Multivariate Regular Variation of In- and Out-Degree in a Network Growth Model

Sidney Resnick School of Operations Research and Information Engineering Rhodes Hall, Cornell University Ithaca NY 14853 USA

> http://people.orie.cornell.edu/sid sir1@cornell.edu Fields Institute Workshop Dependence, Stability and Extremes

> > May 4, 2016

Joint: G. Samorodnitsky, T. Wang, P. Wan, A. Willis, D. Towsley, R. Davis

CORNELL

1. Growing preferential attachment networks

See Bollobás, Borgs, Chayes, and Riordan (2003) and Krapivsky and Redner (2001).

1.1. Model description

- Model parameters: $\alpha, \beta, \gamma, \delta_{in}, \delta_{out}$ with $\alpha + \beta + \gamma = 1$.
- G(n) is a directed random graph with n edges, N(n) nodes.
- Set of nodes of G(n) is V_n ; so $|V_n| = N(n)$.
- Set of edges of G(n) is $E_n = \{(u, v) \in V_n \times V_n : (u, v) \in E_n\}.$
- In-degree of v is $D_{in}(v)$; out-degree of v is D_{out} . Dependence on n is suppressed.
- Obtain graph G(n) from G(n-1) in a Markovian way as follows:

1. With probability α , append to G(n-1)a new node $v \notin V_{n-1}$ and create directed edge $v \mapsto w \in V_{n-1}$ with probability

$$\frac{D_{\rm in}(w) + \delta_{\rm in}}{n - 1 + \delta_{\rm in} N(n - 1)}.$$

2. With probability γ , append to G(n-1)a new node $v \notin V_{n-1}$ and create directed edge $w \in V_{n-1} \mapsto v \notin V_{n-1}$ with probability

$$\frac{D_{\rm out}(w) + \delta_{\rm out}}{n - 1 + \delta_{\rm out} N(n - 1)}$$

3. With probability β , create new directed edge between existing nodes

$$v \in V_{n-1} \mapsto w \in V_{n-1}$$

with probability

$$\left(\frac{D_{\text{out}}(v) + \delta_{\text{out}}}{n - 1 + \delta_{\text{out}}N(n - 1)}\right) \left(\frac{D_{\text{in}}(w) + \delta_{\text{in}}}{n - 1 + \delta_{\text{in}}N(n - 1)}\right)$$

Quit

1.2. Background: What's known.

Notation:

 $N(n) = \# \text{ nodes in } V_n.$ $n = \# \text{ edges in } E_n.$ $N_{ij}(n) = \# \text{ nodes with in-degree} = i \text{ and out-degree} = j \text{ in } G(n).$

Then (eg, Bollobás, Borgs, Chayes, and Riordan (2003)) the limiting proportion of nodes with in-degree=i and out-degree=j is

$$\lim_{n \to \infty} \frac{N_{ij}(n)}{N(n)} = p_{ij} = a \text{ prob mass function.}$$

Marginally, the limiting degree frequency (p_{ij}) has power-law tails: For some finite positive constants C_{in} and C_{out} ,

$$p_i(\text{in}) := \sum_{j=0}^{\infty} p_{ij} \sim C_{\text{in}} i^{-\alpha_{\text{in}}} \text{ as } i \to \infty, \text{ as long as } \alpha \delta_{\text{in}} + \gamma > 0,$$
$$p_j(\text{out}) := \sum_{i=0}^{\infty} p_{ij} \sim C_{\text{out}} j^{-\alpha_{\text{out}}} \text{ as } j \to \infty, \text{ as long as } \gamma \delta_{\text{out}} + \alpha > 0,$$

where

$$\alpha_{in} = 1 + \frac{1 + \delta_{in}(\alpha + \gamma)}{\alpha + \beta}, \quad \alpha_{out} = 1 + \frac{1 + \delta_{out}(\alpha + \gamma)}{\gamma + \beta}.$$

Cornell
Model
Answer
Direct
Taub
pmf
Conclusion
Title Page
•• ••
Page 4 of 26
Go Back
Full Screen
Close
Quit

Conclude that:

- $\alpha_{in} > 1$, $\alpha_{out} > 1$, and
- Manufacture random pair

 $(I,0) \sim \{p_{ij}\},\$

and then

$$P[I=i] \sim C_{\rm in} i^{-\alpha_{\rm in}}, \quad i \to \infty; \quad P[O=j] \sim C_{\rm out} j^{-\alpha_{\rm out}}, \quad j \to \infty.$$

• So, as $x \to \infty$,

 $P[I > x] \sim k_{\text{in}} x^{-(\alpha_{\text{in}}-1)}, \quad P[O > x] \sim k_{\text{out}} x^{-(\alpha_{\text{out}}-1)}.$

• Statisticians note: First we let $n \to \infty$ and then $x \to \infty$. Data usually node based without letting $n \to \infty$.

Question: Is (I, O) jointly regularly varying? (Hint: Yes.)

1.3. Methods of attack.

- 1. Full frontal assault: Prove directly $P[(I, O) \in \cdot]$ is a regularly varying measure. (Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan, 2016).
- 2. Sneaky Resnicki: Multivariate Tauberian theorem after computing the generating function. (Resnick and Samorodnitsky, 2015)
- 3. Analysis of the mass function $\{p_{ij}\}$. (Wang and Resnick, 2016)

Cornell
Model
Answer
Direct
Taub
pmf
Conclusion
Title Page
Page 6 of 26 Go Back
Full Screen
Close
Quit

1.4. The Generating Function of $(I, O) \sim \{p_{ij}\}$.

- Because of the Markovian nature of the model construction, p_{ij} satisfies difference relation in (i, j). (Bollobás, Borgs, Chayes, and Riordan, 2003).
- Solve the difference equations using pde methods (Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan, 2016) to get explicit formula for

$$\varphi(x,y) = E\left(x^{I}y^{O}\right) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} x^{i}y^{j}p_{ij}, \ 0 \le x, y \le 1, \qquad (1)$$

where

$$\varphi(x,y) = \frac{\gamma}{\alpha + \gamma} x \varphi_1(x,y) + \frac{\alpha}{\alpha + \gamma} y \varphi_2(x,y), \qquad (2)$$

with (constants c_1, c_2, a are functions of $\alpha_{in}, \alpha_{out}$)

$$\varphi_1(x,y) = c_1^{-1} \int_1^\infty z^{-(1+1/c_1)} \left(x + (1-x)z \right)^{-(\delta_{in}+1)} \left(y + (1-y)z^a \right)^{-\delta_{out}} dz ,$$
(3)

$$\varphi_2(x,y) = c_1^{-1} \int_1^\infty z^{-(1+1/c_1)} \left(x + (1-x)z \right)^{-\delta_{\text{in}}} \left(y + (1-y)z^a \right)^{-(\delta_{\text{out}}+1)} dz$$
(4)

for $0 \le x, y \le 1$. Further:

$$c_1 = \frac{1}{\alpha_{\text{in}} - 1}, \quad c_2 = \frac{1}{\alpha_{\text{out}} - 1}, \quad a = c_2/c_1.$$

- Hmmmmm... !
- Analyze the generating functions φ_1, φ_2 separately.

2. Skip the blood and guts! What's the answer?

Theorem. The random vector (I, O) with joint mass function $\{p_{ij}\}$ satisfies as $t \to \infty$,

$$tP\left[\left(\frac{I}{t^{1/(\alpha_{in}-1)}}, \frac{O}{t^{1/(\alpha_{out}-1)}}\right) \in \cdot\right] \xrightarrow{v} \frac{\gamma}{\alpha+\gamma}\nu_1(\cdot) + \frac{\alpha}{\alpha+\gamma}\nu_2(\cdot),$$

vaguely in $M_+([0,\infty]^2 \setminus \{0\})$ and ν_1 and ν_2 concentrate on $(0,\infty)^2$ and have Lebesgue densities f_1, f_2 given by,

$$f_1(x,y) = c_1^{-1} \left(\Gamma(\delta_{\mathrm{i}n} + 1) \Gamma(\delta_{\mathrm{out}}) \right)^{-1} x^{\delta_{\mathrm{i}n}} y^{\delta_{\mathrm{out}} - 1} \\ \times \int_0^\infty z^{-(2+1/c_1 + \delta_{\mathrm{i}n} + a\delta_{\mathrm{out}})} e^{-(x/z + y/z^a)} dz,$$

and

$$f_2(x,y) = c_1^{-1} \big(\Gamma(\delta_{\mathrm{i}n}) \Gamma(\delta_{\mathrm{out}} + 1) \big)^{-1} x^{\delta_{\mathrm{i}n} - 1} y^{\delta_{\mathrm{out}}} \\ \times \int_0^\infty z^{-(1+a+1/c_1 + \delta_{\mathrm{i}n} + a\delta_{\mathrm{out}})} e^{-(x/z+y/z^a)} dz$$

3. Full frontal direct assault.

Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan (2016) From the form of the generating function:

• The pair (I, O) has representation

 $(I, O) \stackrel{d}{=} B(1 + X_1, Y_1) + (1 - B)(X_2, 1 + Y_2),$

where B is a Bernoulli switching variable independent of $X_j, Y_j, j = 1, 2$ with

$$P(B=1) = 1 - P(B=0) = \frac{\gamma}{\alpha + \gamma}$$

and

 $(X_1, Y_1) \sim \varphi_1$ and $(X_2, Y_2) \sim \varphi_2$.

Cornell
Model
Answer
Direct
Taub
pmf
Conclusion
Title Page
•• ••
•
Page 10 of 26
Go Back
Full Screen
Close
Quit

- Form of $\varphi_i \ i = 1, 2$:
 - The negative binomial distribution is id;
 - Suppose $\{T_{\lambda}(p), p \in (0, 1)\}$ and $\{\tilde{T}_{\mu}(p), p \in (0, 1)\}$ are two independent families of negative binomial random variables for any choice of λ, μ .
 - Write $X_j, Y_j, j = 1, 2$

$$(X_1, Y_1) = (T_{\delta_{in}+1}(Z^{-1}), \tilde{T}_{\delta_{out}}(Z^{-a})), (X_2, Y_2) = (T_{\delta_{in}}(Z^{-1}), \tilde{T}_{\delta_{out}+1}(Z^{-a})),$$

where

- -Z is Pareto on $[1,\infty)$ with index c_1^{-1} , independent of the negative binomial random variables.
- Prove multivariate regular variation of (X_1, Y_i) , i = 1, 2 is inherited from the Pareto Z. [But the negative binomials smear the limit measure mass over whole first quadrant.]

4. Sneaky: Tauberian method

Resnick and Samorodnitsky (2015)

• Abel-Tauberian theorems relate power law behavior of distributions and their transforms in \mathbb{R}^p_+ .

Antecedents:

- -p = 1, Bingham, Goldie, and Teugels (1987), Feller (1971), Karamata (1931).
- -p > 1 for standard regular variation: Resnick (1991, 2007), Stadtmüller (1981), Stadtmüller and Trautner (1979, 1981), Stam (1977), Yakimiv (2005).
- Assume $U \in M_+(\mathbb{R}^p_+)$ with distribution function $U(\mathbf{x}) = U([\mathbf{0}, \mathbf{x}])$ and the Laplace transform $\hat{U}(\boldsymbol{\lambda})$ of U exists:

$$\hat{U}(\boldsymbol{\lambda}) = \int_{\mathbb{R}^p_+} \exp\{-\sum_{i=1}^p \lambda_i x_i\} U(d\mathbf{x}) < \infty, \quad \boldsymbol{\lambda} \in \mathbb{R}^p_+$$

4.1. First 1/2 Taub

Assume

1.
$$\exists b_i \in RV_{1/\gamma_i}, \ \gamma_i > 0, \ i = 1, \dots, p; \text{ set}$$

 $\boldsymbol{b}(t) = (b_1(t), \dots, b_p(t)).$

2. U is regularly varying infinite measure with limit measure U_{∞} on \mathbb{R}^{p}_{+} :

$$U_t(\cdot) := \frac{1}{t} U(\boldsymbol{b}(t) \cdot) \xrightarrow{v} U_{\infty}(\cdot)$$

3. Regularity condition:

$$\lim_{y \to \infty} \limsup_{t \to \infty} \int_{\bigcup_{i=1}^{p} [v_i > y]} e^{-\sum_{i=1}^{p} v_i / x_i} U_t(d\boldsymbol{v}) = 0.$$
 ([UR])

Then

- 1. The Laplace transforms $\hat{U}(\mathbf{1/x})$ and $\hat{U}_{\infty}(\mathbf{1/x})$ are distribution functions of Radon measures on \mathbb{R}^p_+ and
- 2. First 1/2 Taub: the measure corresponding to $\hat{U}(1/\mathbf{x})$ inherits non-standard regular variation: for $\mathbf{x} > 0$

$$\frac{1}{t}\hat{U}\left(\frac{1}{\boldsymbol{b}(t)\mathbf{x}}\right) \to \hat{U}_{\infty}\left(\frac{1}{\mathbf{x}}\right),\tag{5}$$

4.1.1. Proof sketch of First 1/2 Taub; map your way to happiness.

(i) Assume U is regularly varying:

$$U_t(\cdot) := \frac{1}{t} U(\boldsymbol{b}(t) \cdot) \xrightarrow{\boldsymbol{v}} U_{\infty}(\cdot).$$

(ii) Set $\mathcal{F} = (\frac{1}{E_1}, \dots, \frac{1}{E_p})$, where (E_1, \dots, E_p) are iid exp rv's so $1/E_i$ is unit Frechet. In $M_+([0,\infty]^p \times \mathbb{R}^p_+)$

$$P[\mathcal{F} \in \cdot] \times U_t \xrightarrow{v} P[\mathcal{F} \in \cdot] \times U_{\infty}.$$

(iii) Define
$$h : [0, \infty]^p \times \mathbb{R}^p_+ \mapsto [0, \infty]^p \times \mathbb{R}^p_+$$
 by
$$h(\mathbf{x}, \boldsymbol{y}) = (\mathbf{x} \boldsymbol{y}, \boldsymbol{y}).$$

(iv) By a continuity theorem for convergence of measures:

$$(P[\mathcal{F} \in \cdot] \times U_t) \circ h^{-1} ([\mathbf{0}, \mathbf{x}] \times [\mathbf{0}, y\mathbf{1}]) \rightarrow (P[\mathcal{F} \in \cdot] \times U_\infty) \circ h^{-1} ([\mathbf{0}, \mathbf{x}] \times [\mathbf{0}, y\mathbf{1}]).$$

(v) Unpack: As $t \to \infty$,

$$\int_{\boldsymbol{v}\leq y\mathbf{1}} e^{-\sum_{i=1}^{p} v_i/x_i} U_t(d\boldsymbol{v}) \to \int_{\boldsymbol{v}\leq y\mathbf{1}} e^{-\sum_{i=1}^{p} v_i/x_i} U_{\infty}(d\boldsymbol{v}).$$

(vi) Let $y \to \infty$ via condition [UR]. Done!

4.2. Second 1/2 Taub.

Assume

1. The infinite measure $U \in M_+(\mathbb{R}^p_+)$ has distribution function $U(\mathbf{x}) = U([\mathbf{0}, \mathbf{x}])$ and the Laplace transform $\hat{U}(\boldsymbol{\lambda})$ of U exists:

$$\hat{U}(\boldsymbol{\lambda}) = \int_{\mathbb{R}^p_+} \exp\{-\boldsymbol{\lambda}'\mathbf{x}\}U(d\mathbf{x}) < \infty, \quad \boldsymbol{\lambda} \in \mathbb{R}^p_+.$$

2.
$$b_i \in RV_{1/\gamma_i}, \ \gamma_i > 0 \text{ for } i = 1, \dots, p.$$

3. Condition [UR] holds:

$$\lim_{y \to \infty} \limsup_{t \to \infty} \int_{\bigcup_{i=1}^{p} [v_i > y]} e^{-\sum_{i=1}^{p} v_i / x_i} U_t(d\boldsymbol{v}) = 0.$$
 ([UR])

4. There exists a finite-valued function \hat{U}_{∞} such that for $\mathbf{x} > \mathbf{0}$,

$$\frac{1}{t}\hat{U}\left(\frac{\mathbf{1}}{\boldsymbol{b}(t)\mathbf{x}}\right) = \frac{1}{t}\hat{U}\left(\frac{1}{b_1(t)x_1}, \dots, \frac{1}{b_p(t)x_p}\right) \to \hat{U}_{\infty}(\mathbf{1}/\mathbf{x}).$$
(6)

Then for some measure $U_{\infty} \in M_+(\mathbb{R}^p_+)$ whose Laplace transform is \hat{U}_{∞} , we have as $t \to \infty$,

$$U_t(\cdot) = \frac{1}{t} U(\boldsymbol{b}(t) \cdot) \to U_{\infty}(\cdot), \quad \text{in } M_+(\mathbb{R}^p_+)$$

4.3. Apply to random graph.

• To apply Tauberian theory, need infinite measure: So for φ_1 , fix $k > \alpha_{in} - 1$ and set

$$\psi(x,y) = \frac{\partial^k \varphi_1}{\partial x^k}(x,y) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} x^i y^j m_{ij}^{(k)}$$

where the quantities $m_{ij}^{(k)}$ can be calculated in terms of p_{ij} 's.

• Define

$$U(\cdot) = \sum_{i,j} m_{ij}^{(k)} \epsilon_{(i,j)}(\cdot)$$

as an infinite Radon measure on \mathbb{R}^2_+ concentrating on $(\{0, 1, 2, \ldots\})^2$ that puts mass $m_{ij}^{(k)}$ at (i, j).

- Compute \hat{U} , verify [UR], verify $\hat{U}(\mathbf{1}/\mathbf{x})$ is regularly varying.
- Voila!

5. Analysis of the mass function $\{p_{ij}\}$.

Wang and Resnick (2016)

Suppose $U(\cdot)$ is a measure on \mathbb{R}^2_+ with [pdf, pmf] [f(x, y), f(i, j)].

• If U is a regularly varying measure, is f a regularly varying [function, array]?

Not always true even in one dimension.

• If f is a regularly varying [function, array], is U a regularly varying measure.

Shock! Not necessarily and a general analogue of Karamata's theorem on integration fails.

• Definition of regularly varying array?

Cornell
Model
Answer
Direct
Taub
pmf
Conclusion
Title Page
•• ••
•
Page 17 of 26
Go Back
Full Screen
Close
Quit

5.1. Definitions: Regularly varying array.

• A doubly indexed function $f : \mathbb{Z}^2_+ \setminus \{\mathbf{0}\} \mapsto \mathbb{R}_+$ is regularly varying with scaling functions b_1 and b_2 and limit function $\lambda(x, y)$ if for some $h \in RV_{\alpha}$ for some $\alpha \in \mathbb{R}$, $b_i \in RV_{\beta_i}$, $\beta_i > 0$, we have

$$\lim_{n \to \infty} \frac{f([b_1(n)x], [b_2(n)y])}{h(n)} = \lambda(x, y) > 0, \quad \forall x, y > 0.$$

- A function $f : \mathbb{R}^2_+ \to \mathbb{R}_+$ is regularly varying if the same limit holds without the square brackets [],[].
- If f(i, j) is regularly varying, it is embeddable if \exists regularly varying g(x, y) and

$$g(x, y) = f([x], [y]).$$

5.2. Typical result.

Suppose u(i, j) > 0 satisfies

- 1. u(i, j) is regularly varying.
- 2. u satisfies some extra condition.

Then

1. The function

$$g(x,y) := u([x],[y])$$

is regularly varying as function of continuous variables and u(i, j) is embeddable.

2. If u(i, j) = p(i, j) is a pmf corresponding to (X, Y), then

 $P[(X,Y)\in\cdot\;]$

is a regularly varying measure.

Example of extra condition: Easiest is to suppose u(i, j) is eventually decreasing.

BUT: This does not hold for preferential attachment problem.

5.2.1. More flexible for the non-standard case.

Suppose

- $h(\cdot) \in RV_{\rho}, \ \rho < 0, \ \text{and} \ u : \mathbb{Z}^2_+ \mapsto \mathbb{R}_+,$
- Scaling functions are power laws: $b_i(t) = t^{1/\alpha_i}$, i = 1, 2. [The nonstandard case is harder than the standard and we had to suppose b_i are power functions.]
- There exists a limit function $\lambda_0 > 0$ defined on

$$\mathcal{E}_0 := \{ (x, y) : \| (x^{\alpha_1}, y^{\alpha_2}) \| = 1 \},\$$

such that u satisfies

$$\lim_{t \to \infty} \frac{u([t^{1/\alpha_1}x], [t^{1/\alpha_2}y])}{h(t)} = \lambda_0(x, y), \quad \forall (x, y) \in \mathcal{E}_0.$$
(7)

Then

1. The doubly indexed function u(i, j) is regularly varying: For all x, y > 0, define $\mathbf{w} = \mathbf{w}(x, y) := (x^{\alpha_1}, y^{\alpha_2})$ and

$$\lim_{n \to \infty} \frac{u([n^{1/\alpha_1}x], [n^{1/\alpha_2}y])}{h(n)} = \lambda(x, y) := \lambda_0 \left(\frac{x}{\|\mathbf{w}\|^{1/\alpha_1}}, \frac{y}{\|\mathbf{w}\|^{1/\alpha_2}}\right) \|\mathbf{w}\|^{\rho};$$

- 2. The doubly indexed function u(i, j) is embeddable in a non-standard regularly varying function $f : \mathbb{R}^2_+ \to \mathbb{R}$ with limit function $\lambda(\cdot)$ such that f(x, y) = u([x], [y]);
- 3. If convergence in (7) is uniform on \mathcal{E}_0 , then also the measure corresponding to u(i, j) is a (discretely supported) regularly varying measure.

5.3. Back to preferential attachment.

Recall the representation of

$$(I, O) \sim p_{i,j}.$$

 $(I, O) \stackrel{d}{=} B(1 + X_1, Y_1) + (1 - B)(X_2, 1 + Y_2),$

where for Pareto Z:

$$(X_1, Y_1) = (T_{\delta_{in}+1}(Z^{-1}), \tilde{T}_{\delta_{out}}(Z^{-a})), (X_2, Y_2) = (T_{\delta_{in}}(Z^{-1}), \tilde{T}_{\delta_{out}+1}(Z^{-a})),$$

From the representations:

$$\lim_{n \to \infty} \frac{p([n^{c_1}x], [n^{c_2}y])}{n^{-(1+c_1+c_2)}} = \frac{\gamma}{\alpha + \gamma} \frac{x^{\delta_{\mathrm{in}}} y^{\delta_{\mathrm{out}}-1}}{c_1 \Gamma(\delta_{\mathrm{in}} + 1) \Gamma(\delta_{\mathrm{out}})} \int_0^\infty z^{-(2+1/c_1+\delta_{\mathrm{in}}+a\delta_{\mathrm{out}})} e^{-\left(\frac{x}{z} + \frac{y}{z^a}\right)} \frac{\mathrm{Full Screen}}{\mathrm{d}z}$$

$$+ \frac{\alpha}{\alpha + \gamma} \frac{x^{\delta_{\mathrm{in}}-1} y^{\delta}_{\mathrm{out}}}{c_1 \Gamma(\delta_{\mathrm{in}}) \Gamma(\delta_{\mathrm{out}} + 1)} \int_0^\infty z^{-(1+a+1/c_1+\lambda+a\delta_{\mathrm{out}})} e^{-\left(\frac{x}{z} + \frac{y}{z^a}\right)} \mathrm{d}z.$$

$$Quit$$

Remarks:

- 1. This convergence can be shown to be uniform on \mathcal{E}_0 .
- 2. Therefore, the uniform convergence implies

 $P[(I,O)\in\cdot\;]$

is a regularly varying measure.

3. This closes the loops.

6. Conclusion

- Reciprocity? Cliques? Neighborhoods?
- Inference based on
 - Tail empirical measure based on degree data–study extreme values.
 - Asymptotic normality of degree counts for undirected and directed graphs. Inference for central values. Progress:
 - * Undirected case: Resnick and Samorodnitsky (2016).
 - * Directed case: Wang and Resnick (2015).
- Embedding techniques in birth-death processes may illuminate properties of this model and other models.

Cornell
Model
Answer
Direct
Taub
pmf
Conclusion
Title Page
44 >>
▲ ►
Page 23 of 26
Go Back
Full Screen
Close

Contents

Model

Answer

Direct

Taub

pmf

Conclusion

Cornell

References

- N.H. Bingham, C.M. Goldie, and J.L. Teugels. *Regular Variation*. Cambridge University Press, 1987.
- B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. Directed scale-free graphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, 2003), pages 132–139, New York, 2003. ACM.
- W. Feller. An Introduction to Probability Theory and Its Applications, volume 2. Wiley, New York, 2nd edition, 1971.
- J. Karamata. Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze. Math. Z., 33(1):294–299, 1931. ISSN 0025-5874.
- P.L. Krapivsky and S. Redner. Organization of growing random networks. *Physical Review E*, 63(6):066123:1–14, 2001.
- S.I. Resnick. Point processes and Tauberian theory. *Math. Sci.*, 16(2):83–106, 1991. ISSN 0312-3685.
- S.I. Resnick. Heavy Tail Phenomena: Probabilistic and Statistical Modeling. Springer Series in Operations Research and Financial Engineering. Springer-Verlag, New York, 2007. ISBN: 0-387-24272-4.
- S.I. Resnick and G. Samorodnitsky. Tauberian theory for multivariate regularly varying distributions with application to preferential attachment networks. *Ex*tremes, 18(3):349–367, 2015. doi: 10.1007/s10687-015-0216-2.
- S.I. Resnick and G. Samorodnitsky. Asymptotic normality of degree counts in a preferential attachment model. *Journal of Applied Probability*, 2016.

CORNELI

- G. Samorodnitsky, S. Resnick, D. Towsley, R. Davis, A. Willis, and P. Wan. Nonstandard regular variation of in-degree and out-degree in the preferential attachment model. *Journal of Applied Probability*, 53(1):146–161, March 2016. doi: 10.1017/jpr.2015.15.
- U. Stadtmüller. A refined Tauberian theorem for Laplace transforms in dimension d > 1. J. Reine Angew. Math., 328:72–83, 1981. ISSN 0075-4102.
- U. Stadtmüller and R. Trautner. Tauberian theorems for Laplace transforms. J. Reine Angew. Math., 311/312:283–290, 1979. ISSN 0075-4102.
- U. Stadtmüller and R. Trautner. Tauberian theorems for Laplace transforms in dimension D > 1. J. Reine Angew. Math., 323:127–138, 1981. ISSN 0075-4102.
- A. Stam. Regular variation in \mathbb{R}^d_+ and the Abel-Tauber theorem. Technical Report, unpublished, Mathematisch Instituut, Rijksuniversiteit Groningen, August 1977.
- T. Wang and S. Resnick. Multivariate regular variation of discrete mass functions with applications to preferential attachment networks. Technical report, Cornell University, 2016. https://arxiv.org/submit/1451036, Submitted: Methodology and Computing in Applied Probability.
- T. Wang and S.I. Resnick. Asymptotic Normality of In- and Out-Degree Counts in a Preferential Attachment Model. *ArXiv e-prints*, oct 2015.
- A.L. Yakimiv. Probabilistic Applications of Tauberian Theorems. Modern Probability and Statistics. VSP, Leiden, The Netherlands, 2005.

