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1. Introduction

Recall the Cameron-Martin Formula: Given a centered Gaussian
process G = (Gt)t∈T over an arbitrary set T and a random
variable ξ in L2

G , the L2-closure of the subspace spanned by G , we
have for any measurable functional F : RT 7→ R

E [F ((Gt + φ(t))t∈T )] = E
[
F ((Gt)t∈T ) eξ−

1
2Eξ

2] (1)

where φ(t) = E(ξGt).

This formula has many applications, including SDEs and SPDEs
driven by Gaussian random fields.
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The C-M formula can also be viewed an isomorphism identity
expressing a translated Gaussian process in terms of the
untranslated process, but the latter is under the changed
probability measure.

The set of all translation functions

HG = {φ : T → R : φ(t) = E(ξGt) for some ξ ∈ L2
G}

forms a Hilbert space, called the Cameron-Martin space (or the
reproducing kernel Hilbert space).
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It is well-known that (1) does not extend to the Poissonian case.

Indeed, it is easy to see that if Y = (Yt)t∈[0,1] is a Poisson process,
then there is no function v : [0, 1]→ R, v 6≡ 0 such that

E
[
F
(

(Yt + v(t))t∈[0,1]
)]

= E
[
F
(

(Yt)t∈[0,1]
)
Z
]

for all functionals F and some random variable Z ≥ 0 with EZ = 1.

We propose isomorphism identities based on random translations
instead.
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We will say that a stochastic process is Poissonian infinitely
divisible is its finite dimensional distributions are infinitely divisible
without Gaussian part.

Any infinitely divisible process X = (Xt)t∈T can be written as

X d= G + Y

where G = (Gt)t∈T and Y = (Yt)t∈T are independent processes,
G is centered Gaussian and Y is Poissonian infinitely divisible.

Isomorphism identities for infinitely divisible processes come from
combining the corresponding identities for Gaussian and Poissonian
infinitely divisible processes.
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What kind of functionals can be of interest? A few examples:

F ((Yt)t∈T ) = f (Yt1 , . . . ,Ytn ) cylindrical functional;

F ((Yt)t∈T ) = supt∈T Yt extremum;

F ((Yt)t∈T ) =
∫

T |Yt |p µ(dt) path integral;

F
(

(Yt)t∈[0,u]
)

=
∫ u

0 δy (Yt) dt local time;

F ((Yt)t∈T ) =
∫∞

0 e−ηt− dξt exponential functional, where
(ηt , ξt), t ≥ 0 is a Lévy process, T = R1 ∪R2 the union of two
disjoint copies of R+ and Yt = ηt if t ∈ R1, Yt = ξt if t ∈ R2.
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Let Y = (Yt)t∈T be a Poissonian infinitely divisible process over a
general set T . Let ν be the Lévy measure of Y on the path space
RT and assume that ν is σ-finite.
Let V = (Vt)t∈T be an arbitrary process, which is independent of
the process Y , and whose distribution on RT is absolutely
continuous with respect to ν.
We will show that for any measurable functional F : RT 7→ R,

E [F ((Yt + Vt)t∈T )] = E [F ((Yt)t∈T )Z ], (2)

for some random variable Z ≥ 0, EZ = 1, such that ((Yt ,Z )t)t∈T
is Poissonian infinitely divisible.
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Returning to our example of Poisson process (Yt)t∈[0,1], if we take

Vt = 1[0,t](η)

where η ∈ [0, 1] is a random variable with absolutely continuous
density fη and independent of Y then (2) holds:

E
[
F
(

(Yt + 1[0,t](η))t∈[0,1]
)]

= E
[
F
(

(Yt)t∈[0,1]
)
Z
]

with Z = λ−1 ∫ 1
0 fη(t) dYt and λ being the rate of Y .
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2. Lévy measures on path spaces

Notation: Path space RT = {x : T → R}; BT the cylindrical
(product) σ-algebra of RT ; 0T the origin of RT .

Definition
A measure ν on (RT ,BT ) is said to be a Lévy measure if

(L1) for each t ∈ T ∫
RT
|x(t)|2 ∧ 1 ν(dx) <∞,

(L2) for every A ∈ BT

ν(A) = ν∗(A \ 0T ),

where ν∗ denotes the inner measure.
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Remark
(A) When T is countable, then 0T ∈ BT and (L2) is equivalent
to ν(0T ) = 0. This is the usual condition guaranteeing the
uniqueness of a Lévy measure.

When T is uncountable, then 0T /∈ BT and so ν(0T ) is
undefined. Condition (L2) plays the role of ν(0T ) = 0 in this
case.
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Theorem

Let Y = (Yt)t∈T be a Poissonian infinitely divisible process. Then
there exist unique Lévy measure ν on (RT ,BT ) and b ∈ RT such
that for every finite set I ⊂ T and a ∈ RI

E exp i
∑
t∈I

atYt (3)

= exp
{∫

RT
(e〈a,xI〉 − 1− i〈a, [[xI ]]〉) ν(dx) + i〈a, bI〉

}
where 〈·, ·〉 is the Euclidean inner product in RI and [[·]] denotes a
truncation function.

Conversely, given a Lévy measure ν on (RT ,BT ) and b ∈ RT there
exists a unique in distribution process Y = (Yt)t∈T satisfying (3).
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Lévy measures for large Lévy systems can be not σ-finite.
Hence we have the following:

Theorem

Measure ν on (RT ,BT ) is a σ-finite Lévy measure if and only if
one of the following equivalent conditions holds:
(i) ν satisfies (L1) and ν∗(0T ) = 0, where ν∗ is the outer

measure;

(ii) ν satisfies (L1) and there exists a countable set T0 ⊂ T such
that

ν{x ∈ RT : xT0 ≡ 0} = 0 .
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3. Isomorphism identities for Poissonian processes

Theorem

Let Y = (Yt)t∈T be a Poissonian process with a σ-finite Lévy
measure ν and let V = (Vt)t∈T be an arbitrary process such that
L(V ) � ν. Let N be a Poisson random measure on (RT ,BT ) with
intensity ν and independent of V . Then for some b ∈ RT

Ȳt :=
∫
RT

x(t)
[
N(dx)− 1{|x(t)|≤1}ν(dx)

]
+ bt , t ∈ T ,

is a version of the process Y . Put

N(q) :=
∫
RT

q(x)N(dx),

where q(x) = dL(Y )
dν (x), x ∈ RT .
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Theorem (continue)
Then for any measurable functional F : RT 7→ R

EF
(
(Yt + Vt)t∈T

)
= E

[
F
((

Ȳt
)

t∈T

)
N(q)

]
.

Conversely, for any F as above,

E
[
F
((

Ȳt
)

t∈T

)
;N(q) > 0

]
= E

[
F
((

Ȳt + Vt
)

t∈T

)
(N(q) + q(V ))−1 ; q(V ) > 0

]
.

Furthermore, if ν{x ∈ RT : q(x) > 0} =∞, then

E
[
F
((

Ȳt
)

t∈T

)]
= E

[
F
((

Ȳt + Vt
)

t∈T

)
(N(q) + q(V ))−1

]
.
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Theorem

Let Y = (Yt)t∈T be a Poissonian process having the spectral
representation

Yt =
∫

S
ft(s)

[
N(ds)− 1{|x(t)|≤1}n(ds)

]
+ bt ,

where N is a Poisson random measure on a σ-finite measure space
(S,S, n). Let q : S 7→ R+ be such that

∫
S q(s) n(ds) = 1. Then

for any measurable functional F : RT 7→ R

E
∫

S
F
(
(Yt + ft(s))t∈T

)
q(s) n(ds) = E[F

(
(Yt)t∈T N(q)

)
] ,

where
N(q) =

∫
S
q(s)N(ds) .
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Theorem (Continue)
Conversely, for any F as above,

E[F
(

(Yt)t∈T
)

;N(q) > 0] (4)

=
∫

{q(s)>0}

E
[
F
(
(Yt + ft(s))t∈T

)
(N(q) + q(s))−1] q(s) n(ds) .

If n{s : q(s) > 0} =∞, then

E[F
(
(Xt)t∈T

)
]

=
∫

S
E
[
F
(
(Xt + ft(s)

)
t∈T

)
(N(q) + q(s))−1

]
q(s) n(ds) .
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Trying to understand the following isomorphism theorem inspired
the present study:

Example (Dynkin isomorphism theorem)
Let X = {Xt}t≥0 be a strongly symmetric transient Markov
process in a state space E and a Green function g(x , y).

Since g is positive definite, there is a centered Gaussian process
G = {Gx}x∈E with a covariance g(x , y) = Cov(Gx ,Gy ), whose
squared process G2 = {G2

x }x∈E is infinitely divisible.

Let {Lx
t : x ∈ E , t ≥ 0} be local time of X normalized to satisfy

Ex (Ly
∞) = g(x , y). Fix a ∈ E with g(a, a) > 0 and let P̃a will be

appropriately changed Pa. (Under P̃a, the process X starts at a
and is killed at its last visit to a.)
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Example (Dynkin isomorphism theorem (cont.))
Following some calculations of Eisenbaum and Kaspi (2009) we
infer that the law L(V ) on RE

+ of the process Vx := Lx
∞, x ∈ E

under P̃a is absolutely continuous with respect to the Lévy
measure ν of Yx := 1

2G
2
x , x ∈ E and the Radon-Nikodym

derivative

q(y) = dL(V )
dν (y) = 2y(a)

g(a, a) , y ∈ RE
+

so that

q(N) =
∫
RE

+

2y(a)
g(a, a) N(dy) = 2

g(a, a)
G2

a
2 = G2

a
g(a, a)
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Example (Dynkin isomorphism theorem (cont.))
Taking processes V and Y independent from each other, we get

E
[
F
(
(Yt + Vt)t∈T

)]
= E

[
F
((

Ȳt
)

t∈T

)
N(q)

]
.

or

E⊗ Ẽa

[
F
((1

2G
2
x + Lx

∞

)
x∈E

)]
= E

[
F
((1

2G
2
x

)
x∈E

G2
a

g(a, a)

)]
.

for any measurable mapping F : RE 7→ R.
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Example (Lévy processes)

Let Y = {Yt}t∈[0,1] be a Lévy process such that EeiuXt = etC(u),
where

C(u) =
∫
R

(eiux − 1− iu[[x ]]) ρ(dx) + iuc.

Let q0 : R 7→ [0,∞] be a measurable function such that∫
R q0(v) ρ(dv) = 1. Fix h > 0. By Lévy-Itô

Xt =
∫

[0,h]×R
1[0,t](r)v

(
N(dr , dv)− χ(v)drρ(dv)

)
+ ct, t ∈ [0, h].

Thus S = [0, h]× R and n = Leb ⊗ ρ. Let q(r , v) = h−1q0(v), so
that

∫
[0,h]×R q dn = 1. We have

N(q) =
∫

[0,h]×R
q(r , v)N(dr , dv) = h−1

∫
[0,h]×R

q0(v)N(dr , dv)

=
∑

r≤h,∆Xr 6=0
h−1q0(∆Xr ) := h−1Zh.

p. 21 of 27



Example (Lévy processes, continue)
Zh, h ≥ 0 is a subordinator.
We got that for any measurable functional F : R[0,h] 7→ R

E
∫

[0,h]×R
F
((

Xt + 1[0,t](r)v
)

t∈[0,h]

)
q0(v) drρ(dv)

= E[F
(

(Xt)t∈[0,h]

)
Zh] ,

and from (4)

E[F
(

(Xt)t∈[0,h]

)
;Zh > 0] (5)

=
∫ h

0

∫
{q0(v)>0}

E
[
F
((

Xt + 1[0,t](r)v
)

t∈[0,h]

) q0(v)
Zh + q0(v)

]
drρ(dv).

p. 22 of 27



4. Applications

Let’s reinstate a generic form of the isomorphism:

E [F ((Yt + Vt)t∈T )] = E [F ((Yt)t∈T )Z ], (6)

where Y ⊥⊥ V , Y = (Yt)t∈T is a Poissonian infinitely divisible
process with a σ-finite Lévy measure xn and V = (Vt)t∈T is an
arbitrary process such that L(V ) � ν.

There are two basic directions of applying (6). The first one is to
start with a process V = (Vt)t∈T of interest, associate with it
possibly easier to handle infinitely divisible process Y = (Yt)t∈T
as above, and transfer properties of Y to V via isomorphism (6).
This is the direction of applying of Dynkin’s isomorphism,
successfully followed by Marcus and Rosen.
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The second direction is to derive information about Y utilizing V .
As a toy example, we consider a Lévy process.
Example

Let Y = (Yt)t≥0 be a Poissonian Lévy process with Lévy
measure ρ. Then for any continuous ρ-a.e. function f : R 7→ R
satisfying |f (x)| ≤ C min{x2, 1} for some C > 0,

lim
h→0

h−1Ef (Yh) =
∫
R
f (v) ρ(dv) . (7)

If Y is a subordinator, then (7) holds for any right-continuous
ρ-a.e. f : R+ 7→ R+.
Proof: Given h > 0, let F : R[0,h] 7→ R be defined by
F (x) = f (x(h)). By (5)

h−1E[f (Yh);Zh > 0]

=
∫
{q0(v)>0}

E
[
f (Yh + v) q0(v)

Zh + q0(v)
]
ρ(dv) .
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Example (Continue)

Let q0 = λ−11{|v |>δ}, where λ = ρ{|v | > δ} > 0 and δ ∈ (0, 1) is
fixed. We have

h−1E[f (Yh)] = h−1E[f (Yh);Zh = 0]

+
∫
{|v |>δ}

E
[
f (Yh + v) λ−1

Zh + λ−1
]
ρ(dv)

The last term converges to
∫
{|v |>δ} f (v) ρ(dv) as h ↓ 0 and the

middle one can be made small when δ is small. 2
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The following result shows that many "nice" path properties of Y
can be transferred to Y .

Theorem

Let Y = {Yt}t∈T be a Poissonian process with a σ-finite Lévy
measure ν. Assume that paths of Y lie in a set U that is Borel for
the σ-algebra U = BT ∩ U and such that U is a subgroup of RT

under addition.
If V = {Vt}t∈T is a process whose distribution is absolutely
continuous with respect to ν, then V has a version with paths in
the set U.
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Thank you!
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