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1. Introduction

Recall the Cameron-Martin Formula: Given a centered Gaussian
process G = (Gt)cT over an arbitrary set T and a random
variable £ in L2G, the L%-closure of the subspace spanned by G, we
have for any measurable functional F : RT — R

E[F ((Ge + 6(t)eer)] = E [F (Ge)eer) 25| (1)
where ¢(t) = E(£{Gy).

This formula has many applications, including SDEs and SPDEs
driven by Gaussian random fields.



The C-M formula can also be viewed an isomorphism identity
expressing a translated Gaussian process in terms of the
untranslated process, but the latter is under the changed
probability measure.

The set of all translation functions
He={¢: T = R:p(t) =E(EG) for some € € L2}

forms a Hilbert space, called the Cameron-Martin space (or the
reproducing kernel Hilbert space).



It is well-known that (1) does not extend to the Poissonian case.

Indeed, it is easy to see that if Y = (Y}).[o,1] is a Poisson process,
then there is no function v : [0,1] — R, v # 0 such that

E {F ((Yt + V(t))te[o,l])} =E [F (( Yt)te[o,l]) Z}
for all functionals F and some random variable Z > 0 with EZ = 1.

We propose isomorphism identities based on random translations
instead.



We will say that a stochastic process is Poissonian infinitely
divisible is its finite dimensional distributions are infinitely divisible
without Gaussian part.

Any infinitely divisible process X = (X;)te7 can be written as
X2G6+Y

where G = (G;¢)teT and Y = (Y:)teT are independent processes,
G is centered Gaussian and Y is Poissonian infinitely divisible.

Isomorphism identities for infinitely divisible processes come from
combining the corresponding identities for Gaussian and Poissonian
infinitely divisible processes.
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What kind of functionals can be of interest? A few examples:

o F((Ye)ter)=1f(Yy,--.,Ys,) cylindrical functional;

o F((Ye)teT) =supscT Yr extremum;

o F((Ye)teT) = J+1YelP u(dt) path integral;

o F ((Yt)te[o,u]) = o 0,(Y:) dt local time;

o F((Ye)ter) = Jo~ e " d& exponential functional, where

(¢, &), t > 0is a Lévy process, T = Ry U R, the union of two
disjoint copiesof R and Yy =n;ift € Ry, Yi =& if t € Ry.



Let Y = (Y})teT be a Poissonian infinitely divisible process over a
general set T. Let v be the Lévy measure of Y on the path space
R” and assume that v is o-finite.

Let V = (V;)teT be an arbitrary process, which is independent of
the process Y, and whose distribution on R is absolutely
continuous with respect to v.

We will show that for any measurable functional F : RT — R,
E[F((Y:+ Ve)eer)| = E[F ((Ye)eeT) Z1, (2)

for some random variable Z > 0, EZ = 1, such that ((Y:, Z2)t)teT
is Poissonian infinitely divisible.



Returning to our example of Poisson process (Yt):e[o,1), if we take

Vi = 1[O,t] (n)

where 1 € [0,1] is a random variable with absolutely continuous
density f, and independent of Y then (2) holds:

E [F (( Y+ l[o,t](n))te[o,l]ﬂ =K {F (( Yt)te[O,l]) Z}

with Z = 271 fol f,(t) dY: and X being the rate of Y.
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2. Lévy measures on path spaces

Notation: Path space R” = {x: T — R}; BT the cylindrical
(product) o-algebra of RT; 01 the origin of R

Definition

A measure v on (R7,B7) is said to be a Lévy measure if

(L1) foreacht e T
/ IX(£)2 A 1u(dx) < oo,
RT

(L2) for every Ac BT
v(A) = v(A\ 07),

where v, denotes the inner measure.

V.




Remark

(A) When T is countable, then 07 € B and (L2) is equivalent
to v(07) = 0. This is the usual condition guaranteeing the
uniqueness of a Lévy measure.

When T is uncountable, then 07 ¢ BT and so v(07) is
undefined. Condition (L2) plays the role of v(07) = 0 in this
case.




Theorem

Let Y = (Yi)teT be a Poissonian infinitely divisible process. Then
there exist unique Lévy measure v on (R",B7) and b € RT such
that for every finite set | C T and a € R/

E exp i Z dat Yt (3)

tel

= oxp{ [ (e 1~ i(a, bl w(64) + (2,5

where (-, ) is the Euclidean inner product in R! and [[-] denotes a
truncation function.

Conversely, given a Lévy measure v on (R7,B7) and b € RT there
exists a unique in distribution process Y = (Y)teT satisfying (3).




Lévy measures for large Lévy systems can be not o-finite.
Hence we have the following:

Theorem

Measure v on (R7,BT") is a o-finite Lévy measure if and only if
one of the following equivalent conditions holds:
(i) v satisfies (L1) and v*(07) = 0, where v* is the outer
measure;

(ii) v satisfies (L1) and there exists a countable set Ty C T such

that
v{x eRT :x7, =0} =0.




3. Isomorphism identities for Poissonian processes

Theorem

Let Y = (Yt),c7 be a Poissonian process with a o-finite Lévy
measure v and let V = (i), be an arbitrary process such that
L(V) = v. Let N be a Poisson random measure on (R”,BT) with
intensity v and independent of /. Then for some b € RT

\_/t = /RT X(t) [N(dx) - 1{|X(t)|§1}l/(dx)} + by, teT,

is a version of the process Y. Put

M(@) = [ () M)
dL(Y)

where q(x) = “552(x), x e RT.




Theorem (continue)

Then for any measurable functional F : RT — R

EF ((Ye+ Ve)ier) =E {F ((mter) N(q)} ‘

Conversely, for any F as above,

E {F((Vt)tEJ;N(q) >0]
—E|F((Ve+ W), ) (V@) + a(V) ™ ia(v) > 0] .

Furthermore, if v{x € RT : q(x) > 0} = oo, then

E [F <(Vt)t€T>] _E {F ((Vt 4 Vf)ter) (N(q) + q(V))l] .




Theorem

Let Y = (Yt),c7 be a Poissonian process having the spectral
representation

Y = /ft 1{|X(r)\<1}”(ds)} + b,

where N is a Poisson random measure on a o-finite measure space
(5,8,n). Let q: S — Ry be such that [¢q(s)n(ds) =1. Then
for any measurable functional F : RT — R

E / ((Ye + £(5))eer) a(s) n(ds) = E[F ((Ye)ser N(a))],

where

N(q) = /5 g(s) N(ds)




Theorem (Continue)

Conversely, for any F as above,

E[F((Yt)teT) , N(q) > 0] (4)
= [ EIF((%+ £6Deer) (N(0) + a(s) ] a(s) ().
{q(s)>0}

If n{s : q(s) > 0} = oo, then

E[F ((Xt)er)]

= | E[F((Xe + () e 1) (N(a) + ()] als) n(ds) .




Trying to understand the following isomorphism theorem inspired
the present study:

Example (Dynkin isomorphism theorem)

Let X = {X;}+>0 be a strongly symmetric transient Markov
process in a state space E and a Green function g(x, y).

Since g is positive definite, there is a centered Gaussian process
G = {Gx}xee with a covariance g(x, y) = Cov(Gy, Gy ), whose
squared process G2 = { G2}, is infinitely divisible.

Let {Lf : x € E, t > 0} be local time of X normalized to satisfy
E.(L%) = g(x,y). Fix a € E with g(a,a) > 0 and let P, will be
appropriately changed P,. (Under P,, the process X starts at a
and is killed at its last visit to a.)
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Example (Dynkin isomorphism theorem (cont.))

Following some calculations of Eisenbaum and Kaspi (2009) we
infer that the law £(V) on RE of the process Vi := L%, x € E
under P, is absolutely continuous with respect to the Lévy
measure v of Yy := 1G2, x € E and the Radon-Nikodym

2 9x>
derivative
dL(V) 2y(a) E
pr— = R
a(y) 7 V) 2(2.2)’ y €RY
so that

N T



Example (Dynkin isomorphism theorem (cont.))

Taking processes V and Y independent from each other, we get

E[F((Ye+ Vi)eer)] =E {F <(?t)t€T> N(Q)} -

or

et [f((Get+2) )] -2 (G, o9

for any measurable mapping F : RE — R.




Example (Lévy processes)

Let Y = {Yi}tefo,1) be a Lévy process such that EetXt = otC(u)
where

Clu) = / (e — 1 — iulx])) pldx) + iuc.
R
Let go : R — [0, 0] be a measurable function such that

Jr go(v) p(dv) = 1. Fix h > 0. By Lévy-Ito

Xi = i, (r)v (N(dr, dv) — x(v)drp(dv)) + ct, t € [0, h].
[0,h] xR

Thus S = [0,h] x R and n = Leb® p. Let q(r,v) = h~1qo(v), so
that [io g g dn = 1. We have

N(g) = / q(r, v) N(dr, dv) = b1 ao(v) N(dr, dv)
[0,h] xR [0,h] xR
= > hlg(AX):=h1tZ,
r<h, DX, #0
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Example (Lévy processes, continue)

Zp, h > 0 is a subordinator.
We got that for any measurable functional F : R%A — R

B[ F((%+Tea()v), ) 900 dra(e)

[0, xR
= ]E[F ((Xt)te[o,h]> Zh] )

and from (4)

te[0,h]

EIF ((X)seo) i Zn > 0] (5)
= /h / E[F ((Xt + l[O,t](r)v> tE[O,h]) thf(c:))(v)] drp(dv)
{qo(v)>0}




4. Applications

Let's reinstate a generic form of the isomorphism:
E[F((Ye+ Vi)eer)] = E[F ((Ye)eeT) Z], (6)

where Y 1L V, Y = (Yi)teT is a Poissonian infinitely divisible
process with a o-finite Lévy measure xn and V = (V;)ie71 is an
arbitrary process such that £(V) < v.

There are two basic directions of applying (6). The first one is to
start with a process V = (V;);c1 of interest, associate with it
possibly easier to handle infinitely divisible process Y = (Y:)teT
as above, and transfer properties of Y to V via isomorphism (6).
This is the direction of applying of Dynkin's isomorphism,
successfully followed by Marcus and Rosen.



The second direction is to derive information about Y utilizing V.
As a toy example, we consider a Lévy process.

Example

Let Y = (Y¢);>o be a Poissonian Lévy process with Lévy
measure p. Then for any continuous p-a.e. function f : R — R
satisfying |f(x)| < Cmin{x2,1} for some C > 0,

lim hYEA(Y;) = /R F(v) pldv). (7)

If Y is a subordinator, then (7) holds for any right-continuous
p-ae. fiRy — Ry

Proof: Given h > 0, let F : RI%/ . R be defined by

F(x) = f(x(h)). By (5)

h=R[f(Y3): Z, > 0]

= v 7q0(‘/) v
- {qo(V)>0}]E[f(Yh+ ) Zh+ QO(V)] plv).

p. 24 of 27




Example (Continue)

Let go = A" 1y)y(>5}, where A = p{|v| > 0} >0 and § € (0,1) is
fixed. We have

hLE[f(Y3)] = h1E[f(Y}); Z, = 0]
)\—1
s /“M} E[f (Ya -+ ) 71 ()

The last term converges to [, f(v) p(dv) as h ] 0 and the
middle one can be made small when § is small. O




The following result shows that many "nice" path properties of Y
can be transferred to Y.

Theorem

Let Y = {Y:i}teT be a Poissonian process with a o-finite Lévy
measure v. Assume that paths of Y lie in a set U that is Borel for
the o-algebrad = B™ N U and such that U is a subgroup of RT
under addition.

If V. ={Vi}iteT is a process whose distribution is absolutely
continuous with respect to v, then V' has a version with paths in
the set U.




Thank you!



