Isomorphism identities for infinitely divisible processes with some applications

Jan Rosiński

University of Tennessee, USA

Dependence, Stability, and Extremes Workshop May 2–6, 2016

Fields Institute, Toronto, Canada

- 1. Introduction
- 2. Lévy measures on path spaces
- 3. Isomorphism identities for Poissonian processes
- 4. Applications

Recall the Cameron-Martin Formula: Given a centered Gaussian process $G = (G_t)_{t \in T}$ over an arbitrary set T and a random variable ξ in L^2_G , the L^2 -closure of the subspace spanned by G, we have for any measurable functional $F : \mathbb{R}^T \mapsto \mathbb{R}$

$$\mathbb{E}\left[F\left((G_t + \phi(t))_{t \in \mathcal{T}}\right)\right] = \mathbb{E}\left[F\left((G_t)_{t \in \mathcal{T}}\right)e^{\xi - \frac{1}{2}\mathbb{E}\xi^2}\right]$$
(1)

where $\phi(t) = \mathbb{E}(\xi G_t)$.

This formula has many applications, including SDEs and SPDEs driven by Gaussian random fields.

The C-M formula can also be viewed an isomorphism identity expressing a translated Gaussian process in terms of the untranslated process, but the latter is under the changed probability measure.

The set of all translation functions

$$\mathcal{H}_{\mathcal{G}} = \{ \phi : T \to \mathbb{R} : \phi(t) = \mathbb{E}(\xi G_t) \text{ for some } \xi \in L^2_{\mathcal{G}} \}$$

forms a Hilbert space, called the Cameron-Martin space (or the reproducing kernel Hilbert space).

It is well-known that (1) does not extend to the Poissonian case.

Indeed, it is easy to see that if $Y = (Y_t)_{t \in [0,1]}$ is a Poisson process, then there is no function $v : [0,1] \to \mathbb{R}, v \neq 0$ such that

$$\mathbb{E}\left[F\left((Y_t+v(t))_{t\in[0,1]}\right)\right]=\mathbb{E}\left[F\left((Y_t)_{t\in[0,1]}\right)Z\right]$$

for all functionals F and some random variable $Z \ge 0$ with $\mathbb{E}Z = 1$.

We propose isomorphism identities based on random translations instead.

We will say that a stochastic process is Poissonian infinitely divisible is its finite dimensional distributions are infinitely divisible without Gaussian part.

Any infinitely divisible process $X = (X_t)_{t \in T}$ can be written as

$$X \stackrel{d}{=} G + Y$$

where $G = (G_t)_{t \in T}$ and $Y = (Y_t)_{t \in T}$ are independent processes, *G* is centered Gaussian and *Y* is Poissonian infinitely divisible.

Isomorphism identities for infinitely divisible processes come from combining the corresponding identities for Gaussian and Poissonian infinitely divisible processes. What kind of functionals can be of interest? A few examples:

- $F((Y_t)_{t \in T}) = f(Y_{t_1}, \ldots, Y_{t_n})$ cylindrical functional;
- $F((Y_t)_{t\in T}) = \sup_{t\in T} Y_t$ extremum;
- $F\left((Y_t)_{t\in T}\right) = \int_T |Y_t|^p \, \mu(dt)$ path integral;

•
$$F\left((Y_t)_{t\in[0,u]}
ight)=\int_0^u\delta_y(Y_t)\,dt$$
 local time;

• $F((Y_t)_{t\in T}) = \int_0^\infty e^{-\eta_t} d\xi_t$ exponential functional, where $(\eta_t, \xi_t), t \ge 0$ is a Lévy process, $T = R_1 \cup R_2$ the union of two disjoint copies of \mathbb{R}_+ and $Y_t = \eta_t$ if $t \in R_1$, $Y_t = \xi_t$ if $t \in R_2$.

Let $Y = (Y_t)_{t \in T}$ be a Poissonian infinitely divisible process over a general set T. Let ν be the Lévy measure of Y on the path space \mathbb{R}^T and assume that ν is σ -finite.

Let $V = (V_t)_{t \in T}$ be an arbitrary process, which is independent of the process Y, and whose distribution on \mathbb{R}^T is absolutely continuous with respect to ν .

We will show that for any measurable functional $F : \mathbb{R}^T \mapsto \mathbb{R}$,

$$\mathbb{E}\left[F\left((Y_t+V_t)_{t\in\mathcal{T}}\right)\right]=\mathbb{E}\left[F\left((Y_t)_{t\in\mathcal{T}}\right)Z\right],$$
(2)

for some random variable $Z \ge 0$, $\mathbb{E}Z = 1$, such that $((Y_t, Z)_t)_{t \in T}$ is Poissonian infinitely divisible.

Returning to our example of Poisson process $(Y_t)_{t \in [0,1]}$, if we take

$$V_t = \mathbf{1}_{[0,t]}(\eta)$$

where $\eta \in [0, 1]$ is a random variable with absolutely continuous density f_{η} and independent of Y then (2) holds:

$$\mathbb{E}\left[F\left((Y_t + \mathbf{1}_{[0,t]}(\eta))_{t \in [0,1]}\right)\right] = \mathbb{E}\left[F\left((Y_t)_{t \in [0,1]}\right)Z\right]$$

with $Z = \lambda^{-1} \int_0^1 f_{\eta}(t) dY_t$ and λ being the rate of Y.

2. Lévy measures on path spaces

<u>Notation</u>: Path space $\mathbb{R}^T = \{x : T \to \mathbb{R}\}; \mathcal{B}^T$ the cylindrical (product) σ -algebra of $\mathbb{R}^T; \mathcal{O}_T$ the origin of \mathbb{R}^T .

Definition

A measure ν on $(\mathbb{R}^T, \mathcal{B}^T)$ is said to be a Lévy measure if (L1) for each $t \in T$

$$\int_{\mathbb{R}^T} |x(t)|^2 \wedge 1 \, \nu(dx) < \infty,$$

(L2) for every $A \in \mathcal{B}^{\mathcal{T}}$

$$\nu(A) = \nu_*(A \setminus 0_T),$$

where ν_* denotes the inner measure.

Remark

(A) When T is countable, then $0_T \in \mathcal{B}^T$ and (L2) is equivalent to $\nu(0_T) = 0$. This is the usual condition guaranteeing the uniqueness of a Lévy measure.

When \mathcal{T} is uncountable, then $\mathbf{0}_{\mathcal{T}} \notin \mathcal{B}^{\mathcal{T}}$ and so $\nu(\mathbf{0}_{\mathcal{T}})$ is undefined. Condition (L2) plays the role of $\nu(\mathbf{0}_{\mathcal{T}}) = \mathbf{0}$ in this case.

Theorem

Let $Y = (Y_t)_{t \in T}$ be a Poissonian infinitely divisible process. Then there exist unique Lévy measure ν on $(\mathbb{R}^T, \mathcal{B}^T)$ and $b \in \mathbb{R}^T$ such that for every finite set $I \subset T$ and $a \in \mathbb{R}^I$

$$\mathbb{E} \exp i \sum_{t \in I} a_t Y_t$$

$$= \exp \left\{ \int_{\mathbb{R}^T} (e^{\langle a, x_l \rangle} - 1 - i \langle a, \llbracket x_l \rrbracket) \nu(dx) + i \langle a, b_l \rangle \right\}$$
(3)

where $\langle \cdot, \cdot \rangle$ is the Euclidean inner product in \mathbb{R}^{I} and $\llbracket \cdot \rrbracket$ denotes a truncation function.

Conversely, given a Lévy measure ν on $(\mathbb{R}^T, \mathcal{B}^T)$ and $b \in \mathbb{R}^T$ there exists a unique in distribution process $Y = (Y_t)_{t \in T}$ satisfying (3).

Lévy measures for large Lévy systems can be not σ -finite. Hence we have the following:

Theorem

Measure ν on $(\mathbb{R}^T, \mathcal{B}^T)$ is a σ -finite Lévy measure if and only if one of the following equivalent conditions holds:

- (i) ν satisfies (L1) and ν*(0_T) = 0, where ν* is the outer measure;
- (ii) ν satisfies (L1) and there exists a countable set $T_0 \subset T$ such that

$$\nu\{x\in\mathbb{R}^T:x_{T_0}\equiv 0\}=0.$$

Theorem

W

Let $Y = (Y_t)_{t \in T}$ be a Poissonian process with a σ -finite Lévy measure ν and let $V = (V_t)_{t \in T}$ be an arbitrary process such that $\mathcal{L}(V) \leq \nu$. Let N be a Poisson random measure on $(\mathbb{R}^T, \mathcal{B}^T)$ with intensity ν and independent of V. Then for some $b \in \mathbb{R}^T$

$$ar{Y}_t := \int_{\mathbb{R}^T} x(t) \left[\mathsf{N}(dx) - \mathbf{1}_{\{|x(t)| \leq 1\}} \nu(dx)
ight] + b_t, \quad t \in T \,,$$

is a version of the process Y. Put

$$N(q):=\int_{\mathbb{R}^T}q(x)\,N(dx),$$
here $q(x)=rac{d\mathcal{L}(Y)}{d
u}(x),\,x\in\mathbb{R}^T.$

Theorem (continue)

Then for any measurable functional $F : \mathbb{R}^T \mapsto \mathbb{R}$

$$\mathbb{E}F\left(\left(Y_t+V_t\right)_{t\in T}\right)=\mathbb{E}\left[F\left(\left(\bar{Y}_t\right)_{t\in T}\right)N(q)\right]$$

Conversely, for any F as above,

$$\mathbb{E}\left[F\left(\left(\bar{Y}_{t}\right)_{t\in T}\right); N(q) > 0\right]$$

= $\mathbb{E}\left[F\left(\left(\bar{Y}_{t} + V_{t}\right)_{t\in T}\right) \left(N(q) + q(V)\right)^{-1}; q(V) > 0\right].$

Furthermore, if $\nu \{x \in \mathbb{R}^T : q(x) > 0\} = \infty$, then

$$\mathbb{E}\left[F\left(\left(\bar{Y}_{t}\right)_{t\in T}\right)\right] = \mathbb{E}\left[F\left(\left(\bar{Y}_{t}+V_{t}\right)_{t\in T}\right)\left(N(q)+q(V)\right)^{-1}\right]$$

٠

Theorem

Let $Y = (Y_t)_{t \in T}$ be a Poissonian process having the spectral representation

$$Y_t = \int_{S} f_t(s) \Big[N(ds) - \mathbf{1}_{\{|x(t)| \le 1\}} n(ds) \Big] + b_t \,,$$

where N is a Poisson random measure on a σ -finite measure space (S, S, n). Let $q: S \mapsto \mathbb{R}_+$ be such that $\int_S q(s) n(ds) = 1$. Then for any measurable functional $F: \mathbb{R}^T \mapsto \mathbb{R}$

$$\mathbb{E}\int_{S}F\left(\left(Y_{t}+f_{t}(s)\right)_{t\in\mathcal{T}}\right) q(s) n(ds)=\mathbb{E}[F\left(\left(Y_{t}\right)_{t\in\mathcal{T}}N(q)\right)],$$

where

$$N(q) = \int_S q(s) N(ds)$$
 .

Theorem (Continue)

Conversely, for any F as above,

$$\mathbb{E}[F((Y_t)_{t\in T}); N(q) > 0]$$

$$= \int_{\{q(s)>0\}} \mathbb{E}[F((Y_t + f_t(s))_{t\in T}) (N(q) + q(s))^{-1}] q(s) n(ds).$$
(4)

If
$$n\{s: q(s) > 0\} = \infty$$
, then

$$\mathbb{E}[F((X_t)_{t \in T})]$$

$$= \int_{S} \mathbb{E}\left[F((X_t + f_t(s))_{t \in T})(N(q) + q(s))^{-1}\right]q(s) n(ds).$$

Trying to understand the following isomorphism theorem inspired the present study:

Example (Dynkin isomorphism theorem)

Let $X = \{X_t\}_{t \ge 0}$ be a strongly symmetric transient Markov process in a state space E and a Green function g(x, y).

Since g is positive definite, there is a centered Gaussian process $G = \{G_x\}_{x \in E}$ with a covariance $g(x, y) = \text{Cov}(G_x, G_y)$, whose squared process $G^2 = \{G_x^2\}_{x \in E}$ is infinitely divisible.

Let $\{L_t^x : x \in E, t \ge 0\}$ be local time of X normalized to satisfy $\mathbb{E}_x(L_\infty^y) = g(x, y)$. Fix $a \in E$ with g(a, a) > 0 and let \tilde{P}_a will be appropriately changed P_a . (Under \tilde{P}_a , the process X starts at a and is killed at its last visit to a.)

Example (Dynkin isomorphism theorem (cont.))

Following some calculations of Eisenbaum and Kaspi (2009) we infer that the law $\mathcal{L}(V)$ on \mathbb{R}^{E}_{+} of the process $V_{x} := L_{\infty}^{x}, x \in E$ under \tilde{P}_{a} is absolutely continuous with respect to the Lévy measure ν of $Y_{x} := \frac{1}{2}G_{x}^{2}, x \in E$ and the Radon-Nikodym derivative

$$q(y)=rac{d\mathcal{L}(V)}{d
u}(y)=rac{2y(a)}{g(a,a)}, \hspace{1em} y\in \mathbb{R}^{E}_+$$

so that

$$q(N) = \int_{\mathbb{R}^{E}_{+}} \frac{2y(a)}{g(a,a)} N(dy) = \frac{2}{g(a,a)} \frac{G_{a}^{2}}{2} = \frac{G_{a}^{2}}{g(a,a)}$$

Example (Dynkin isomorphism theorem (cont.))

Taking processes \boldsymbol{V} and \boldsymbol{Y} independent from each other, we get

$$\mathbb{E}\left[F\left(\left(Y_t+V_t\right)_{t\in\mathcal{T}}\right)\right]=\mathbb{E}\left[F\left(\left(\bar{Y}_t\right)_{t\in\mathcal{T}}\right)N(q)\right]$$

or

$$\mathbb{E} \otimes \tilde{\mathbb{E}}_{a} \left[F\left(\left(\frac{1}{2} G_{x}^{2} + L_{\infty}^{x} \right)_{x \in E} \right) \right] = \mathbb{E} \left[F\left(\left(\frac{1}{2} G_{x}^{2} \right)_{x \in E} \frac{G_{a}^{2}}{g(a, a)} \right) \right].$$

for any measurable mapping $F : \mathbb{R}^E \mapsto \mathbb{R}$.

Example (Lévy processes)

Let $Y = \{Y_t\}_{t \in [0,1]}$ be a Lévy process such that $\mathbb{E} e^{iuX_t} = e^{tC(u)},$ where

$$C(u) = \int_{\mathbb{R}} (e^{iux} - 1 - iu[[x]]) \rho(dx) + iuc.$$

Let $q_0 : \mathbb{R} \mapsto [0, \infty]$ be a measurable function such that $\int_{\mathbb{R}} q_0(v) \rho(dv) = 1$. Fix h > 0. By Lévy-Itô

$$X_t = \int_{[0,h]\times\mathbb{R}} \mathbf{1}_{[0,t]}(r) v \left(N(dr,dv) - \chi(v) dr \rho(dv) \right) + ct, \ t \in [0,h].$$

Thus $S = [0, h] \times \mathbb{R}$ and $n = Leb \otimes \rho$. Let $q(r, v) = h^{-1}q_0(v)$, so that $\int_{[0,h] \times \mathbb{R}} q \, dn = 1$. We have

$$N(q) = \int_{[0,h]\times\mathbb{R}} q(r,v) N(dr,dv) = h^{-1} \int_{[0,h]\times\mathbb{R}} q_0(v) N(dr,dv)$$

= $\sum_{r \le h, \Delta X_r \ne 0} h^{-1} q_0(\Delta X_r) := h^{-1} Z_h.$

Example (Lévy processes, continue)

$$\begin{split} &Z_h,\,h\geq 0 \text{ is a subordinator.}\\ &\text{We got that for any measurable functional } F:\mathbb{R}^{[0,h]}\mapsto \mathbb{R} \end{split}$$

$$\mathbb{E}\int_{[0,h]\times\mathbb{R}} F\left(\left(X_t+\mathbf{1}_{[0,t]}(r)v\right)_{t\in[0,h]}\right) q_0(v) dr\rho(dv)$$

= $\mathbb{E}[F\left((X_t)_{t\in[0,h]}\right) Z_h],$

and from (4)

$$\mathbb{E}[F\left((X_{t})_{t\in[0,h]}\right); Z_{h} > 0]$$

$$= \int_{0}^{h} \int_{\{q_{0}(v)>0\}} \mathbb{E}[F\left(\left(X_{t} + \mathbf{1}_{[0,t]}(v)v\right)_{t\in[0,h]}\right) \frac{q_{0}(v)}{Z_{h} + q_{0}(v)}] dr\rho(dv)$$
(5)

Let's reinstate a generic form of the isomorphism:

$$\mathbb{E}\left[F\left((Y_t+V_t)_{t\in T}\right)\right]=\mathbb{E}\left[F\left((Y_t)_{t\in T}\right)Z\right],$$
(6)

where $Y \perp V$, $Y = (Y_t)_{t \in T}$ is a Poissonian infinitely divisible process with a σ -finite Lévy measure xn and $V = (V_t)_{t \in T}$ is an arbitrary process such that $\mathcal{L}(V) \leq \nu$.

There are two basic directions of applying (6). The first one is to start with a process $V = (V_t)_{t \in T}$ of interest, associate with it possibly easier to handle infinitely divisible process $Y = (Y_t)_{t \in T}$ as above, and transfer properties of Y to V via isomorphism (6). This is the direction of applying of Dynkin's isomorphism, successfully followed by Marcus and Rosen.

The second direction is to derive information about Y utilizing V. As a toy example, we consider a Lévy process.

Example

Let $Y = (Y_t)_{t \ge 0}$ be a Poissonian Lévy process with Lévy measure ρ . Then for any continuous ρ -a.e. function $f : \mathbb{R} \mapsto \mathbb{R}$ satisfying $|f(x)| \le C \min\{x^2, 1\}$ for some C > 0,

$$\lim_{h\to 0} h^{-1} \mathbb{E}f(Y_h) = \int_{\mathbb{R}} f(v) \rho(dv) \,. \tag{7}$$

If Y is a subordinator, then (7) holds for any right-continuous ρ -a.e. $f : \mathbb{R}_+ \mapsto \mathbb{R}_+$. **Proof:** Given h > 0, let $F : \mathbb{R}^{[0,h]} \mapsto \mathbb{R}$ be defined by F(x) = f(x(h)). By (5)

$$h^{-1}\mathbb{E}[f(Y_h); Z_h > 0] = \int_{\{q_0(v) > 0\}} \mathbb{E}[f(Y_h + v) \frac{q_0(v)}{Z_h + q_0(v)}] \rho(dv).$$

Example (Continue)

Let $q_0 = \lambda^{-1} \mathbf{1}_{\{|v| > \delta\}}$, where $\lambda = \rho\{|v| > \delta\} > 0$ and $\delta \in (0, 1)$ is fixed. We have

$$\begin{split} h^{-1} \mathbb{E}[f(Y_h)] &= h^{-1} \mathbb{E}[f(Y_h); Z_h = 0] \\ &+ \int_{\{|v| > \delta\}} \mathbb{E}[f(Y_h + v) \frac{\lambda^{-1}}{Z_h + \lambda^{-1}}] \rho(dv) \end{split}$$

The last term converges to $\int_{\{|v|>\delta\}} f(v) \rho(dv)$ as $h \downarrow 0$ and the middle one can be made small when δ is small. \Box

The following result shows that many "nice" path properties of Y can be transferred to Y.

Theorem

Let $Y = \{Y_t\}_{t \in T}$ be a Poissonian process with a σ -finite Lévy measure ν . Assume that paths of Y lie in a set U that is Borel for the σ -algebra $\mathcal{U} = \mathcal{B}^T \cap U$ and such that U is a subgroup of \mathbb{R}^T under addition. If $V = \{V_t\}_{t \in T}$ is a process whose distribution is absolutely continuous with respect to ν , then V has a version with paths in the set U. Thank you!