Jan 1981.
- Y. Ogata. Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes. J. Amer. Statist. Assoc., 83 (401):9–27, Mar 1988.
- P. Reynaud-Bouret and S. Schbath. Adaptive estimation for Hawkes processes; application to genome analysis. *Ann. Statist.*, 38(5):2781-2822, 2010.

References III

- P. Reynaud-Bouret, V. Rivoirard, and C. Tuleau-Malot. Inference of functional connectivity in neurosciences via Hawkes processes. In 1st IEEE Global Conference on Signal and Information Processing, Austin, Texas, USA, 2013.
- François Roueff, Rainer von Sachs, and Laure Sansonnet. Locally stationary hawkes processes. Stochastic Processes and their Applications, 126(6):1710 - 1743, 2016. ISSN 0304-4149. doi: http://dx.doi.org/10.1016/j.spa.2015.12.003. URL http://www.sciencedirect.com/science/article/pii/ S0304414915003075.