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Hawkes processes and applications

A Hawkes process is a self-exciting point process with linear
conditional intensity (see Hawkes [1971]).

• • • • • • • • • • • • • • • • •

Applications of this model include:

. seismology Ogata [1988],

. genomics Reynaud-Bouret and Schbath [2010],

. neuroscience Reynaud-Bouret et al. [2013],

. �nance: microstructure dynamics for high-frequency data
Bowsher [2007], Bacry et al. [2015, 2013]. . .
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Preliminary remarks and conventions

. A point process N is identi�ed with a random measure with
discrete support: N =

∑
k δT k

, where δt is the Dirac measure
at point t.

. We will consider point processes on R` (often with ` = 1).

. We do not consider marked or multivariate point processes.

. For a test function g , we denote

N(g) =

∫
g dN =

∑
k

g(T k).

. (Some) notation on functional norms:

. The Lq-norm of g is denoted by |g |q for q ∈ [1;∞], and

. We will use a polynomial weighted L1 norm depending on
some β > 0, |h|(β) :=

∣∣h × | · |β∣∣
1

=
∫
|h(s)| |s|β ds.
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Stationary Hawkes processes

. A stationary Hawkes process on R is often de�ned as a point
process N =

∑
k δT k

on the real line with conditional intensity

λ(t) = λc +

∫ t−

−∞
p(t − s) N(ds) = λc +

∑
T i<t

p(t −T i ) , (1)

where λc > 0 and p : R+ → R+ satis�es
∫
p < 1.

. A description as a Cluster process (Hawkes and Oakes [1974])
can be used to de�ne a more general class of spatial stationary
Hawkes processes in R` :
. Start with a center process Nc =

∑
k δtck , taken as a

Poisson point process (PPP) with intensity λc .
. Given Nc , generate independent component processes or
clusters N(·|tck ) with descendants propagating through a
fertility measure µ,

. The superposition N =

∫
N(·|tc) Nc(dtc) =

∑
k

N(·|tck )

de�nes a spatial Hawkes process .
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Stationary Hawkes processes : generation of clusters

. O�spring process: given a location t ∈ R`, we let M(·|t) be a
PPP with control measure µ(· − t).

. De�ne successive generations of descendants as follows :

Generation 0 : N(0)(·|tc) = δtc .
Generation 1 : N(1)(·|tc) = M(·|tc).

...

Generation n+1 : Denoting N(n)(·|tc) =
∑

i δt(n)i

,

N(n+1)(·|tc) =

∫
M(·|s) N(n)(ds|tc) =

∑
i

M(·|t(n)i )

...

. and �nally set N(·|tc) =
∑
k>0

N(k)(·|tc).
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Stationary Hawkes processes

. Each cluster N(·|tc) has a �nite mean number of points if and
only if

∫
dµ < 1.

. The distribution of N(· − tc |tc) does not depend on tc .

. Since Nc is a homogeneous PPP, the resulting process N is a
stationary �nite intensity point process.

. The conditional intensity λ(t) in (1) is obtained by setting
µ(dt) = p(t)dt.

8 / 40



First and second order moments of stationary Hawkes

processes

. The mean intensity m1 of N is given by m1 =
λc

1−
∫
dµ

.

. The Bartlett spectrum of N de�ned by

Cov (N(g1),N(g2)) =

∫
ĝ1(ω)ĝ2(ω) Γ(dω)

with

ĝj(ω) =

∫
gj(t) e−iωt dt , j = 1, 2 ,

is given by

Γ(dω) =
m1

2π

∣∣∣∣1− ∫ e−itω µ(dt)

∣∣∣∣−2 dω
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A parametric example

Consider a speci�c class of Gamma-shaped fertility functions p,
depending on parameters ζ, δ, η, θ > 0

p(t) = ζ
θη

Γ(η)
(t − δ)η−1+ e−θ(t−δ) .

Then the stationarity assumption simply reads∫
p = ζ < 1 .

Moreover,

p̂(ω) =

∫
p(t) e−itω dt = ζe−iδω (1 + iω/θ)−η .

10 / 40



Bartlett spectrum of a Hawkes process with Gamma shape

fertility

A positive δ induces a periodic phenomenon in the self-excitation.
Here we take ζ = 0.6, δ = 1, η = 2, θ = 10.

11 / 40



Non-stationary modeling

. In many applications, it is interesting to investigate whether
the statistical behavior evolves in time or space.

. For instance, one can think of a Gamma shape fertility with
time-varying parameters.

. In the latter case, the Bartlett spectrum should also evolves
along the time, resulting in a time-frequency analysis.

. Our goal is to provide a reasonable modeling approach for a
comprehensive statistical analysis in this non-stationary
context.
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Non-stationary Hawkes processes, using conditional intensity

. Non-stationary Hawkes processes often refer to a process
initiated in the empty state at the origin,

λ(t) = λc +

∫ t−

0

p(t − s) N(ds) , t > 0 .

. In Chen and Hall [2013], additional non-stationarity is
introduced by letting λc depend on time,

λ(t) = λc(t) +

∫ t−

0

p(t − s) N(ds) , t > 0 .

. We propose the more general form

λ(t) = λc(t) +

∫ t−

−∞
p(t − s; t) N(ds) .

14 / 40



Non-stationary Hawkes processes, using clusters

Similarly, in the cluster construction, one can

. Replace the constant baseline intensity λc of Nc by a baseline
intensity function t 7→ λc(t).

. Replace the control measure µ(· − s) of the o�spring process
M(·|s) by �any� measure µ(·|s).

Question
What should replace the condition∫

µ < 1

used to guaranty the existence of a �nite mean intensity stationary
Hawkes process ?
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Non-stationary Hawkes processes, stability

Consider the two following conditions :

(C-1) ζ1 = sup
s

∫
µ(dt|s) < 1.

(C-2)
∫
µ(·|s)ds admits a density bounded by ζ1 < 1.

Then if µ(·|s) = µ(· − s), they both are equivalent to
∫
dµ < 1.

It turns out that

. (C-1) implies that E
∫

N(ds|tc) 6 (1− ζ1)−1 (each cluster

has a uniformly bounded �nite mean number of points).

. (C-2) and |λc |∞ <∞ imply that N admits a �nite mean
intensity bounded by |λc |∞ /(1− ζ1).
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Non-stationary Hawkes processes, density assumption

Suppose that the measure µ(·|s) admits a density, written as

t 7→ d(t − s; s) .

=: p(t − s; t) .

Then (C-1) reads ζ1 := sup
s

∫
d(r ; s)dr < 1 .

While (C-2) reads ζ1 := sup
t

∫
p(r ; t)dr < 1 .

De�nition (Non-stationary Hawkes processes)

We call a non-stationary Hawkes process a process de�ned as N
above under the condition

(NS-1) ζ1 := sup
t

∫
p(r ; t)dr < 1 and |λc |∞ <∞ ,

which implies that N has �nite mean intensity bounded by
|λc |∞ /(1− ζ1).
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Parallel with time series

A Hawkes process with fertility function p is often paralleled with
an autoregressive (AR) time series with parameter θ, since in both
cases, conditional intensity/expectation are linear functions of the
past, resulting in similar Bartlett/spectral density formula

m1

2π

∣∣∣∣1− ∫ p(t) e−itω dt

∣∣∣∣−2 / σ2

2π

∣∣∣∣∣1−∑
k

θke
−iλk

∣∣∣∣∣
−2

(here expressed as functions of ω and λ, resp.)

We can draw the same parallel between the previously introduced
non-stationary Hawkes process and time-varying AR (TVAR)
processes de�ned by the equation

X t = µ(t) +
∑
k

θk(t)X t−k + σ(t)εt .
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Asymptotic setting: locally stationary TVAR processes

We propose to follow the approach used in Dahlhaus [1996] for
time series, using rescaled time-varying parameters σ, µ and θ,

X t

,T

= µ(t

/T

) +
∑
k

θk(t

/T

)X t−k

,T

+ σ(t

/T

)εt .

We thus get a collection of processes (X t,T )t∈Z, T > 0.

Two important consequences as T →∞

. A T -sample X 1,T , . . . ,XT ,T basically involves the parameter
function u 7→ (σ(u), µ(u), θ(u)) on a �xed interval u ∈ [0, 1],
allowing us for a consistent estimation of these parameters.

. If u 7→ (σ(u), µ(u), θ(u)) is smooth, a subsample X t,T with
indices t such that t/T ' u ∈ (0, 1), can be approximated by
a stationary AR process with parameter (σ(u), µ(u), θ(u)).
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Asymptotic setting: locally stationary Hawkes processes

De�nition (Locally stationary Hawkes processes)

A locally stationary Hawkes process with

. local baseline intensity λc
<LS> : R` → R+ and

. local fertility function p<LS> : R` × R` → R+

is a collection (NT )T>0 such that, for all T > 0, NT is a
non-stationary Hawkes processes with baseline intensity
t 7→ λc

<LS>(t/T ) and fertility function (r , t) 7→ p<LS>(r ; t/T ).

. For a given real location t, the scaled location u = t/T is
typically called an absolute location.

. At each u, we denote by N(·; u) a stationary Hawakes process
with baseline intensity λc

<LS>(u) and fertility function
p<LS>(·; u).
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Assumptions on local baseline intensity and local fertility

function

Condition (NS-1) becomes

(LS-1) ζ1
<LS> := sup

u

∫
p<LS>(r ; u) dr < 1 and

∣∣λc<LS>
∣∣
∞ <∞ .

Note that it does not involve T .

More regularity assumptions:

. (LS-2): β-Hölder type smoothness condition on λc
<LS>(u)

. (LS-3): β-Hölder type smoothness conditions on p<LS>(t, u)
w.r.t. its second argument u.

. (LS-4): some β-power decay condition on p<LS>(·; u) uniformly
bounded w.r.t. u.
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Laplace functional

We use Laplace functionals to show that, for a given absolute
location u, as T →∞, in the neighborhood of Tu,

NT can be approximated by N(·; u).

For all T > 0 and u ∈ R`, letting g denote some test function,

. the Laplace functional of NT is denoted by

LT (g) = E [expNT (g)] .

. the Laplace functional of N(·; u) is denoted by

L(g ; u) = E [expN(g ; u)] .

Hence we compare LT ◦ S−Tu with L(·; u), where

S−Tug : t 7→ g(t − Tu) .
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Approximation results

. A typical result is that if |g |
1
, |g |∞ , |g |(β) 6 1, then∣∣∣LT ◦ S−Tu(g)− L(g ; u)

∣∣∣ = O
(
T−β

)
,

where constants in O-terms only depend on λc
<LS> and p<LS>.

. In fact, under suitable conditions, the result holds uniformly in
z for functions g = g(·; z) which are holomorphic w.r.t. z , see
[Roue� et al., 2016, Theorem 2].

. Consequently, we obtain, if |gj |1 , |gj |∞ , |gj |(β) 6 1 for

j = 1, . . . ,m, then∣∣∣Cum({NT ◦ S−Tu(gj)}16j6m

)
− Cum ({N(gj ; u)}16j6m)

∣∣∣= O
(
T−β

)
.
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Example of application: approximation of local mean density

. For all T > 0 and t ∈ R`, let m1T (t) denote the mean density
function of NT .

. For all u ∈ R` Let m1
<LS>(u) denote the local mean intensity,

that is, the mean intensity of N(·; u), which is given by

m1
<LS>(u) =

λc
<LS>(u)

1−
∫
p<LS>(·; u)

.

. The previous result with m = 1 implies:

sup
t :|t−Tu|6b

∣∣m1T (t)−m1
<LS>(u)

∣∣ = O
(

(1 + bβ)T−β
)
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Another application : time-frequency analysis
Suppose that ` = 1. We can de�ne and approximate the local
Bartlett spectrum as follows :

. For all u ∈ R`, let γ<LS>(ω; u) denote the local Bartlett
density, that is, the Bartlett density of N(·; u) which is

γ<LS>(ω; u) =
m1
<LS>(u)

2π

∣∣∣1− p̂<LS>(ω; u)
∣∣∣−2

where

p̂<LS>(ω; u) =

∫
p<LS>(t; u) e−iωt dt

. The cumulent approximation result with m = 2 implies:

Var
(
NT (S−Tug)

)
=

∫
|ĝ(ω)|2γ<LS>(ω; u) dω + O(T−β)

. Kernel estimation of γ<LS>(ω; u) can thus be achieved by an
empirical estimate of Var

(
NT (S−Tug)

)
for a well chosen g .
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Simulation of a locally stationary Hawkes process

If ` = 1 and p<LS>(·; u) is supported on R+ for all u, we can use
that NT has conditional intensity given by

λT (t) = λc
<LS>(t/T ) +

∫
p<LS>(t − s; t/T ) NT (ds) .

Use Ogata's modi�ed thinning algorithm Ogata [1981] to simulate
the non-stationary Hawkes process NT on the interval [0,T ].
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Simulated examples

. We take a time-constant baseline intensity λc
<LS>(u) = 1/2.

. The local fertility function p<LS>(·; u) is set as a
Gamma-shaped function with time varying parameters.

. Example 1 [Time varying scale θ(u) and overall fertility ζ(u)]:

p<LS>(s; u) = ζ(u) θ(u)e−θ(u)s1s>0 ,

with ζ(u), θ(u) of cosine form.

. Example 2 [Time varying delay δ(u)]:

p<LS>(s; u) =
1

2
(s − δ(u))+e

−(s−δ(u))

with δ(u) = (6− 10u)× 1[0;1/2](u) + (10u − 4)× 1(1/2;1](u)

inducing a periodic phenomenon in the self-excitation.
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Figure: Theoretical local mean density (top) and Bartlett spectrum
(bottom) for Example 1.
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Figure: Conditional intensity function of a simulated Hawkes process
following Example 1, with T = 10000.
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Figure: Estimation of the local mean density (top) and of the local
Bartlett spectrum (bottom) for Example 1.
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Figure: Theoretical local Bartlett spectrum for Example 2 (local mean
density being constant over time).
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Figure: Conditional intensity function of a simulated Hawkes process
following Example 2, with T = 10000.
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Figure: Estimation of the local Bartlett spectrum for Example 2.
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Conclusion

. Self-exciting point processes ("Hawkes" processes) are
somewhat similar to autoregressive processes in time series.

. Unfortunately, unlike linear locally stationary time series, we
cannot rely on a simple representation such as the TVMA(∞)
(or spectral representation).

. Local stationary approximations can still be obtained using
local Laplace transforms and its derivatives (control of
cumulants).

. De�nitions of (local) mean intensity and a local Bartlett
spectrum follow.

. Work in progress: Asymptotic estimation theory.
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