Multivariate Regular Variation of In- and Out-Degree in a Network Growth Model

Sidney Resnick

School of Operations Research and Information Engineering
Rhodes Hall, Cornell University
Ithaca NY 14853 USA
http://people.orie.cornell.edu/sid
sir1@cornell.edu
Fields Institute Workshop

Model

Answer
Direct
Taub
pmf
Conclusion

Page 1 of 26
Dependence, Stability and Extremes
May 4, 2016

Joint: G. Samorodnitsky, T. Wang, P. Wan, A. Willis, D. Towsley, R. Davis

1. Growing preferential attachment networks

See Bollobás, Borgs, Chayes, and Riordan (2003) and Krapivsky and

1.1. Model description

- Model parameters: $\alpha, \beta, \gamma, \delta_{\text {in }}, \delta_{\text {out }}$ with $\alpha+\beta+\gamma=1$.
- $G(n)$ is a directed random graph with n edges, $N(n)$ nodes.
- Set of nodes of $G(n)$ is V_{n}; so $\left|V_{n}\right|=N(n)$.
- Set of edges of $G(n)$ is $E_{n}=\left\{(u, v) \in V_{n} \times V_{n}:(u, v) \in E_{n}\right\}$.
- In-degree of v is $D_{\text {in }}(v)$; out-degree of v is $D_{\text {out }}$. Dependence on n is suppressed.
- Obtain graph $G(n)$ from $G(n-1)$ in a Markovian way as follows:

Model

Answer

Direct

Taub

pmf

Conclusion

Title Page
4

4
Page 2 of 26

Go Back

Full Screen

1. With probability α, append to $G(n-1)$ a new node $v \notin V_{n-1}$ and create directed edge $v \mapsto w \in V_{n-1}$ with probability

$$
\frac{D_{\mathrm{in}}(w)+\delta_{\mathrm{in}}}{n-1+\delta_{\mathrm{in}} N(n-1)} .
$$

CORNELL

Model
Answer
Direct
Taub

pmf

Conclusion

Title Page
\square

Page 3 of 26

Go Back

Full Screen
$\left(\frac{D_{\text {out }}(v)+\delta_{\text {out }}}{n-1+\delta_{\text {out }} N(n-1)}\right)\left(\frac{D_{\text {in }}(w)+\delta_{\text {in }}}{n-1+\delta_{\text {in }} N(n-1)}\right)$

3. With probability β, create new directed edge between existing nodes

$$
v \in V_{n-1} \mapsto w \in V_{n-1}
$$

with probability

2. With probability γ, append to $G(n-1)$ a new node $v \notin V_{n-1}$ and create directed edge $w \in V_{n-1} \mapsto v \notin V_{n-1}$ with probability

$$
\frac{D_{\text {out }}(w)+\delta_{\text {out }}}{n-1+\delta_{\text {out }} N(n-1)} .
$$

Close

1.2. Background: What's known.

Notation:
CORNELL

$$
\begin{array}{ll}
N(n) & =\# \text { nodes in } V_{n} . \\
n & =\# \text { edges in } E_{n} . \\
N_{i j}(n) & =\# \text { nodes with in-degree }=i \text { and out-degree }=j \text { in } G(n) .
\end{array}
$$

Then (eg, Bollobás, Borgs, Chayes, and Riordan (2003)) the limiting proportion of nodes with in-degree $=i$ and out-degree $=j$ is

$$
\lim _{n \rightarrow \infty} \frac{N_{i j}(n)}{N(n)}=p_{i j}=\text { a prob mass function. }
$$

Model

Answer

Direct

Taub

$$
\text { proportion of nodes with in-degree }=i \text { and out-degree }=j \text { is }
$$

pmf

Conclusion

Title Page
Marginally, the limiting degree frequency $\left(p_{i j}\right)$ has power-law tails: For some finite positive constants $C_{\mathrm{i} n}$ and C_{out},

$$
\begin{aligned}
p_{i}(\mathrm{in}) & :=\sum_{j=0}^{\infty} p_{i j} \sim C_{\mathrm{i} n} i^{-\alpha_{\mathrm{in}}} \text { as } i \rightarrow \infty, \text { as long as } \alpha \delta_{\mathrm{in}}+\gamma>0, \\
p_{j}(\text { out }) & :=\sum_{i=0}^{\infty} p_{i j} \sim C_{\mathrm{out}} j^{-\alpha_{\mathrm{out}}} \text { as } j \rightarrow \infty, \text { as long as } \gamma \delta_{\mathrm{out}}+\alpha>0,
\end{aligned}
$$

Page 4 of 26
where

$$
\alpha_{\mathrm{in} n}=1+\frac{1+\delta_{\mathrm{i} n}(\alpha+\gamma)}{\alpha+\beta}, \quad \alpha_{\mathrm{out}}=1+\frac{1+\delta_{\mathrm{out}}(\alpha+\gamma)}{\gamma+\beta} .
$$

Conclude that:

- $\alpha_{\mathrm{in}}>1, \alpha_{\text {out }}>1$, and
- Manufacture random pair

$$
(I, 0) \sim\left\{p_{i j}\right\}
$$

and then

$$
P[I=i] \sim C_{\mathrm{in}} i^{-\alpha_{\mathrm{in}}}, \quad i \rightarrow \infty ; \quad P[O=j] \sim C_{\mathrm{out}} j^{-\alpha_{\mathrm{out}}}, \quad j \rightarrow \infty .
$$

- So, as $x \rightarrow \infty$,

$$
P[I>x] \sim k_{\text {in }} x^{-\left(\alpha_{\text {in }}-1\right)}, \quad P[O>x] \sim k_{\text {out }} x^{-\left(\alpha_{\text {out }}-1\right)} .
$$

- Statisticians note: First we let $n \rightarrow \infty$ and then $x \rightarrow \infty$. Data usually node based without letting $n \rightarrow \infty$.

Title Page
44
4

Page 5 of 26

Go Back
Question: Is (I, O) jointly regularly varying? (Hint: Yes.)

1.3. Methods of attack.

1. Full frontal assault: Prove directly $P[(I, O) \in \cdot]$ is a regularly varying measure. (Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan, 2016).
2. Sneaky Resnicki: Multivariate Tauberian theorem after computing the generating function. (Resnick and Samorodnitsky, 2015)
3. Analysis of the mass function $\left\{p_{i j}\right\}$. (Wang and Resnick, 2016)

Model
Answer

Direct

Taub

pmf

Conclusion

Title Page

44

Page 6 of 26

Go Back

Full Screen

1.4. The Generating Function of $(I, O) \sim\left\{p_{i j}\right\}$.

- Because of the Markovian nature of the model construction, $p_{i j}$ satisfies difference relation in (i, j). (Bollobás, Borgs, Chayes, and Riordan, 2003).

CORNELL

- Solve the difference equations using pde methods (Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan, 2016) to get explicit formula for

$$
\begin{equation*}
\varphi(x, y)=E\left(x^{I} y^{O}\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} x^{i} y^{j} p_{i j}, 0 \leq x, y \leq 1 \tag{1}
\end{equation*}
$$

Model

Answer

Direct

Taub

pmf

Conclusion

Title Page
where

$$
\begin{equation*}
\varphi(x, y)=\frac{\gamma}{\alpha+\gamma} x \varphi_{1}(x, y)+\frac{\alpha}{\alpha+\gamma} y \varphi_{2}(x, y) \tag{2}
\end{equation*}
$$

with (constants c_{1}, c_{2}, a are functions of $\alpha_{\mathrm{in}}, \alpha_{\text {out }}$)
Page 7 of 26
$\varphi_{1}(x, y)=c_{1}^{-1} \int_{1}^{\infty} z^{-\left(1+1 / c_{1}\right)}(x+(1-x) z)^{-\left(\delta_{\text {in }}+1\right)}\left(y+(1-y) z^{a}\right)^{-\delta_{\text {out }}} d z$,
Go Back
$\varphi_{2}(x, y)=c_{1}^{-1} \int_{1}^{\infty} z^{-\left(1+1 / c_{1}\right)}(x+(1-x) z)^{-\delta_{\text {in }}}\left(y+(1-y) z^{a}\right)^{-\left(\delta_{\text {out }}+1\right)} d z$
Full Screen
for $0 \leq x, y \leq 1$. Further:

$$
c_{1}=\frac{1}{\alpha_{\mathrm{i} n}-1}, \quad c_{2}=\frac{1}{\alpha_{\mathrm{out}}-1}, \quad a=c_{2} / c_{1} .
$$

- Hmmmmmm...!
- Analyze the generating functions φ_{1}, φ_{2} separately.

Cornell

Model

Answer

Direct
Taub
pmf
Conclusion

Title Page
44

Page 8 of 26

Go Back

Full Screen

2. Skip the blood and guts! What's the answer?

Theorem. The random vector (I, O) with joint mass function $\left\{p_{i j}\right\}$ satisfies as $t \rightarrow \infty$,

$$
t P\left[\left(\frac{I}{t^{1 /\left(\alpha_{\text {in }}-1\right)}}, \frac{O}{t^{1 /\left(\alpha_{o u t}-1\right)}}\right) \in \cdot\right] \xrightarrow{v} \frac{\gamma}{\alpha+\gamma} \nu_{1}(\cdot)+\frac{\alpha}{\alpha+\gamma} \nu_{2}(\cdot),
$$

vaguely in $M_{+}\left([0, \infty]^{2} \backslash\{\mathbf{0}\}\right)$ and ν_{1} and ν_{2} concentrate on $(0, \infty)^{2}$ and have Lebesgue densities f_{1}, f_{2} given by,

$$
\begin{aligned}
f_{1}(x, y)=c_{1}^{-1}\left(\Gamma \left(\delta_{\text {in }}\right.\right. & \left.+1) \Gamma\left(\delta_{\text {out }}\right)\right)^{-1} x^{\delta_{\mathrm{in}}} y^{\delta_{\text {out }}-1} \\
& \times \int_{0}^{\infty} z^{-\left(2+1 / c_{1}+\delta_{\text {in }}+a \delta_{\text {out }}\right)} e^{-\left(x / z+y / z^{a}\right)} d z
\end{aligned}
$$

and

$$
\begin{aligned}
f_{2}(x, y)=c_{1}^{-1}(& \left.\Gamma\left(\delta_{\text {in }}\right) \Gamma\left(\delta_{\text {out }}+1\right)\right)^{-1} x^{\delta_{\text {in }}-1} y^{\delta_{\text {out }}} \\
& \times \int_{0}^{\infty} z^{-\left(1+a+1 / c_{1}+\delta_{\text {in }}+a \delta_{\text {out }}\right)} e^{-\left(x / z+y / z^{a}\right)} d z
\end{aligned}
$$

Model
Answer

Direct

Taub

pmf

Conclusion

Title Page
44
\square

Page 9 of 26

3. Full frontal direct assault.

Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan (2016)

From the form of the generating function:

- The pair (I, O) has representation

$$
(I, O) \stackrel{d}{=} B\left(1+X_{1}, Y_{1}\right)+(1-B)\left(X_{2}, 1+Y_{2}\right)
$$

where B is a Bernoulli switching variable independent of X_{j}, Y_{j}, $j=1,2$ with

$$
P(B=1)=1-P(B=0)=\frac{\gamma}{\alpha+\gamma} .
$$

and

$$
\left(X_{1}, Y_{1}\right) \sim \varphi_{1} \quad \text { and } \quad\left(X_{2}, Y_{2}\right) \sim \varphi_{2}
$$

- Form of $\varphi_{i} i=1,2$:
- The negative binomial distribution is id;
- Suppose $\left\{T_{\lambda}(p), p \in(0,1)\right\}$ and $\left\{\tilde{T}_{\mu}(p), p \in(0,1)\right\}$ are two independent families of negative binomial random variables for any choice of λ, μ.
- Write $X_{j}, Y_{j}, j=1,2$

$$
\begin{aligned}
& \left(X_{1}, Y_{1}\right)=\left(T_{\delta_{\text {in } n}}\left(Z^{-1}\right), \tilde{T}_{\delta_{\text {out }}}\left(Z^{-a}\right)\right), \\
& \left(X_{2}, Y_{2}\right)=\left(T_{\delta_{\text {in }}}\left(Z^{-1}\right), \tilde{T}_{\delta_{\text {out }}+1}\left(Z^{-a}\right)\right),
\end{aligned}
$$

where
Title Page
$-Z$ is Pareto on $[1, \infty)$ with index c_{1}^{-1}, independent of the negative binomial random variables.

- Prove multivariate regular variation of $\left(X_{1}, Y_{i}\right), i=1,2$ is inherited from the Pareto Z. [But the negative binomials smear the limit measure mass over whole first quadrant.]

4. Sneaky: Tauberian method

Resnick and Samorodnitsky (2015)

- Abel-Tauberian theorems relate power law behavior of distributions and their transforms in \mathbb{R}_{+}^{p}.
Antecedents:
$-p=1$, Bingham, Goldie, and Teugels (1987), Feller (1971), Karamata (1931).
$-p>1$ for standard regular variation: Resnick (1991, 2007),
Stadtmüller (1981), Stadtmüller and Trautner (1979, 1981),
$-p>1$ for standard regular variation: Resnick (1991, 2007),
Stadtmüller (1981), Stadtmüller and Trautner $(1979,1981)$, Stam (1977), Yakimiv (2005).
- Assume $U \in M_{+}\left(\mathbb{R}_{+}^{p}\right)$ with distribution function $U(\mathbf{x})=U([\mathbf{0}, \mathbf{x}])$ and the Laplace transform $\hat{U}(\boldsymbol{\lambda})$ of U exists:

$$
\hat{U}(\boldsymbol{\lambda})=\int_{\mathbb{R}_{+}^{p}} \exp \left\{-\sum_{i=1}^{p} \lambda_{i} x_{i}\right\} U(d \mathbf{x})<\infty, \quad \boldsymbol{\lambda} \in \mathbb{R}_{+}^{p}
$$

Model

Answer

Direct

Taub

pmf

Conclusion

Title Page
4

4

Page 12 of 26

Go Back

Full Screen

4.1. First $1 / 2$ Taub

Assume

1. $\exists b_{i} \in R V_{1 / \gamma_{i}}, \gamma_{i}>0, i=1, \ldots, p$; set

$$
\boldsymbol{b}(t)=\left(b_{1}(t), \ldots, b_{p}(t)\right)
$$

2. U is regularly varying infinite measure with limit measure U_{∞} on \mathbb{R}_{+}^{p} :

$$
U_{t}(\cdot):=\frac{1}{t} U(\boldsymbol{b}(t) \cdot) \xrightarrow{v} U_{\infty}(\cdot) .
$$

3. Regularity condition:

Title Page

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \limsup _{t \rightarrow \infty} \int_{\cup_{i=1}^{p}\left[v_{i}>y\right]} e^{-\sum_{i=1}^{p} v_{i} / x_{i}} U_{t}(d \boldsymbol{v})=0 \tag{UR}
\end{equation*}
$$

Then

1. The Laplace transforms $\hat{U}(\mathbf{1} / \mathbf{x})$ and $\hat{U}_{\infty}(\mathbf{1} / \mathbf{x})$ are distribution functions of Radon measures on \mathbb{R}_{+}^{p} and
2. First $1 / 2$ Taub: the measure corresponding to $\hat{U}(\mathbf{1} / \mathbf{x})$ inherits

44
4
Page 13 of 26

Go Back

Full Screen

Close

$$
\begin{equation*}
\frac{1}{t} \hat{U}\left(\frac{\mathbf{1}}{\boldsymbol{b}(t) \mathbf{x}}\right) \rightarrow \hat{U}_{\infty}\left(\frac{\mathbf{1}}{\mathbf{x}}\right) \tag{5}
\end{equation*}
$$

> .

4.1.1. Proof sketch of First $1 / 2$ Taub; map your way to happiness.

(i) Assume U is regularly varying:

$$
U_{t}(\cdot):=\frac{1}{t} U(\boldsymbol{b}(t) \cdot) \xrightarrow{v} U_{\infty}(\cdot) .
$$

(ii) Set $\mathcal{F}=\left(\frac{1}{E_{1}}, \ldots, \frac{1}{E_{p}}\right)$, where $\left(E_{1}, \ldots, E_{p}\right)$ are iid exp rv's so $1 / E_{i}$ is unit Frechet. In $M_{+}\left([0, \infty]^{p} \times \mathbb{R}_{+}^{p}\right)$

$$
P[\mathcal{F} \in \cdot] \times U_{t} \xrightarrow{v} P[\mathcal{F} \in \cdot] \times U_{\infty} .
$$

(iii) Define $h:[0, \infty]^{p} \times \mathbb{R}_{+}^{p} \mapsto[0, \infty]^{p} \times \mathbb{R}_{+}^{p}$ by

$$
h(\mathrm{x}, \boldsymbol{y})=(\mathrm{x} \boldsymbol{y}, \boldsymbol{y}) .
$$

(iv) By a continuity theorem for convergence of measures:

$$
\begin{aligned}
&\left(P[\mathcal{F} \in \cdot] \times U_{t}\right) \circ h^{-1}([\mathbf{0}, \mathbf{x}] \times[\mathbf{0}, y \mathbf{1}]) \\
& \rightarrow\left(P[\mathcal{F} \in \cdot] \times U_{\infty}\right) \circ h^{-1}([\mathbf{0}, \mathbf{x}] \times[\mathbf{0}, y \mathbf{1}])
\end{aligned}
$$

(v) Unpack: As $t \rightarrow \infty$,

$$
\int_{\boldsymbol{v} \leq y 1} e^{-\sum_{i=1}^{p} v_{i} / x_{i}} U_{t}(d \boldsymbol{v}) \rightarrow \int_{\boldsymbol{v} \leq y 1} e^{-\sum_{i=1}^{p} v_{i} / x_{i}} U_{\infty}(d \boldsymbol{v})
$$

(vi) Let $y \rightarrow \infty$ via condition [UR]. Done!

4.2. Second $1 / 2$ Taub.

Assume

1. The infinite measure $U \in M_{+}\left(\mathbb{R}_{+}^{p}\right)$ has distribution function $U(\mathbf{x})=$ $U([\mathbf{0}, \mathbf{x}])$ and the Laplace transform $\hat{U}(\boldsymbol{\lambda})$ of U exists:

$$
\hat{U}(\boldsymbol{\lambda})=\int_{\mathbb{R}_{+}^{p}} \exp \left\{-\boldsymbol{\lambda}^{\prime} \mathbf{x}\right\} U(d \mathbf{x})<\infty, \quad \boldsymbol{\lambda} \in \mathbb{R}_{+}^{p}
$$

2. $b_{i} \in R V_{1 / \gamma_{i}}, \gamma_{i}>0$ for $i=1, \ldots, p$.
3. Condition [UR] holds:

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \limsup _{t \rightarrow \infty} \int_{\cup_{i=1}^{p}\left[v_{i}>y\right]} e^{-\sum_{i=1}^{p} v_{i} / x_{i}} U_{t}(d \boldsymbol{v})=0 \tag{UR}
\end{equation*}
$$

4. There exists a finite-valued function \hat{U}_{∞} such that for $\mathbf{x}>\mathbf{0}$,

$$
\begin{equation*}
\frac{1}{t} \hat{U}\left(\frac{\mathbf{1}}{\boldsymbol{b}(t) \mathbf{x}}\right)=\frac{1}{t} \hat{U}\left(\frac{1}{b_{1}(t) x_{1}}, \ldots, \frac{1}{b_{p}(t) x_{p}}\right) \rightarrow \hat{U}_{\infty}(\mathbf{1} / \mathbf{x}) . \tag{6}
\end{equation*}
$$

Title Page

Answer

44
4
Page 15 of 26

Go Back
Then for some measure $U_{\infty} \in M_{+}\left(\mathbb{R}_{+}^{p}\right)$ whose Laplace transform is \hat{U}_{∞}, we have as $t \rightarrow \infty$,

$$
U_{t}(\cdot)=\frac{1}{t} U(\boldsymbol{b}(t) \cdot) \rightarrow U_{\infty}(\cdot), \quad \text { in } M_{+}\left(\mathbb{R}_{+}^{p}\right)
$$

4.3. Apply to random graph.

- To apply Tauberian theory, need infinite measure: So for φ_{1}, fix $k>\alpha_{\text {in }}-1$ and set

CORNELL

$$
\psi(x, y)=\frac{\partial^{k} \varphi_{1}}{\partial x^{k}}(x, y)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} x^{i} y^{j} m_{i j}^{(k)}
$$

where the quantities $m_{i j}^{(k)}$ can be calculated in terms of $p_{i j}$'s.

- Define

$$
U(\cdot)=\sum_{i, j} m_{i j}^{(k)} \epsilon_{(i, j)}(\cdot)
$$

Model
Answer
as an infinite Radon measure on \mathbb{R}_{+}^{2} concentrating on $(\{0,1,2, \ldots\})^{2}$ that puts mass $m_{i j}^{(k)}$ at (i, j).

- Compute \hat{U}, verify [UR], verify $\hat{U}(\mathbf{1} / \mathbf{x})$ is regularly varying.
- Voila!

5. Analysis of the mass function $\left\{p_{i j}\right\}$.

Wang and Resnick (2016)

Suppose $U(\cdot)$ is a measure on \mathbb{R}_{+}^{2} with $[\mathrm{pdf}, \mathrm{pmf}][f(x, y), f(i, j)]$.

- If U is a regularly varying measure, is f a regularly varying [function, array]?
Not always true even in one dimension.
- If f is a regularly varying [function, array], is U a regularly varying measure. Shock! Not necessarily and a general analogue of Karamata's theorem on integration fails.
- Definition of regularly varying array?

CORNELL

Model

Answer

Direct

Taub

pmf

Conclusion

5.1. Definitions: Regularly varying array.

- A doubly indexed function $f: \mathbb{Z}_{+}^{2} \backslash\{\mathbf{0}\} \mapsto \mathbb{R}_{+}$is regularly varying with scaling functions b_{1} and b_{2} and limit function $\lambda(x, y)$ if for some $h \in R V_{\alpha}$ for some $\alpha \in \mathbb{R}, b_{i} \in R V_{\beta_{i}}, \beta_{i}>0$, we have

$$
\lim _{n \rightarrow \infty} \frac{f\left(\left[b_{1}(n) x\right],\left[b_{2}(n) y\right]\right)}{h(n)}=\lambda(x, y)>0, \quad \forall x, y>0 .
$$

- A function $f: \mathbb{R}_{+}^{2} \mapsto \mathbb{R}_{+}$is regularly varying if the same limit holds without the square brackets [],[].
- If $f(i, j)$ is regularly varying, it is embeddable if \exists regularly varying $g(x, y)$ and

$$
g(x, y)=f([x],[y])
$$

Model

Answer

Direct

pmf

Conclusion

44

Page 18 of 26

Go Back

Full Screen

5.2. Typical result.

Suppose $u(i, j)>0$ satisfies

1. $u(i, j)$ is regularly varying.
2. u satisfies some extra condition.

Then

1. The function

$$
g(x, y):=u([x],[y])
$$

is regularly varying as function of continuous variables and $u(i, j)$
is embeddable.

Title Page
44
4

Page 19 of 26
is a regularly varying measure.
Example of extra condition: Easiest is to suppose $u(i, j)$ is eventually decreasing.

BUT: This does not hold for preferential attachment problem.

Full Screen

5.2.1. More flexible for the non-standard case.

Suppose

- $h(\cdot) \in R V_{\rho}, \rho<0$, and $u: \mathbb{Z}_{+}^{2} \mapsto \mathbb{R}_{+}$,

CORNELL

- Scaling functions are power laws: $b_{i}(t)=t^{1 / \alpha_{i}}, i=1,2$. [The nonstandard case is harder than the standard and we had to suppose b_{i} are power functions.]
- There exists a limit function $\lambda_{0}>0$ defined on

$$
\mathcal{E}_{0}:=\left\{(x, y):\left\|\left(x^{\alpha_{1}}, y^{\alpha_{2}}\right)\right\|=1\right\},
$$

Model
Answer

Direct

Taub

pmf

Conclusion

Title Page
such that u satisfies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{u\left(\left[t^{1 / \alpha_{1}} x\right],\left[t^{1 / \alpha_{2}} y\right]\right)}{h(t)}=\lambda_{0}(x, y), \quad \forall(x, y) \in \mathcal{E}_{0} . \tag{7}
\end{equation*}
$$

Then

1. The doubly indexed function $u(i, j)$ is regularly varying: For all $x, y>0$, define $\mathbf{w}=\mathbf{w}(x, y):=\left(x^{\alpha_{1}}, y^{\alpha_{2}}\right)$ and

Full Screen

$$
\lim _{n \rightarrow \infty} \frac{u\left(\left[n^{1 / \alpha_{1}} x\right],\left[n^{1 / \alpha_{2}} y\right]\right)}{h(n)}=\lambda(x, y):=\lambda_{0}\left(\frac{x}{\|\mathbf{w}\|^{1 / \alpha_{1}}}, \frac{y}{\|\mathbf{w}\|^{1 / \alpha_{2}}}\right)\|\mathbf{w}\|^{\rho} ;
$$

2. The doubly indexed function $u(i, j)$ is embeddable in a non-standard regularly varying function $f: \mathbb{R}_{+}^{2} \mapsto \mathbb{R}$ with limit function $\lambda(\cdot)$ such that $f(x, y)=u([x],[y])$;
3. If convergence in (7) is uniform on \mathcal{E}_{0}, then also the measure corresponding to $u(i, j)$ is a (discretely supported) regularly varying measure.

5.3. Back to preferential attachment.

Recall the representation of

$$
\begin{gathered}
(I, O) \sim p_{i, j} \\
(I, O) \stackrel{d}{=} B\left(1+X_{1}, Y_{1}\right)+(1-B)\left(X_{2}, 1+Y_{2}\right)
\end{gathered}
$$

where for Pareto Z :

$$
\begin{aligned}
& \left(X_{1}, Y_{1}\right)=\left(T_{\delta_{\text {in }}+1}\left(Z^{-1}\right), \tilde{T}_{\delta_{\text {out }}}\left(Z^{-a}\right)\right), \\
& \left(X_{2}, Y_{2}\right)=\left(T_{\delta_{\text {in }}}\left(Z^{-1}\right), \tilde{T}_{\delta_{\text {out }}+1}\left(Z^{-a}\right)\right),
\end{aligned}
$$

From the representations:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{p\left(\left[n^{c_{1}} x\right],\left[n^{c_{2}} y\right]\right)}{n^{-\left(1+c_{1}+c_{2}\right)}}=\frac{\gamma}{\alpha+\gamma} \frac{x^{\delta_{\text {in }}} y^{\delta_{\text {out }}-1}}{c_{1} \Gamma\left(\delta_{\text {in }}+1\right) \Gamma\left(\delta_{\text {out }}\right)} \int_{0}^{\infty} z^{-\left(2+1 / c_{1}+\delta_{\text {in }}+a \delta_{\text {out }}\right)} e^{-\left(\frac{x}{z}+\frac{y}{z^{a}}\right)} \frac{\text { Full Screen }}{d z} \\
& \quad+\frac{\alpha}{\alpha+\gamma} \frac{x^{\delta_{\text {in }}-1} y_{\text {out }}^{\delta}}{c_{1} \Gamma\left(\delta_{\text {in }}\right) \Gamma\left(\delta_{\text {out }}+1\right)} \int_{0}^{\infty} z^{-\left(1+a+1 / c_{1}+\lambda+a \delta_{\text {out }}\right)} e^{-\left(\frac{x}{z}+\frac{y}{z^{a}}\right)} \mathrm{d} z . \\
& \hline
\end{aligned}
$$

Remarks:

1. This convergence can be shown to be uniform on \mathcal{E}_{0}.
2. Therefore, the uniform convergence implies

$$
P[(I, O) \in \cdot]
$$

is a regularly varying measure.
3. This closes the loops.

CORNELL

Model
Answer
Direct
Taub

pmf

Conclusion

6. Conclusion

- Reciprocity? Cliques? Neighborhoods?
- Inference based on
- Tail empirical measure based on degree data-study extreme values.
- Asymptotic normality of degree counts for undirected and directed graphs. Inference for central values. Progress:
* Undirected case: Resnick and Samorodnitsky (2016).
* Directed case: Wang and Resnick (2015).
- Embedding techniques in birth-death processes may illuminate properties of this model and other models.

Title Page
Model
Answer
Direct
Taub
pmf
Conclusion
Cornell

44

Page 23 of 26

Go Back

Full Screen

Close

Contents

Model
Answer
Direct
Taub
pmf
Conclusion

Title Page

Page 24 of 26

Go Back

Full Screen

Close

References

N.H. Bingham, C.M. Goldie, and J.L. Teugels. Regular Variation. Cambridge University Press, 1987.
B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. Directed scale-free graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, 2003), pages 132-139, New York, 2003. ACM.
W. Feller. An Introduction to Probability Theory and Its Applications, volume 2. Wiley, New York, 2nd edition, 1971.
J. Karamata. Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze. Math. Z., 33(1):294-299, 1931. ISSN 0025-5874.
P.L. Krapivsky and S. Redner. Organization of growing random networks. Physical Review E, 63(6):066123:1-14, 2001.
S.I. Resnick. Point processes and Tauberian theory. Math. Sci., 16(2):83-106, 1991. ISSN 0312-3685.
S.I. Resnick. Heavy Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in Operations Research and Financial Engineering. SpringerVerlag, New York, 2007. ISBN: 0-387-24272-4.

Go Back
S.I. Resnick and G. Samorodnitsky. Tauberian theory for multivariate regularly varying distributions with application to preferential attachment networks. Extremes, 18(3):349-367, 2015. doi: 10.1007/s10687-015-0216-2.
S.I. Resnick and G. Samorodnitsky. Asymptotic normality of degree counts in a preferential attachment model. Journal of Applied Probability, 2016.
G. Samorodnitsky, S. Resnick, D. Towsley, R. Davis, A. Willis, and P. Wan. Nonstandard regular variation of in-degree and out-degree in the preferential attachment model. Journal of Applied Probability, 53(1):146-161, March 2016. doi: 10.1017/jpr.2015.15.
U. Stadtmüller. A refined Tauberian theorem for Laplace transforms in dimension $d>1$. J. Reine Angew. Math., 328:72-83, 1981. ISSN 0075-4102.
U. Stadtmüller and R. Trautner. Tauberian theorems for Laplace transforms. J. Reine Angew. Math., 311/312:283-290, 1979. ISSN 0075-4102.
U. Stadtmüller and R. Trautner. Tauberian theorems for Laplace transforms in dimension $D>1$. J. Reine Angew. Math., 323:127-138, 1981. ISSN 0075-4102.
A. Stam. Regular variation in \mathbb{R}_{+}^{d} and the Abel-Tauber theorem. Technical Report, unpublished, Mathematisch Instituut, Rijksuniversiteit Groningen, August 1977.
T. Wang and S. Resnick. Multivariate regular variation of discrete mass functions with applications to preferential attachment networks. Technical report, Cornell University, 2016. https://arxiv.org/submit/1451036, Submitted: Methodology and Computing in Applied Probability.
T. Wang and S.I. Resnick. Asymptotic Normality of In- and Out-Degree Counts in a Preferential Attachment Model. ArXiv e-prints, oct 2015.
A.L. Yakimiv. Probabilistic Applications of Tauberian Theorems. Modern Probability and Statistics. VSP, Leiden, The Netherlands, 2005.

