Limit Theorems for Betti Numbers of Extreme Sample Clouds

Takashi Owada

Technion-Israel Institute of Technology
May 2016

Topological data analysis

- Topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology and other mathematics.
- Typically, topologists classify objects into classes of "similar shapes" by the number of holes.

Topological data analysis

- Topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology and other mathematics.
- Typically, topologists classify objects into classes of "similar shapes" by the number of holes.

Applications

- Computational chemistry
- Sensor network
- Astrophysical science
- Manifold learning etc.

Algebraic Topology

- As highlighted in a recent series of columns in the IMS Bulletin, the collaboration of three different disciplines, topology, probability, and statistics, is indispensable for the development of TDA.
- The author of the column has invented a word, TOPOS (=topology, probability, and statistics).
- However, there are still only limited number of probabilistic and statistical works in TDA.

Betti numbers

- Basic quantifier in algebraic topology.
- Given a topological space X, the 0 -th Betti number $\beta_{0}(X)$ is defined as

$$
\beta_{0}(X)=\text { the number of connected components in } X
$$

- For $k \geq 1$, the k-th Betti number $\beta_{k}(X)$ is defined as

$$
\beta_{k}(X)=\text { the number of } k \text {-dim holes in } X \text {. }
$$

Betti numbers

- Basic quantifier in algebraic topology.
- Given a topological space X, the 0 -th Betti number $\beta_{0}(X)$ is defined as

$$
\beta_{0}(X)=\text { the number of connected components in } X
$$

- For $k \geq 1$, the k-th Betti number $\beta_{k}(X)$ is defined as

$$
\beta_{k}(X)=\text { the number of } k \text {-dim holes in } X \text {. }
$$

- More intuitively,

$$
\begin{aligned}
& \beta_{1}(X)=\text { the number of "closed loops" in } X . \\
& \beta_{2}(X)=\text { the number of "hollows" in } X .
\end{aligned}
$$

$$
\begin{gathered}
\beta_{0}=1, \beta_{1}=1, \\
\beta_{k}=0, k \geq 2 .
\end{gathered}
$$

$$
\beta_{0}=1, \beta_{1}=1
$$

$$
\beta_{k}=0, k \geq 2
$$

$$
\begin{gathered}
\beta_{0}=1, \beta_{1}=0, \beta_{2}=1, \\
\beta_{k}=0, k \geq 3 .
\end{gathered}
$$

$\beta_{0}=1, \beta_{k}=0, k \geq 1$.

$$
\begin{gathered}
\beta_{0}=1, \beta_{1}=2, \beta_{2}=1, \\
\beta_{k}=0, k \geq 3 .
\end{gathered}
$$

Scheme

1. Generate random sample from a heavy tail distribution.

- $\left(X_{i}\right)$: iid \mathbb{R}^{d}-valued random variables, $d \geq 2$, with spherically symmetric density f.
- f has a regularly varying tail: for some $\alpha>d$,

$$
\lim _{r \rightarrow \infty} \frac{f\left(r t e_{1}\right)}{f\left(r e_{1}\right)}=t^{-\alpha} \text { for every } t>0
$$

where $e_{1}=(1,0, \ldots, 0) \in \mathbb{R}^{d}$.

- To make our story simpler, we will work on a special example in the following.

$$
f(x)=C /\left(1+\|x\|^{\alpha}\right), \quad x \in \mathbb{R}^{d}, \alpha>d .
$$

2. Draw random balls of radius t about $X_{i}^{\prime} \mathrm{s}$.
3. Establish the limit theorems for Betti numbers of the union of balls.

Proposition [Adler et. al, 2014].

There exists a sequence $R_{n}^{(c)}=C^{\prime}(n / \log n)^{1 / \alpha}$ for some $C^{\prime}>0$, such that

$$
\mathbb{P}\left\{B\left(0 ; R_{n}^{(c)}\right) \subset \bigcup_{X \in \mathcal{X}_{n} \cap B\left(0 ; R_{n}^{(c)}\right)} B(X ; 1)\right\} \rightarrow 1, \quad n \rightarrow \infty,
$$

where $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$.

- $B\left(0 ; R_{n}^{(c)}\right)$ is called a core.

There are no holes inside a core

- The related notion, a weak core, plays a more decisive role in the characterization of the limit theorems.

Definition

Let f be a spherically symmetric density on \mathbb{R}^{d} and $R_{n}^{(w)} \rightarrow \infty$ be a sequence determined by

$$
n f\left(R_{n}^{(w)} e_{1}\right) \rightarrow 1, \quad n \rightarrow \infty
$$

Then $B\left(0 ; R_{n}^{(w)}\right)$ is called a weak core.

- The related notion, a weak core, plays a more decisive role in the characterization of the limit theorems.

Definition

Let f be a spherically symmetric density on \mathbb{R}^{d} and $R_{n}^{(w)} \rightarrow \infty$ be a sequence determined by

$$
n f\left(R_{n}^{(w)} e_{1}\right) \rightarrow 1, \quad n \rightarrow \infty .
$$

Then $B\left(0 ; R_{n}^{(w)}\right)$ is called a weak core.

- If $f(x)=C /\left(1+\|x\|^{\alpha}\right), x \in \mathbb{R}^{d}$, then $R_{n}^{(w)}=(C n)^{1 / \alpha}$.
- $R_{n}^{(c)} / R_{n}^{(w)} \rightarrow 0$, but they have the same regular variation exponent, $1 / \alpha$.

Betti number in the tail

- $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$: iid \mathbb{R}^{d}-valued random variables drawn from a power-law density with tail parameter α.
- For $k \geq 1$, define

$$
\beta_{k, n}(t):=\beta_{k}\left(\bigcup_{X \in \mathcal{X}_{n} \backslash B\left(0 ; R_{n}\right)} B(X ; t)\right), \quad t \geq 0
$$

where R_{n} is a non-random sequence with $R_{n} \geq R_{n}^{(w)}$ (= radius of a weak core).

Betti number in the tail

- $\mathcal{X}_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$: iid \mathbb{R}^{d}-valued random variables drawn from a power-law density with tail parameter α.
- For $k \geq 1$, define

$$
\beta_{k, n}(t):=\beta_{k}\left(\bigcup_{X \in \mathcal{X}_{n} \backslash B\left(0 ; R_{n}\right)} B(X ; t)\right), \quad t \geq 0,
$$

where R_{n} is a non-random sequence with $R_{n} \geq R_{n}^{(w)}$ ($=$ radius of a weak core).

- Roughly speaking, as $n \rightarrow \infty, k$-dim holes are distributed as follows.

- Roughly speaking, as $n \rightarrow \infty, k$-dim holes are distributed as follows.

- Three different regimes must be considered. We set, respectively,
- [1]: $R_{n}=(C n)^{1 /(\alpha-d /(k+2)),}$
- [2]: $(C n)^{1 / \alpha} \ll R_{n} \ll(C n)^{1 /(\alpha-d /(k+2))}$,
- [3]: $R_{n}=(C n)^{1 / \alpha}$,
and compute $\beta_{k, n}(t)$ by counting k-dim holes outside $B\left(0 ; R_{n}\right)$.

In the regime [1],

- There exist finitely many k-dim holes formed by $k+2$ random points outside $B\left(0 ; R_{n}\right)$ as $n \rightarrow \infty$.

Example ($k=1$)

- The appearance of holes is a rare event.

Limiting process for $\beta_{k, n}(t)$:

$$
N_{k}(t):=\int_{\left(\mathbb{R}^{d}\right)^{k+1}} h_{t}\left(0, y_{1}, \ldots, y_{k+1}\right) M_{k}(d \mathbf{y}) .
$$

- M_{k} is a Poisson random measure with Lebesgue intensity measure on $\left(\mathbb{R}^{d}\right)^{k+1}$.
- $h_{t}\left(0, y_{1}, \ldots, y_{k+1}\right)=\mathbf{1}\left\{\beta_{k}\left(B(0 ; t) \cup \bigcup_{i=1}^{k+1} B\left(y_{i} ; t\right)\right)=1\right\}$ with $0, y_{1}, \ldots, y_{k+1} \in \mathbb{R}^{d}$.
- $h_{t}(0, \mathbf{y})$ can be expressed as

$$
h_{t}(0, \mathbf{y})=h_{t}^{+}(0, \mathbf{y})-h_{t}^{-}(0, \mathbf{y}),
$$

where h_{t}^{+}and h_{t}^{-}are some other indicator functions, increasing in t.

- $h_{t}(0, \mathbf{y})$ can be expressed as

$$
h_{t}(0, \mathbf{y})=h_{t}^{+}(0, \mathbf{y})-h_{t}^{-}(0, \mathbf{y})
$$

where h_{t}^{+}and h_{t}^{-}are some other indicator functions, increasing in t.

- Accordingly,

$$
\begin{aligned}
N_{k}(t) & =\int_{\left(\mathbb{R}^{d}\right)^{k+1}} h_{t}^{+}(0, \mathbf{y}) M_{k}(d \mathbf{y})-\int_{\left(\mathbb{R}^{d}\right)^{k+1}} h_{t}^{-}(0, \mathbf{y}) M_{k}(d \mathbf{y}) \\
& :=N_{k}^{+}(t)-N_{k}^{-}(t)
\end{aligned}
$$

- We can prove that $N_{k}^{+}(t)$ and $N_{k}^{-}(t)$ are represented as a (time-changed) Poisson process.
- However, $N_{k}(t)$ is not a (time-changed) Poisson process.

Theorem 1. [O., 2016]
In the regime [1], we have, as $n \rightarrow \infty$,

$$
\beta_{k, n}(t) \Rightarrow N_{k}^{+}(t)-N_{k}^{-}(t) .
$$

In the regime [2],

- There exist infinitely many k-dim holes formed by $k+2$ points outside $B\left(0 ; R_{n}\right)$ as $n \rightarrow \infty$.

Example $(k=1)$

- The appearance of holes is no longer a rare event.

Limiting process for $\beta_{k, n}(t)$: Define a Gaussian process

$$
Y_{k}(t):=\int_{\left(\mathbb{R}^{d}\right)^{k+1}} h_{t}\left(0, y_{1}, \ldots, y_{k+1}\right) G_{k}(d \mathbf{y})
$$

- G_{k} is a Gaussian random measure with Lebesgue control measure on $\left(\mathbb{R}^{d}\right)^{k+1}$.
- $h_{t}\left(0, y_{1}, \ldots, y_{k+1}\right)=\mathbf{1}\left\{\beta_{k}\left(B(0 ; t) \cup \bigcup_{i=1}^{k+1} B\left(y_{i} ; t\right)\right)=1\right\}$ with $0, y_{1}, \ldots, y_{k+1} \in \mathbb{R}^{d}$.
- Using the decomposition $h_{t}=h_{t}^{+}-h_{t}^{-}$, we can write

$$
\begin{aligned}
Y_{k}(t) & =\int_{\left(\mathbb{R}^{d}\right)^{k+1}} h_{t}^{+}(0, \mathbf{y}) G_{k}(d \mathbf{y})-\int_{\left(\mathbb{R}^{d}\right)^{k+1}} h_{t}^{-}(0, \mathbf{y}) G_{k}(d \mathbf{y}) \\
& :=Y_{k}^{+}(t)-Y_{k}^{-}(t)
\end{aligned}
$$

- Then, $Y_{k}^{+}(t)$ and $Y_{k}^{-}(t)$ are represented as a (time-changed) Brownian motion.
- $Y_{k}(t)$ is a Gaussian process, but it is not a (time-changed) Brownian motion.

Theorem 2. [O., 2016]

In the regime [2], we have, as $n \rightarrow \infty$,

$$
\frac{\beta_{k, n}(t)-\mathbb{E}\left\{\beta_{k, n}(t)\right\}}{\left(n^{k+2} R_{n}^{d-\alpha(k+2)}\right)^{1 / 2}} \Rightarrow Y_{k}^{+}(t)-Y_{k}^{-}(t)
$$

In the regime [3],

Example ($k=1$)

- In the regimes [1] and [2], all the one-dim holes contributing to $\beta_{1, n}(t)$ in the limit are always of the form
- In the regime [3], many different kinds of one-dim holes (which exist close enough to a weak core) contribute to $\beta_{1, n}(t)$ in the limit.

The limiting Gaussian process is given by

$$
Z_{k}(t):=\sum_{i=k+2}^{\infty} \sum_{j>0} Z_{k}^{(i, j)}(t) .
$$

- $Z_{k}^{(i, j)}(t)$ is a Gaussian process representing the connected components that are formed by i points and contain j holes.

The limiting Gaussian process is given by

$$
Z_{k}(t):=\sum_{i=k+2}^{\infty} \sum_{j>0} Z_{k}^{(i, j)}(t) .
$$

- $Z_{k}^{(i, j)}(t)$ is a Gaussian process representing the connected components that are formed by i points and contain j holes.

Example: $Z_{1}^{(15,2)}(t)$ (i.e., $k=1, i=15, j=2$).

etc...

Rewrite $Z_{k}(t)$ as

$$
Z_{k}(t)=Z_{k}^{(k+2,1)}(t)+\sum_{i=k+3}^{\infty} \sum_{j>0} Z_{k}^{(i, j)}(t)
$$

- $Z_{k}^{(k+2,1)}(t)$ represents the connected components that are formed by $k+2$ points and contain a single k-dimensional hole.

Example: $Z_{1}^{(3,1)}(t)$ (i.e., $k=1, i=3, j=1$).

Rewrite $Z_{k}(t)$ as

$$
Z_{k}(t)=Z_{k}^{(k+2,1)}(t)+\sum_{i=k+3}^{\infty} \sum_{j>0} Z_{k}^{(i, j)}(t)
$$

- $Z_{k}^{(k+2,1)}(t)$ represents the connected components that are formed by $k+2$ points and contain a single k-dimensional hole.

Example: $Z_{1}^{(3,1)}(t)$ (i.e., $k=1, i=3, j=1$).

- $Z_{k}^{(k+2,1)}(t)$ is "similar" to the $Y_{k}(t)$ in the regime [2].

Theorem 3. [O., 2016]
In the regime [3], we have, as $n \rightarrow \infty$,

$$
\frac{\beta_{k, n}(t)-\mathbb{E}\left\{\beta_{k, n}(t)\right\}}{n^{d /(2 \alpha)}} \Rightarrow Z_{k}(t) .
$$

