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1. Growing preferential attachment networks

See Bollobás, Borgs, Chayes, and Riordan (2003) and Krapivsky and
Redner (2001).

1.1. Model description

• Model parameters: α, β, γ, δin, δout with α + β + γ = 1.

• G(n) is a directed random graph with n edges, N(n) nodes.

• Set of nodes of G(n) is Vn; so |Vn| = N(n).

• Set of edges of G(n) is En = {(u, v) ∈ Vn × Vn : (u, v) ∈ En}.

• In-degree of v is Din(v); out-degree of v is Dout. Dependence on
n is suppressed.

• Obtain graph G(n) from G(n− 1) in a Markovian way as follows:
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1. With probability α, append to G(n−1)
a new node v /∈ Vn−1 and create directed
edge v 7→ w ∈ Vn−1 with probability

Din(w) + δin
n− 1 + δinN(n− 1)

.

w	
  

v	
  

2. With probability γ, append to G(n− 1)
a new node v /∈ Vn−1 and create directed
edge w ∈ Vn−1 7→ v /∈ Vn−1 with probabil-
ity

Dout(w) + δout
n− 1 + δoutN(n− 1)

.

w	
  

v	
  

3. With probability β, create new directed
edge between existing nodes

v ∈ Vn−1 7→ w ∈ Vn−1

with probability( Dout(v) + δout
n− 1 + δoutN(n− 1)

)( Din(w) + δin
n− 1 + δinN(n− 1)

)
.

w	
  

v
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1.2. Background: What’s known.

Notation:

N(n) = # nodes in Vn.

n = # edges in En.

Nij(n) = # nodes with in-degree=i and out-degree=j in G(n).

Then (eg, Bollobás, Borgs, Chayes, and Riordan (2003)) the limiting
proportion of nodes with in-degree=i and out-degree=j is

lim
n→∞

Nij(n)

N(n)
= pij = a prob mass function.

Marginally, the limiting degree frequency (pij) has power-law tails: For
some finite positive constants Cin and Cout,

pi(in) :=
∞∑
j=0

pij ∼ Cini
−αin as i→∞, as long as αδin + γ > 0,

pj(out) :=
∞∑
i=0

pij ∼ Coutj
−αout as j →∞, as long as γδout + α > 0,

where

αin = 1 +
1 + δin(α + γ)

α + β
, αout = 1 +

1 + δout(α + γ)

γ + β
.
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Conclude that:

• αin > 1, αout > 1, and

• Manufacture random pair

(I, 0) ∼ {pij},

and then

P [I = i] ∼ Cini
−αin , i→∞; P [O = j] ∼ Coutj

−αout , j →∞.

• So, as x→∞,

P [I > x] ∼ kinx
−(αin−1), P [O > x] ∼ koutx

−(αout−1).

• Statisticians note: First we let n → ∞ and then x → ∞. Data
usually node based without letting n→∞.

Question: Is (I, O) jointly regularly varying? (Hint: Yes.)
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1.3. Methods of attack.

1. Full frontal assault: Prove directly P [(I, O) ∈ · ] is a regularly
varying measure. (Samorodnitsky, Resnick, Towsley, Davis, Willis,
and Wan, 2016).

2. Sneaky Resnicki: Multivariate Tauberian theorem after comput-
ing the generating function. (Resnick and Samorodnitsky, 2015)

3. Analysis of the mass function {pij}. (Wang and Resnick, 2016)
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1.4. The Generating Function of (I, O) ∼ {pij}.

• Because of the Markovian nature of the model construction, pij
satisfies difference relation in (i, j). (Bollobás, Borgs, Chayes, and
Riordan, 2003).

• Solve the difference equations using pde methods (Samorodnitsky,
Resnick, Towsley, Davis, Willis, and Wan, 2016) to get explicit
formula for

ϕ(x, y) = E
(
xIyO

)
=
∞∑
i=0

∞∑
j=0

xiyjpij, 0 ≤ x, y ≤ 1, (1)

where

ϕ(x, y) =
γ

α + γ
xϕ1(x, y) +

α

α + γ
yϕ2(x, y) , (2)

with (constants c1, c2, a are functions of αin, αout)

ϕ1(x, y) =c−11

∫ ∞
1

z−(1+1/c1)
(
x+ (1− x)z

)−(δin+1)(
y + (1− y)za

)−δout
dz ,

(3)

ϕ2(x, y) =c−11

∫ ∞
1

z−(1+1/c1)
(
x+ (1− x)z

)−δin(y + (1− y)za
)−(δout+1)

dz

(4)
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for 0 ≤ x, y ≤ 1. Further:

c1 =
1

αin − 1
, c2 =

1

αout − 1
, a = c2/c1.

• Hmmmmmm. . . !

• Analyze the generating functions ϕ1, ϕ2 separately.
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2. Skip the blood and guts! What’s the answer?

Theorem. The random vector
(
I, O) with joint mass function {pij}

satisfies as t→∞,

tP

[( I

t1/(αin−1)
,

O

t1/(αout−1)

)
∈ ·

]
v→ γ

α + γ
ν1(·) +

α

α + γ
ν2(·),

vaguely in M+([0,∞]2 \{0}) and ν1 and ν2 concentrate on (0,∞)2 and
have Lebesgue densities f1, f2 given by,

f1(x, y) =c−11

(
Γ(δin + 1)Γ(δout)

)−1
xδinyδout−1

×
∫ ∞
0

z−(2+1/c1+δin+aδout)e−(x/z+y/z
a) dz,

and

f2(x, y) =c−11

(
Γ(δin)Γ(δout + 1)

)−1
xδin−1yδout

×
∫ ∞
0

z−(1+a+1/c1+δin+aδout)e−(x/z+y/z
a) dz .
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3. Full frontal direct assault.

Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan (2016)
From the form of the generating function:

• The pair (I, O) has representation

(I, O)
d
= B(1 +X1, Y1) + (1−B)(X2, 1 + Y2),

where B is a Bernoulli switching variable independent of Xj, Yj,
j = 1, 2 with

P (B = 1) = 1− P (B = 0) =
γ

α + γ
.

and
(X1, Y1) ∼ ϕ1 and (X2, Y2) ∼ ϕ2.
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• Form of ϕi i = 1, 2:

– The negative binomial distribution is id;

– Suppose {Tλ(p), p ∈ (0, 1)} and {T̃µ(p), p ∈ (0, 1)} are two
independent families of negative binomial random variables
for any choice of λ, µ.

– Write Xj, Yj, j = 1, 2

(X1, Y1) =(Tδin+1(Z
−1), T̃δout(Z

−a)),

(X2, Y2) =(Tδin(Z−1), T̃δout+1(Z
−a)),

where

– Z is Pareto on [1,∞) with index c−11 , independent of the
negative binomial random variables.

• Prove multivariate regular variation of (X1, Yi), i = 1, 2 is inher-
ited from the Pareto Z. [But the negative binomials smear the
limit measure mass over whole first quadrant.]
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4. Sneaky: Tauberian method

Resnick and Samorodnitsky (2015)

• Abel-Tauberian theorems relate power law behavior of distribu-
tions and their transforms in Rp

+.

Antecedents:

– p = 1, Bingham, Goldie, and Teugels (1987), Feller (1971),
Karamata (1931).

– p > 1 for standard regular variation: Resnick (1991, 2007),
Stadtmüller (1981), Stadtmüller and Trautner (1979, 1981),
Stam (1977), Yakimiv (2005).

• Assume U ∈M+(Rp
+) with distribution function U(x) = U([0,x])

and the Laplace transform Û(λ) of U exists:

Û(λ) =

∫
Rp
+

exp{−
p∑
i=1

λixi}U(dx) <∞, λ ∈ Rp
+.
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4.1. First 1/2 Taub

Assume

1. ∃ bi ∈ RV1/γi , γi > 0, i = 1, . . . , p; set

b(t) = (b1(t), . . . , bp(t)).

2. U is regularly varying infinite measure with limit measure U∞ on
Rp

+:

Ut(·) :=
1

t
U(b(t)· ) v→ U∞(·).

3. Regularity condition:

lim
y→∞

lim sup
t→∞

∫
∪pi=1[vi>y]

e−
∑p

i=1 vi/xiUt(dv) = 0. ([UR])

Then

1. The Laplace transforms Û(1/x) and Û∞(1/x) are distribution
functions of Radon measures on Rp

+ and

2. First 1/2 Taub: the measure corresponding to Û(1/x) inherits
non-standard regular variation: for x > 0

1

t
Û
( 1

b(t)x

)
→ Û∞

(1
x

)
, (5)
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4.1.1. Proof sketch of First 1/2 Taub; map your way to happiness.

(i) Assume U is regularly varying:

Ut(·) :=
1

t
U(b(t)·) v→ U∞(·).

(ii) Set F = ( 1
E1
, . . . , 1

Ep
), where (E1, . . . , Ep) are iid exp rv’s so 1/Ei

is unit Frechet. In M+

(
[0,∞]p × Rp

+

)
P [F ∈ · ]× Ut

v→ P [F ∈ · ]× U∞.

(iii) Define h : [0,∞]p × Rp
+ 7→ [0,∞]p × Rp

+ by

h(x,y) = (xy,y).

(iv) By a continuity theorem for convergence of measures:(
P [F ∈ · ]× Ut

)
◦ h−1

(
[0,x]× [0, y1]

)
→
(
P [F ∈ · ]× U∞

)
◦ h−1

(
[0,x]× [0, y1]

)
.

(v) Unpack: As t→∞,∫
v≤y1

e−
∑p

i=1 vi/xiUt(dv)→
∫
v≤y1

e−
∑p

i=1 vi/xiU∞(dv).

(vi) Let y →∞ via condition [UR]. Done!
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4.2. Second 1/2 Taub.

Assume

1. The infinite measure U ∈M+(Rp
+) has distribution function U(x) =

U([0,x]) and the Laplace transform Û(λ) of U exists:

Û(λ) =

∫
Rp
+

exp{−λ′x}U(dx) <∞, λ ∈ Rp
+.

2. bi ∈ RV1/γi , γi > 0 for i = 1, . . . , p.

3. Condition [UR] holds:

lim
y→∞

lim sup
t→∞

∫
∪pi=1[vi>y]

e−
∑p

i=1 vi/xiUt(dv) = 0. ([UR])

4. There exists a finite-valued function Û∞ such that for x > 0,

1

t
Û
( 1

b(t)x

)
=

1

t
Û
( 1

b1(t)x1
, . . . ,

1

bp(t)xp

)
→ Û∞(1/x). (6)

Then for some measure U∞ ∈M+(Rp
+) whose Laplace transform is Û∞,

we have as t→∞,

Ut(·) =
1

t
U(b(t)· )→ U∞(·), in M+(Rp

+).
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4.3. Apply to random graph.

• To apply Tauberian theory, need infinite measure: So for ϕ1, fix
k > αin − 1 and set

ψ(x, y) =
∂kϕ1

∂xk
(x, y) =

∞∑
i=0

∞∑
j=0

xiyjm
(k)
ij

where the quantities m
(k)
ij can be calculated in terms of pij’s.

• Define
U(·) =

∑
i,j

m
(k)
ij ε(i,j)(·)

as an infinite Radon measure on R2
+ concentrating on

(
{0, 1, 2, . . .}

)2
that puts mass m

(k)
ij at (i, j).

• Compute Û , verify [UR], verify Û(1/x) is regularly varying.

• Voila!
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5. Analysis of the mass function {pij}.

Wang and Resnick (2016)
Suppose U(·) is a measure on R2

+ with [pdf, pmf] [f(x, y), f(i, j)].

• If U is a regularly varying measure, is f a regularly varying [func-
tion, array]?

Not always true even in one dimension.

• If f is a regularly varying [function, array], is U a regularly varying
measure.

Shock! Not necessarily and a general analogue of Karamata’s
theorem on integration fails.

• Definition of regularly varying array?
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5.1. Definitions: Regularly varying array.

• A doubly indexed function f : Z2
+ \{0} 7→ R+ is regularly varying

with scaling functions b1 and b2 and limit function λ(x, y) if for
some h ∈ RVα for some α ∈ R, bi ∈ RVβi , βi > 0, we have

lim
n→∞

f([b1(n)x], [b2(n)y])

h(n)
= λ(x, y) > 0, ∀x, y > 0.

• A function f : R2
+ 7→ R+ is regularly varying if the same limit

holds without the square brackets [],[].

• If f(i, j) is regularly varying, it is embeddable if ∃ regularly vary-
ing g(x, y) and

g(x, y) = f([x], [y]).



Model

Answer

Direct

Taub

pmf

Conclusion

Title Page

JJ II

J I

Page 19 of 26

Go Back

Full Screen

Close

Quit

5.2. Typical result.

Suppose u(i, j) > 0 satisfies

1. u(i, j) is regularly varying.

2. u satisfies some extra condition.

Then

1. The function
g(x, y) := u([x], [y])

is regularly varying as function of continuous variables and u(i, j)
is embeddable.

2. If u(i, j) = p(i, j) is a pmf corresponding to (X, Y ), then

P [(X, Y ) ∈ · ]

is a regularly varying measure.

Example of extra condition: Easiest is to suppose u(i, j) is eventually
decreasing.

BUT: This does not hold for preferential attachment problem.
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5.2.1. More flexible for the non-standard case.

Suppose

• h(·) ∈ RVρ, ρ < 0, and u : Z2
+ 7→ R+,

• Scaling functions are power laws: bi(t) = t1/αi , i = 1, 2. [The non-
standard case is harder than the standard and we had to suppose
bi are power functions.]

• There exists a limit function λ0 > 0 defined on

E0 := {(x, y) : ‖(xα1 , yα2)‖ = 1},

such that u satisfies

lim
t→∞

u([t1/α1x], [t1/α2y])

h(t)
= λ0(x, y), ∀(x, y) ∈ E0. (7)

Then

1. The doubly indexed function u(i, j) is regularly varying: For all
x, y > 0, define w = w(x, y) := (xα1 , yα2) and

lim
n→∞

u([n1/α1x], [n1/α2y])

h(n)
= λ(x, y) := λ0

( x

‖w‖1/α1
,

y

‖w‖1/α2

)
‖w‖ρ;
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2. The doubly indexed function u(i, j) is embeddable in a non-standard
regularly varying function f : R2

+ 7→ R with limit function λ(·)
such that f(x, y) = u([x], [y]);

3. If convergence in (7) is uniform on E0, then also the measure cor-
responding to u(i, j) is a (discretely supported) regularly varying
measure.

5.3. Back to preferential attachment.

Recall the representation of

(I, O) ∼ pi,j.

(I, O)
d
= B(1 +X1, Y1) + (1−B)(X2, 1 + Y2),

where for Pareto Z:

(X1, Y1) =(Tδin+1(Z
−1), T̃δout(Z

−a)),

(X2, Y2) =(Tδin(Z−1), T̃δout+1(Z
−a)),

From the representations:

lim
n→∞

p([nc1x], [nc2y])

n−(1+c1+c2)
=

γ

α + γ

xδinyδout−1

c1Γ(δin + 1)Γ(δout)

∫ ∞
0

z−(2+1/c1+δin+aδout)e−(x
z
+ y

za )dz

+
α

α + γ

xδin−1yδout
c1Γ(δin)Γ(δout + 1)

∫ ∞
0

z−(1+a+1/c1+λ+aδout)e−(x
z
+ y

za )dz.
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Remarks:

1. This convergence can be shown to be uniform on E0.

2. Therefore, the uniform convergence implies

P [(I, O) ∈ · ]

is a regularly varying measure.

3. This closes the loops.
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6. Conclusion

• Reciprocity? Cliques? Neighborhoods?

• Inference based on

– Tail empirical measure based on degree data–study extreme
values.

– Asymptotic normality of degree counts for undirected and
directed graphs. Inference for central values. Progress:

∗ Undirected case: Resnick and Samorodnitsky (2016).

∗ Directed case: Wang and Resnick (2015).

• Embedding techniques in birth-death processes may illuminate
properties of this model and other models.
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